国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

PD-1/PD-L1信號通路在腫瘤免疫逃逸中的作用及臨床意義

2015-04-15 21:23范忠義尤文葉楊俊蘭焦順昌
解放軍醫(yī)學院學報 2015年7期
關鍵詞:黑色素瘤免疫治療通路

李 瑛,范忠義,尤文葉,楊俊蘭,焦順昌

解放軍總醫(yī)院 腫瘤內(nèi)一科,北京 100853

PD-1/PD-L1信號通路在腫瘤免疫逃逸中的作用及臨床意義

李 瑛,范忠義,尤文葉,楊俊蘭,焦順昌

解放軍總醫(yī)院 腫瘤內(nèi)一科,北京 100853

隨著對腫瘤免疫微環(huán)境的認識,人們發(fā)現(xiàn)腫瘤細胞的免疫逃逸是造成腫瘤進展的重要原因。PD-1/PD-L1信號通路是近年來發(fā)現(xiàn)的負性免疫共刺激分子,在腫瘤免疫逃逸中扮演了重要的角色。本文簡要綜述了PD-1/PD-L1信號通路在腫瘤免疫逃逸中的作用機制及其抗體在腫瘤治療中的研究進展,為腫瘤的免疫治療提供新的思路和方法。

程序性死亡分子1;PD-1配體;腫瘤;腫瘤免疫

網(wǎng)絡出版時間:2015-04-14 10:09 網(wǎng)絡出版地址:http://www.cnki.net/kcms/detail/11.3275.R.20150414.1009.002.html

隨著對腫瘤免疫研究的深入,人們發(fā)現(xiàn)腫瘤微環(huán)境可以保護腫瘤細胞不被機體免疫系統(tǒng)識別和殺傷,腫瘤細胞的免疫逃逸在腫瘤發(fā)生、發(fā)展中扮演了非常重要的角色。機體免疫細胞的激活或抑制是通過正性信號和負性信號來調(diào)節(jié),其中程序性死亡分子1(programmed death 1,PD-1)/ PD-1配體(PD-1 ligand,PD-L1)便是負性免疫調(diào)節(jié)信號,抑制了腫瘤特異性CD8+T細胞的免疫活性,介導了免疫逃逸[1]。目前,PD-1/PD-L1信號通路成為腫瘤免疫研究的熱點之一,其阻滯劑抗PD-1、抗PD-L1抗體可以通過阻斷負性免疫調(diào)節(jié)信號,逆轉(zhuǎn)腫瘤逃逸而殺傷腫瘤。本文對PD1/ PD-L1通路在腫瘤免疫逃逸中作用的研究進展及其阻滯劑在腫瘤免疫治療中的應用進行綜述。

1 PD-1/PD-L1概述

T細胞介導的細胞免疫在識別和殺傷腫瘤細胞中起著重要的作用,T細胞通過T細胞受體(T cell receptor,TCR)與腫瘤細胞表面的帶有特異性抗原的主要組織相容性復合體(major histocompatibility complex,MHC)結(jié)合,從而識別腫瘤細胞[2-3]。TCR和MHC分子的相互作用受到一系列免疫檢查點的控制,其中有共刺激信號和共抑制信號,可以使T細胞激活或抑制[4]。其中PD-1和其配體PD-L1[5-7]通路是抑制性免疫檢查點,它們結(jié)合傳達共抑制性信號,可以使T細胞的免疫活性受到抑制,在免疫耐受中發(fā)揮重要作用,同時也是腫瘤細胞免疫逃逸的重要原因。

PD-1(又稱CD279)是一種免疫抑制性受體,屬于CD28家族成員的Ⅰ型跨膜蛋白,程序性細胞死亡分子-1受體1992年由Ishida等[8]采用消減雜交方法于凋亡的T細胞雜交瘤中得到并命名。人PD-1基因位于2q37.35染色體上,編碼一個約55 kU的跨膜糖蛋白。PD-1在激活的T細胞、B細胞、單核細胞和樹突狀細胞表面廣泛表達,PD-1結(jié)構(gòu)上與CTLA-4有30%的同源性,胞內(nèi)區(qū)存在兩個酪氨酸殘基,分別參與構(gòu)成了N端的一個免疫受體酪氨酸抑制基序(immunoreceptor tyrosine-based inhibitory motif,ITIM)和C端的一個免疫受體酪氨酸依賴的轉(zhuǎn)換基序(immunoreceptor tyrosin-based switch motif,ITSM);胞外區(qū)則是由一個IgV樣結(jié)構(gòu)域組成,含有多個糖基化位點并被重度糖基化,該結(jié)構(gòu)域可以與配體結(jié)合,從而發(fā)揮抑制T細胞活化的功能。

PD-1有兩種結(jié)合配體,PD-L1和PD-L2,兩者的表達有所不同[9-10],PD-L2表達比較局限,主要表達在活化的巨噬細胞、樹突狀細胞和少數(shù)腫瘤上[11]。PD-L1則在活化的T細胞、B細胞、巨噬細胞、樹突狀細胞和腫瘤細胞廣泛表達,同時在機體一些免疫屏蔽部位如胎盤、眼及其上皮、肌肉,肝和血管內(nèi)皮等組織表達。因此PD-L1在體內(nèi)的作用要遠遠超過PD-L2[9]。

PD-L1又名CD274,屬于B7家族的成員命名為B7同源1(B7-H1)。PD-L1蛋白含有IgV樣區(qū)、IgC樣區(qū)、跨膜區(qū)和細胞質(zhì)尾區(qū),其中細胞質(zhì)尾區(qū)與細胞內(nèi)的信號轉(zhuǎn)導相關,IgV區(qū)和IgC區(qū)則參與細胞間的信號轉(zhuǎn)導。研究發(fā)現(xiàn),TNF、IFNγ、IL-4、粒細胞刺激因子和IL-10等多種細胞因子可以上調(diào)PD-L1在不同細胞中的表達[12-13]。

2 PD-1/PD-L1信號通路的作用

研究發(fā)現(xiàn),PI3K-AKT、RAS信號通路轉(zhuǎn)導在PD-1/ PD-L1信號通路中發(fā)揮重要作用[11]。PD-1與PD-L1結(jié)合促使PD-1的ITSM結(jié)構(gòu)域中的酪氨酸發(fā)生磷酸化,進而引起下游蛋白激酶Syk和PI3K的去磷酸化,抑制下游AKT、ERK等通路的活化,最終抑制T細胞活化所需基因及細胞因子的轉(zhuǎn)錄和翻譯,發(fā)揮負向調(diào)控T細胞活性的作用。在生理條件下,PD-1/PD-L1信號通路主要發(fā)揮生理屏障的作用,如眼、胎盤、腦等部位,最大程度降低這些組織周圍的免疫反應,避免發(fā)生自身免疫性疾病。

PD-1/PD-L1信號通路的免疫抑制作用對多種免疫失調(diào)性疾病的發(fā)生、發(fā)展具有重要作用,首先是自身免疫性疾病。動物實驗發(fā)現(xiàn),PD-1基因敲除的小鼠可以引發(fā)狼瘡性腎炎[14]、擴張性心肌?。?4]及免疫腦脊髓膜炎[15]。另有研究發(fā)現(xiàn),阻斷PD-1/PD-L1信號通路可使小鼠發(fā)生糖尿病的速度加快,表明PD-1/PD-L1信號通路可能與自身免疫性糖尿病發(fā)病有關[16]。Prokunina等[17]還發(fā)現(xiàn)PD-1基因多態(tài)性與系統(tǒng)性紅斑狼瘡的發(fā)病相關。Hatachi等[18]也發(fā)現(xiàn)免疫性骨關節(jié)炎患者中存在PD-1的表達異常,這都說明PD-1/PD-L1信號通路與自身免疫性疾病的發(fā)生、發(fā)展有極其重要的作用。另外在人HIV、HBV、HCV感染患者體內(nèi)發(fā)現(xiàn)病毒特異性T細胞過量表達PD-1,抑制了T細胞的病毒殺傷作用,造成病毒慢性持續(xù)性感染[19-20]。此外,PD-1/ PD-L1信號通路也和移植物免疫排斥反應相關[21]。

3 PD-L1在腫瘤組織的表達和臨床意義

PD-L1在多數(shù)癌癥組織中過量表達,包括NSCLC、黑色素瘤、乳腺癌、膠質(zhì)瘤、淋巴瘤、白血病及各種泌尿系腫瘤、消化道腫瘤、生殖系腫瘤等[22]。

PD-L1的表達上調(diào)一方面可以由腫瘤的癌基因調(diào)控,通過PI3K-AKT、EGFR、ALK/STAT3等信號通路誘導腫瘤細胞固有表達PD-L1。另外還可通過T細胞對炎性信號的適應性反應而上調(diào)。

Parsa在鼠和人的腫瘤細胞中,發(fā)現(xiàn)T細胞異常分泌的IFN-γ,IFN-γ可以誘導腫瘤細胞上的PD-L1高表達[23]。PD-L1高表達,可以通過抑制RAS及PI3K/AKT信號通路,進而調(diào)控細胞周期檢查點蛋白和細胞增殖相關蛋白表達,最終導致T細胞增殖的抑制[11]。Dong等[24]體外實驗和小鼠模型還發(fā)現(xiàn),PD-1/PD-L1信號通路的激活可以誘導特異性CTL調(diào)亡,使CTL的細胞毒殺傷效應敏感性下降,促使腫瘤細胞發(fā)生免疫逃逸。還有研究報道稱PD-L1能通過下調(diào)mTOR、AKT、S6和ERK2的磷酸化及上調(diào)PTEN,促進誘發(fā)性Treg的產(chǎn)生、維持,從而抑制效應性T細胞活性[25]。Cao等[26]在小鼠皮膚腫瘤中發(fā)現(xiàn),PD-L1可以抑制E-cadherin的表達,促進腫瘤的上皮細胞與間充質(zhì)細胞之間的轉(zhuǎn)化,從而加大了腫瘤的轉(zhuǎn)移擴散能力。體外轉(zhuǎn)染PD-L1的荷瘤小鼠,很快出現(xiàn)腹水和遠處轉(zhuǎn)移,若將荷瘤小鼠PD-1基因敲除,腫瘤明顯緩解[27]。以上均提示PD-1/ PD-L1信號通路在腫瘤免疫逃逸過程中扮演了極其重要的角色。

Dong等[24]1999年首先在人卵巢癌組織中發(fā)現(xiàn)腫瘤細胞的PD-L1的表達,并和CD8陽性T細胞的浸潤程度負相關。在NSCLC、結(jié)腸癌、肝癌、乳腺癌均提示PD-L1的表達水平與臨床特征和預后相關[28]。Ghebeh等[29]發(fā)現(xiàn),乳腺癌細胞PD-L1表達水平與腫瘤病理特征,如組織分級Ⅲ級、ER、PR表達陰性相關,并且隨著腫瘤增殖系數(shù)Ki-67增加而升高,而在休眠的腫瘤細胞中下調(diào)[30]。研究還發(fā)現(xiàn),PD-1/PD-L1通路在增殖速度快、分化差的三陰性乳腺癌中扮演了重要的角色,20%的三陰性乳腺癌患者表達PD-L1。接受阿霉素化療的患者,乳腺癌細胞表面的PD-L1表達可呈現(xiàn)出下調(diào)趨勢[31];而在紫杉醇和5-Fu類藥物化療后則相反,可以上調(diào)PD-L1表達,并與免疫耐受相關;提示化療也可以影響免疫耐受。

4 抗PD-1、抗PD-L1抗體在腫瘤治療中的應用

越來越多的證據(jù)表明,PD-1/PD-L1信號通路在腫瘤免疫中起到關鍵性作用,同時為腫瘤免疫治療提供了新的分子靶標,如果從根源上阻斷PD-1/PD-L1信號通路的激活,便可以增強抗腫瘤免疫治療效應??筆D-1和抗PD-L1抗體已經(jīng)成為腫瘤免疫治療研究中的熱點研究方向[32]。

相關抗PD-1治療藥物:Nivolumab(MDX-1106/BMS-936558/ONO-4538)是一個全人源化IgG4單抗,在黑色素瘤、腎細胞癌、結(jié)直腸癌和非小細胞肺癌患者中都觀察到了該藥物的臨床活性。一項來自約翰斯·霍普金斯大學的Ⅰ期臨床研究表明,雙周Nivolumab臨床給藥,大約1/3的晚期黑色素瘤和腎細胞癌患者出現(xiàn)完全或部分腫瘤消退[33]。其中36% PD-L1陽性表達患者有療效而陰性表達患者均無效,提示PD-L1表達可能是抗PD-1治療的生物預測指標。約12%患者發(fā)生3級藥物不良事件(Aes),如腹瀉、胸膜炎、肝功能損傷等。Topalian等[34]在Ⅰ期臨床試驗中發(fā)現(xiàn),肺鱗癌亞組的Nivolumab客觀緩解率可達33%。另一項德法意美等國開展的Ⅱ期單臂臨床試驗(編號NCT01721759)得到類似結(jié)論,117例接受過兩種以上治療的晚期肺鱗癌患者接受Nivolumab治療,客觀緩解率達41%[35]。鑒于以上結(jié)果近日美國食品藥品監(jiān)督管理局(FDA)快速批準其上市,用于治療晚期黑色素瘤患者以及鉑類藥物化療后疾病進展的轉(zhuǎn)移性鱗性非小細胞肺癌。其他抗PD-1抗體如MK-3475、CT-011、AMP-224都已進入Ⅰ期臨床評價階段。

抗PD-L1抗體:MPDL3280A是人源化IgG4抗體,采用工程化(特殊修飾)以避免產(chǎn)生抗體依賴細胞介導的細胞毒性作用(ADCC效應)。Hodi等Ⅰ期試驗277例患者,包括黑色素瘤、腎細胞癌、結(jié)直腸癌、非小細胞肺癌、膀胱癌、三陰性乳腺癌等,客觀有效率達到23%,近42%患者獲得24周的無進展生存期[36]。藥物相關不良反應(AEs)多數(shù)為1 ~ 2級,12%患者出現(xiàn)3級AEs,耐受性良好。研究中包括12例三陰性乳腺癌病人,客觀有效率為33%,包括1例CR,2例PR,提示MPDL3280A可能在三陰性乳腺癌治療中有一定療效。另一個PD-L1單抗MDX-1105/BMS-936559,Ⅰ期臨床試驗顯示,對黑色素瘤、腎癌和非小細胞肺癌都有一定療效[37];入組207例患者中客觀有效率6% ~17%,中位無進展生存期24周,此研究中有4例乳腺癌患者均顯示無效,可能與其PD-1/PD-L1表達缺失有關。

5 結(jié)語

PD-1/PD-L1信號通路在腫瘤免疫治療的研究中得到廣泛認可和重視,其阻滯劑給腫瘤免疫治療帶來了新的方向和希望。探索如何根據(jù)腫瘤微環(huán)境的特點,找到可靠的生物標記物,使得腫瘤免疫治療逐步實現(xiàn)個體化,PD-1/ PD-L1信號通路給我們提供了新的分子靶標。隨著越來越多基礎研究和臨床試驗的展開和深入,免疫治療將會成為腫瘤綜合治療的重要組成部分。

1 Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape[J]. Nat Immunol, 2002, 3(11):991-998.

2 Scott DW, Long C, Jandinski JJ, et al. Role of self MHC carriers in tolerance and the immune response[J]. Immunol Rev, 1980, 50:275-309.

3 Dong C, Nurieva RI, Prasad DV. Immune regulation by novel costimulatory molecules[J]. Immunol Res, 2003, 28(1): 39-48.

4 Pratama A, Srivastava M, Williams NJ, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres[J]. Nat Commun, 2015, 6:6436.

5 Lussier DM, O'Neill L, Nieves LM, et al. Enhanced T-Cell Immunity to Osteosarcoma Through Antibody Blockade of PD-1/PDL1 Interactions[J]. J Immunother, 2015, 38(3):96-106.

6 Blake SJ, Ching AL, Kenna TJ, et al. Blockade of PD-1/PD-L1 promotes adoptive T-Cell immunotherapy in a tolerogenic environment[J]. PLoS One, 2015, 10(3): e0119483.

7 Kirkwood JM, Butterfield LH, Tarhini AA, et al. Immunotherapy of cancer in 2012[J]. CA Cancer J Clin, 2012, 62(5):309-335.

8 Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1,a novel member of the immunoglobulin gene superfamily, upon programmed cell death[J]. EMBO J, 1992, 11(11): 3887-3895.

9 Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion[J]. Nat Med, 1999, 5(12): 1365-1369.

10 Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation[J]. Nat Immunol, 2001, 2(3):261-268.

11 Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy[J]. Clin Cancer Res, 2014,20(19): 5064-5074.

12 Achleitner A, Clark ME, Bienzle D. T-regulatory cells infected with feline immunodeficiency virus up-regulate programmed death-1(PD-1)[J]. Vet Immunol Immunopathol, 2011, 143(3/4):307-313.

13 Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape[J]. Sci Transl Med, 2012, 4(127): 127ra37.

14 Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity, 1999, 11(2):141-151.

15 Zhang J, Braun MY. PD-1 deletion restores susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice[J]. Int Immunol, 2014, 26(7): 407-415.

16 Li R, Lee J, Kim MS, et al. PD-L1-driven tolerance protects neurogenin3-induced islet neogenesis to reverse established type 1 diabetes in NOD mice[J]. Diabetes, 2015, 64(2): 529-540.

17 Prokunina L, Castillejo-López C, Oberg F, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans[J]. Nat Genet, 2002, 32(4):666-669.

18 Hatachi S, Iwai Y, Kawano S, et al. CD4+ PD-1+ T cells accumulate as unique anergic cells in rheumatoid arthritis synovial fluid[J]. J Rheumatol, 2003, 30(7):1410-1419.

19 Penaloza-MacMaster P, Kamphorst AO, Wieland A, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection[J]. J Exp Med,2014, 211(9):1905-1918.

20 Zdrenghea MT, Johnston SL. Role of PD-L1/PD-1 in the immune response to respiratory viral infections[J]. Microbes Infect, 2012,14(6): 495-499.

21 Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26:677-704.

22 Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy[J]. J Leukoc Biol, 2013, 94(1): 25-39.

23 Ding H, Wu X, Wu J, et al. Delivering PD-1 inhibitory signal concomitant with blocking ICOS co-stimulation suppresses lupus-like syndrome in autoimmune BXSB mice[J]. Clin Immunol, 2006,118(2/3): 258-267.

24 Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.

25 Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells[J]. J Exp Med, 2009, 206(13): 3015-3029.

26 Cao Y, Zhang L, Kamimura Y, et al. B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin[J]. Cancer Res, 2011, 71(4): 1235-1243.

27 Curiel TJ, Wei S, Dong HD, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity[J]. Nat Med,2003, 9(5): 562-567.

28 Velcheti V, Schalper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small cell lung cancer[J]. Lab Invest,2014, 94(1):107-116.

29 Ghebeh H, Mohammed S, Al-Omair A, et al. The B7-H1 (PDL1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors[J]. Neoplasia, 2006, 8(3): 190-198.

30 Ghebeh H, Tulbah A, Mohammed S, et al. Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells[J]. Int J Cancer, 2007, 121(4):751-758.

31 Ghebeh H, Lehe C, Barhoush E, et al. Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule[J]. Breast Cancer Res, 2010, 12(4): R48.

32 Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proc Natl Acad Sci U S A,2002, 99(19): 12293-12297.

33 Brahmer JR, Drake CG, Wollner I, et al. Phase I study of singleagent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates[J]. J Clin Oncol, 2010, 28(19): 3167-3175.

34 Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of Anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454.

35 Rizvi NA, Mazi è res J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer(CheckMate 063): a phase 2, single-arm trial[J]. Lancet Oncol,2015, 16(3): 257-265.

36 Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients[J]. Nature, 2014, 515(7528): 563-567.

37 Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465.

Advances in PD-1/PD-L1 signaling pathway in tumor immune evasion and its clinical significance

LI Ying, FAN Zhongyi, YOU Wenye, YANG Junlan, JIAO Shunchang
Department of Medical Oncology, Chinese PLA General Hospital, Beijing 100853, China
Corresponding author: JIAO Shunchang. Email: jiaosc@vip.sina.com

With the deep understanding of tumor immune microenvironment, people find that immune evasion of tumor cells is the main factor of tumor progression. PD-1/PD-L1 signal pathway is a negative immune costimulatory molecule found in recent years which plays an important role in tumor immune evasion. This review briefly summarizes the mechanism of PD-1/PD-L1 signal pathway in tumor immune evasion and research progress of their antibodies in the treatment of tumor, which may provide new ideas and methods for tumor immunotherapy.

programmed death 1; programmed death 1 ligand; neoplasms; tumor immunity

R 735.7

A

2095-5227(2015)07-0762-04

10.3969/j.issn.2095-5227.2015.07.032

2015-03-17

總后衛(wèi)生部保健項目(BWS11J010)

Supported by the Health Care Project of Health Ministy of General Logistic Department of PLA(BWS11J010)

李瑛,女,在職博士,副主任醫(yī)師。Emal: liying30 12015@163.com

焦順昌,男,博士,主任醫(yī)師,教授,博士生導師。Email: jiaosc@vip.sina.com

猜你喜歡
黑色素瘤免疫治療通路
腫瘤免疫治療發(fā)現(xiàn)新潛在靶點
原發(fā)性食管惡性黑色素瘤1例并文獻復習
腎癌生物免疫治療進展
顱內(nèi)黑色素瘤的研究進展
Kisspeptin/GPR54信號通路促使性早熟形成的作用觀察
左拇指巨大黑色素瘤1例
proBDNF-p75NTR通路抑制C6細胞增殖
通路快建林翰:對重模式應有再認識
Hippo/YAP和Wnt/β-catenin通路的對話
Toll樣受體:免疫治療的新進展