陳國(guó)長(zhǎng),曹文田,唐國(guó)有,于保生
(1.中國(guó)原子能科學(xué)研究院核數(shù)據(jù)重點(diǎn)實(shí)驗(yàn)室,北京 102413;
2.北京大學(xué)物理學(xué)院核物理與核技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100871)
EMPIRE計(jì)算30 MeV以下238U中子核反應(yīng)數(shù)據(jù)
陳國(guó)長(zhǎng)1,曹文田2,*,唐國(guó)有2,于保生1
(1.中國(guó)原子能科學(xué)研究院核數(shù)據(jù)重點(diǎn)實(shí)驗(yàn)室,北京 102413;
2.北京大學(xué)物理學(xué)院核物理與核技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100871)
為進(jìn)一步完善核數(shù)據(jù)評(píng)價(jià)手段,本文將EMPIRE應(yīng)用到中子引起錒系核素的核反應(yīng)模型分析中,根據(jù)中子核反應(yīng)機(jī)制的特點(diǎn),選取恰當(dāng)?shù)暮朔磻?yīng)模型及模型參數(shù),以實(shí)驗(yàn)數(shù)據(jù)為基礎(chǔ)對(duì)模型參數(shù)進(jìn)行調(diào)整,由EMPIRE計(jì)算獲得30MeV以下能區(qū)n+238U的核反應(yīng)數(shù)據(jù)。從計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)以及各評(píng)價(jià)庫(kù)數(shù)據(jù)對(duì)比來(lái)看,EMPIRE可得到較合理的結(jié)果。
EMPIRE;中子;截面;238U;核數(shù)據(jù)
核能發(fā)展和核燃料廢物處理等對(duì)核反應(yīng)數(shù)據(jù),特別是某些重要錒系核素(如238U)大于20MeV中子引起的核反應(yīng)數(shù)據(jù)提出了明確需求。在主要的中子核反應(yīng)評(píng)價(jià)數(shù)據(jù)庫(kù)中,僅美國(guó)ENDF/B-Ⅶ庫(kù)[1]和歐洲JEFF-3.1庫(kù)[2]存在少量入射中子能量大于20MeV的全套中子評(píng)價(jià)數(shù)據(jù)。
EMPIRE[3]基于廣義的統(tǒng)計(jì)模型,用直接反應(yīng)、預(yù)平衡反應(yīng)和平衡反應(yīng)以及光學(xué)模型描述核反應(yīng)過(guò)程,是近年來(lái)逐漸完善的核反應(yīng)模型程序,ENDF/B-Ⅶ庫(kù)中的許多中重核全套中子評(píng)價(jià)數(shù)據(jù)已采用EMPIRE進(jìn)行理論分析。核反應(yīng)截面計(jì)算是反映理論程序適用性的基礎(chǔ),238U的各種核反應(yīng)截面實(shí)驗(yàn)信息較多,有利于對(duì)理論計(jì)算結(jié)果的評(píng)價(jià)和檢驗(yàn)。本工作以n+238U核反應(yīng)為例,對(duì)EMPIRE-3.0程序應(yīng)用到錒系核素中子引起的核反應(yīng)模型分析的可行性進(jìn)行探討。
EMPIRE是一普適性較強(qiáng)的核反應(yīng)理論程序系統(tǒng),適用于中子、帶電粒子(如p、d、T等)或其他重離子引起的核反應(yīng),且入射粒子能量高達(dá)200MeV。程序中包括一些成熟的核反應(yīng)機(jī)制,如直接、預(yù)平衡和復(fù)合核反應(yīng)機(jī)制。非彈直接過(guò)程由耦合道或簡(jiǎn)化的耦合道近似描述。預(yù)平衡反應(yīng)機(jī)制可通過(guò)考慮核形變多步直接和多步復(fù)合核模型、考慮團(tuán)簇發(fā)射的預(yù)平衡激子模型或全角動(dòng)量耦合的激子模型來(lái)描述。最后,復(fù)合核衰變使用考慮了γ級(jí)聯(lián)、角動(dòng)量守恒和寬度漲落修正的Hauser-Feshbach模型。對(duì)裂變反應(yīng)道的處理采用多峰裂變位壘及在阱中考慮吸收作用。EMPIRE集成了核反應(yīng)輸入?yún)?shù)庫(kù)(RIPL-3庫(kù)[4])、實(shí)驗(yàn)測(cè)量數(shù)據(jù)庫(kù)(EXFOR庫(kù))、實(shí)驗(yàn)信息檢索、理論計(jì)算結(jié)果后期處理以及與實(shí)驗(yàn)數(shù)據(jù)畫圖比對(duì)等大量輔助程序。EMPIRE的框架結(jié)構(gòu)及工作流程如圖1所示。整個(gè)程序的核心部分為物理核心部分,它集合了很多由FORTRAN編寫的核反應(yīng)物理模塊,而整個(gè)程序計(jì)算過(guò)程中RIPL-3輸入?yún)?shù)庫(kù)為物理核心開(kāi)展理論計(jì)算提供相關(guān)基礎(chǔ)參數(shù)的支撐。理論計(jì)算結(jié)果再由程序系統(tǒng)中的輔助程序?qū)⑵涮幚沓蓸?biāo)準(zhǔn)的ENDF-B數(shù)據(jù)格式,并對(duì)ENDF-B格式輸出的數(shù)據(jù)進(jìn)行物理和格式檢查,以及開(kāi)展微分截面點(diǎn)截面化等處理,最后將理論計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行畫圖比對(duì)。在此過(guò)程中需對(duì)EXFOR庫(kù)中實(shí)驗(yàn)信息進(jìn)行檢索和處理,并需從現(xiàn)有的評(píng)價(jià)數(shù)據(jù)庫(kù)中提取共振參數(shù)等。該程序有一友好的用戶界面,使用者可較方便地利用用戶界面上的各按鈕進(jìn)行理論計(jì)算及其他相關(guān)處理。
圖1 EMPIRE組成及工作流程示意圖Fig.1 Sketch map of major components and working process of EMPIRE
2.1 評(píng)價(jià)庫(kù)中各反應(yīng)截面評(píng)價(jià)情況
ENDF/B-Ⅶ、JEFF-3.1、CENDL-3.1[5],JENDL-4.0[6]等核數(shù)據(jù)評(píng)價(jià)庫(kù)中各反應(yīng)截面所采用的評(píng)價(jià)方法及能區(qū)范圍列于表1。ENDF/B-Ⅶ評(píng)價(jià)庫(kù)中除非彈性散射反應(yīng)截面采用洛斯·阿拉莫斯實(shí)驗(yàn)室發(fā)展的GNASH程序[7-9]理論計(jì)算結(jié)果外,其他反應(yīng)截面均根據(jù)實(shí)驗(yàn)數(shù)據(jù)評(píng)價(jià)得到。JEFF-3.1庫(kù)的評(píng)價(jià)數(shù)據(jù)主要采用Bruyeres-le-Chatel改進(jìn)后的GNASH程序[9]的理論計(jì)算結(jié)果。這兩家評(píng)價(jià)庫(kù)整體上理論計(jì)算思路相似,均是由GNASH程序計(jì)算中子穿透因子,Hauser-Feshbach統(tǒng)計(jì)模型加上裂變預(yù)平衡過(guò)程,在裂變計(jì)算中采用三峰位壘反應(yīng)機(jī)制,并利用耦合道方法的ECIS程序[10]計(jì)算非彈散射直接作用貢獻(xiàn)。
CENDL-3.1評(píng)價(jià)庫(kù)中僅非彈性散射截面采用FUNF程序[11]計(jì)算結(jié)果,其直接作用貢獻(xiàn)由ECIS程序計(jì)算得到。日本JENDL-4.0評(píng)價(jià)庫(kù)中除(n,tot)、(n,f)和(n,γ)等反應(yīng)截面采用實(shí)驗(yàn)數(shù)據(jù)評(píng)價(jià)外,其他反應(yīng)截面均采用耦合道CCONE程序[12]的理論計(jì)算結(jié)果。
2.2 光學(xué)模型勢(shì)參數(shù)
光學(xué)模型勢(shì)參數(shù)是理論計(jì)算中最基本和重要的輸入?yún)?shù),RIPL-3庫(kù)中包含有19組適合n+238U理論計(jì)算的光學(xué)模型勢(shì)參數(shù),包括球形核及耦合道振動(dòng)和轉(zhuǎn)動(dòng)光學(xué)模型勢(shì)參數(shù)。錒系核均存在不同程度的形變,因此在選擇光學(xué)模型勢(shì)參數(shù)時(shí)重點(diǎn)關(guān)注靶核形變的耦合道光學(xué)模型勢(shì)參數(shù)。選擇不同的光學(xué)模型勢(shì)參數(shù)進(jìn)行試算,由全截面、彈性散射、去彈散射截面及彈性散射微分截面等與實(shí)驗(yàn)數(shù)據(jù)的對(duì)比,最后確定Lagrange[13]的耦合道中子光學(xué)模型勢(shì)參數(shù)。另外,直接作用貢獻(xiàn)采用同一套光學(xué)模型勢(shì)參數(shù)計(jì)算。圖2為全截面模型計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比,在整個(gè)能區(qū)內(nèi)模型計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)符合較好,特別是在2MeV以下能區(qū),理論計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)符合較好。
2.3 各反應(yīng)截面理論計(jì)算
理論分析中,對(duì)核反應(yīng)模型的選擇及參數(shù)的調(diào)整情況如下。
1)考慮激子模型、多步復(fù)合核和多步直接過(guò)程,并采用雙峰位壘模型描述裂變過(guò)程,而非彈散射直接作用由耦合道方法獲得。
表1 評(píng)價(jià)數(shù)據(jù)庫(kù)中各截面數(shù)據(jù)采用的評(píng)價(jià)方法Table 1 Evaluation methods for each reaction in nuclear data evaluation library
圖2238U(n,tot)計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比Fig.2 Comparison of calculation results with measurement data for238U(n,tot)
2)考慮全能區(qū)寬度漲落修正,采用EMPIRE特有的能級(jí)密度公式,而殼修正采用Myers-Swiatecki方式。
3)通過(guò)調(diào)整裂變位壘、壘上能級(jí)密度和曲率半徑等參數(shù)使得裂變反應(yīng)截面理論計(jì)算結(jié)果與實(shí)驗(yàn)測(cè)量符合較好,另外需在RIPL-3參數(shù)庫(kù)基礎(chǔ)上對(duì)(n,2n)、(n,3n)及(n,γ)等反應(yīng)道的能級(jí)密度和對(duì)修正等參數(shù)進(jìn)行調(diào)整。
主要反應(yīng)道理論計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)的對(duì)比如下。
1)(n,2n)和(n,3n)反應(yīng)計(jì)算結(jié)果
本理論計(jì)算結(jié)果與JENDL-4.0理論計(jì)算推薦以及其他評(píng)價(jià)數(shù)據(jù)和實(shí)驗(yàn)數(shù)據(jù)的對(duì)比示于圖3。本計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)的符合程度雖不如JENDL-4.0庫(kù)的好,但與大部分實(shí)驗(yàn)數(shù)據(jù)相符合。在En>15MeV能區(qū),本計(jì)算結(jié)果較評(píng)價(jià)數(shù)據(jù)庫(kù)及實(shí)驗(yàn)數(shù)據(jù)均低一些,這主要是為保證(n,f)反應(yīng)截面與實(shí)驗(yàn)數(shù)據(jù)符合,使這部分反應(yīng)截面較實(shí)驗(yàn)數(shù)據(jù)偏??;另一方面,在調(diào)整能級(jí)密度與對(duì)修正時(shí),對(duì)這部分的影響較有限,后續(xù)工作需進(jìn)一步研究不同反應(yīng)截面間分配的參數(shù)調(diào)整方法。
圖3238U(n,2n)計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)對(duì)比Fig.3 Comparison of calculation results with evaluation and measurement data for238U(n,2n)
對(duì)于(n,3n)反應(yīng),整體上本計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)符合較好,特別是在峰位18MeV以上能區(qū),相對(duì)于JEFF-3.1庫(kù)和JENDL-4.0庫(kù)的推薦數(shù)據(jù),本計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)更符合,且反應(yīng)截面的曲線趨勢(shì)和大小更合理(圖4)。在20MeV以上能區(qū),本理論計(jì)算結(jié)果明顯較其他評(píng)價(jià)數(shù)據(jù)低,這主要是考慮Veeser等[21]的實(shí)驗(yàn)測(cè)量值;另一方面,(n,4n)反應(yīng)道的反應(yīng)閾值為17.9MeV,因此在18MeV以上能區(qū)其與(n,3n)反應(yīng)道產(chǎn)生競(jìng)爭(zhēng);但在25MeV以上能區(qū),本理論計(jì)算結(jié)果偏低。
圖4238U(n,3n)計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)對(duì)比Fig.4 Comparison of calculation results with evaluation and measurement data for238U(n,3n)
2)238U(n,γ)反應(yīng)計(jì)算結(jié)果
在模型計(jì)算中采用參數(shù)庫(kù)RIPL-3中的γ強(qiáng)度。計(jì)算得到的(n,γ)激發(fā)函數(shù)曲線形狀符合物理規(guī)律,且與實(shí)驗(yàn)數(shù)據(jù)符合較好。在JEFF-3.1庫(kù)中,評(píng)價(jià)數(shù)據(jù)是直接采用理論計(jì)算結(jié)果,當(dāng)En>10MeV時(shí)其評(píng)價(jià)數(shù)據(jù)與實(shí)驗(yàn)測(cè)量的偏差較大,如圖5所示。
圖5238U(n,γ)計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)對(duì)比Fig.5 Comparison of calculation results with evaluation and measurement data for238U(n,γ)
圖6238U(n,f)計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)對(duì)比Fig.6 Comparison of calculation results with evaluation and measurement data for238U(n,f)
3)238U(n,f)反應(yīng)計(jì)算結(jié)果
圖6為裂變反應(yīng)截面本計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)間的對(duì)比,其中JEFF-3.1庫(kù)的評(píng)價(jià)數(shù)據(jù)直接采用理論計(jì)算結(jié)果。整體上本計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)相符合,而En>20MeV時(shí),JEFF-3.1庫(kù)的推薦結(jié)果明顯較實(shí)驗(yàn)數(shù)據(jù)高。在24MeV以上能區(qū),本理論計(jì)算結(jié)果明顯較238U裂變截面的國(guó)際標(biāo)準(zhǔn)值低,曲線形狀也存在一定的差異。
4)非彈反應(yīng)計(jì)算結(jié)果
該反應(yīng)道實(shí)驗(yàn)數(shù)據(jù)很少,各評(píng)價(jià)數(shù)據(jù)庫(kù)均直接采用理論計(jì)算結(jié)果。在非彈散射截面計(jì)算中選取27條分立能級(jí),且考慮包括第1和第2轉(zhuǎn)動(dòng)帶中12條分立能級(jí)集體態(tài)的貢獻(xiàn)。總非彈性散射截面的計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)的對(duì)比示于圖7,本計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)符合較好,且與各評(píng)價(jià)庫(kù)中數(shù)據(jù)在曲線形狀和大小上基本一致。
在238U中第1~3和第6分立能級(jí)非彈散射有實(shí)驗(yàn)數(shù)據(jù)。第1、2分立能級(jí)的計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)的對(duì)比示于圖8。本計(jì)算結(jié)果與各評(píng)價(jià)庫(kù)的推薦值均在測(cè)量不確定度范圍內(nèi)與實(shí)驗(yàn)數(shù)據(jù)相符合,且反應(yīng)激發(fā)函數(shù)曲線形狀和大小均較合理。從圖8也可看出,1~ 4MeV之間本理論計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)符合較好,ENDF/B-Ⅶ評(píng)價(jià)數(shù)據(jù)在2.5MeV附近有一突起,截面評(píng)價(jià)值與其他評(píng)價(jià)數(shù)據(jù)及本理論計(jì)算結(jié)果存在一定分歧。
圖7238U總非彈性散射截面計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)對(duì)比Fig.7 Comparison of calculation results with evaluation and measurement data for238U(n,inl)
圖8238U分立能級(jí)非彈性散射截面計(jì)算結(jié)果與評(píng)價(jià)數(shù)據(jù)及實(shí)驗(yàn)數(shù)據(jù)對(duì)比Fig.8 Comparison of calculation results with evaluation and measurement data for238U discrete level inelastic scattering reaction
5)彈性散射角分布的理論計(jì)算
彈性散射角分布除ENDF/B-Ⅶ庫(kù)在En<10MeV能區(qū)直接采用Maslov[67]的評(píng)價(jià)數(shù)據(jù)外,其他評(píng)價(jià)庫(kù)數(shù)據(jù)均直接采用理論計(jì)算結(jié)果。1.5~30MeV之間不同中子入射能量下本工作計(jì)算結(jié)果與實(shí)驗(yàn)測(cè)量數(shù)據(jù)的對(duì)比示于圖9(各曲線為本工作計(jì)算結(jié)果,數(shù)據(jù)點(diǎn)為實(shí)驗(yàn)測(cè)量結(jié)果)。從不同中子能量對(duì)應(yīng)的彈性散射角分布截面形狀上看,其較符合物理趨勢(shì),另外,各能點(diǎn)彈性散射角分布截面與實(shí)驗(yàn)測(cè)量數(shù)據(jù)符合較好。
本工作利用EMPIRE對(duì)中子引起的238U核反應(yīng)進(jìn)行理論計(jì)算,并將理論計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)及評(píng)價(jià)數(shù)據(jù)進(jìn)行對(duì)比,可看出:
1)選用合適的反應(yīng)機(jī)制,通過(guò)對(duì)理論參數(shù)的調(diào)整可獲得與實(shí)驗(yàn)數(shù)據(jù)符合較好的理論計(jì)算結(jié)果;
2)對(duì)實(shí)驗(yàn)數(shù)據(jù)缺乏的反應(yīng)道,如非彈性散射反應(yīng),理論計(jì)算結(jié)果不僅與有限的實(shí)驗(yàn)數(shù)據(jù)在測(cè)量不確定度范圍內(nèi)符合,而且與評(píng)價(jià)庫(kù)中推薦數(shù)據(jù)基本一致,而對(duì)分立能級(jí)非彈性散射截面本工作計(jì)算結(jié)果明顯較評(píng)價(jià)庫(kù)中的數(shù)據(jù)合理;
圖9238U彈性散射角分布計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比Fig.9 Comparison of calculation results with measurement data for elastic scattering angular distribution
3)En≤10MeV能區(qū),彈性散射角分布的形狀和大小基本合理,但隨入射中子能量增加,尤其在En>20MeV能區(qū),在后角區(qū)域可能會(huì)出現(xiàn)不太合理的下降趨勢(shì),評(píng)價(jià)庫(kù)如ENDF/B-Ⅶ這一問(wèn)題較突出;
4)本工作使用的EMPIRE可給出(n,2n)、(n,3n)等反應(yīng)次級(jí)中子雙微分譜,但不能給出裂變中子數(shù)和裂變中子能譜,在后續(xù)的研究工作中需利用其不斷更新的理論程序?qū)Ψ磻?yīng)截面、微分截面特別是裂變中子能譜進(jìn)行分析;
5)在利用EMPIRE開(kāi)展理論計(jì)算中需先對(duì)比和選擇適當(dāng)?shù)腞IPL庫(kù)參數(shù)和能級(jí)密度公式等,再對(duì)各核反應(yīng)模型所涉及的具體參數(shù)進(jìn)行調(diào)節(jié),并充分利用程序中各種輔助工具。
總體上,EMPIRE基本能滿足中子引起錒系核反應(yīng)的理論計(jì)算,若有較多的30MeV以下能區(qū)實(shí)驗(yàn)測(cè)量信息,可得到較為可信的理論計(jì)算結(jié)果。
[1] CHADWICK M B,HERMAN M,OBLO?INSKY P,et al.ENDF/B-Ⅶ.1nuclear data for science and technology:Cross sections,covariances,fission product yields and decay data[J].Nucl Data Sheets,2011,112:2 887-2 996.
[2] OECD/NEA Data Bank.The JEFF-3.1.1nuclear data library,JEFF report 22[R].[S.l.]:[s.n.],2009.
[3] HERMAN M,CAPOTE R,CARLSON B V,et al.EMPIRE:Nuclear reaction model code system for data evaluation[J].Nucl Data Sheets,2007,108:2 655-2 715.
[4] CAPOTE R,HERMAN M,OBLO?INSKY P,et al.RIPL:Reference input parameter library for calculation of nuclear reactions and nuclear data evaluations[J].Nucl Data Sheets,2009,110:3 107-3 214.
[5] GE Z G,ZHUANG Y X,LIU T J,et al.CENDL-3.1:The Chinese Evaluated Nuclear Data Library for neutron reaction data[J].Korean Physical Society,2011,59(2):1 052-1 056.
[6] SHIBATA K,IWAMOTO O,NAKAGAWA T,et al.JENDL-4.0:A new library for nuclear science and engineering[J].Nucl Sci Tech,2011,48(1):1-30.
[7] YOUNG P G,ARTHUR E D.GNASH:A preequilibrium statistical nuclear model code for calculations of cross sections and emission spectra,technical report LA-6947[R].US:Los Alamos National Laboratory,1977.
[8] YOUNG P G,ARTHUR E D,CHADWICK M B.Comprehensive nuclear model calculations:Introduction to the theory and use of the GNASH code,technical report LA-12343-MS[R].US:Los Alamos National Laboratory,1992.
[9] YOUNG P G,ARTHUR E D,CHADWICK M B.Comprehensive nuclear model calculations:Theory and use of the GNASH code[C]∥Proceedings of the IAEA Workshop on Nuclear Reaction Data and Nuclear Reactors-Physics,Design,and Safety.Singapore:World Scientific Publishing,Ltd.,1998:227-404.
[10]RAYNAL J.Notes on ECIS94,CEA-N-2772[R].Saclay:Centre d′Etudes Nucleaires,1994.
[11]ZHANG Jingshang.User manual of FUNF code[M].Beijing:Atomic Energy Press,2005.
[12]IWAMOTO O.Development of a comprehensive code for nuclear data evaluation,CCONE,and validation using neutron-induced cross sections for uranium isotopes[J].J Nucl Sci Technol,2007,44:687-697.
[13]LAGRANGE C H.NEANDC(E)-228[R].[S.l.]:[s.n.],1982.
[14]UTTLEY C A,NEWSTEAD C M,DIMENT K M.Neutron strength function measurements in the medium and heavy nuclei[C]∥Nuclear Data for Reactors Conference.Paris:[s.n.],1966:165-170.
[15]WHALEN J F,SMITH A B.Uranium total cross section,Argonne National Laboratory report series,No.7710[R].US:Argonne National Laboratory,1971.
[16]FOSTER D G,GLASGOW D W.Neutron total cross sections 2.5-15MeV[J].Physical Review C,1971,3:576-603.
[17]HAYES S H,STOLER P,CLEMENT J M,et al.The total neutron cross section of uranium-238from 0.8to 30MeV[J].Nuclear Science and Engineering,1973,50:243-247.
[18]SCHWARTZ R B,SCHRACK R A,HEATON H T.Total neutron cross sections of uranium-235,uranium-238,and plutonium-239from 0.5 to 15MeV[J].Nuclear Science and Engineering,1974,54:322-326.
[19]HIEN P Z,TANG V H,XUAN N P.Total neutron cross section of U-238as measured with filtered neutrons of 55keV and 144keV,INDC(NDS)-265[R].Vienna:INDC,1992.
[20]ABFALTERER W P,BATEMAN F B,DIETRICH F S,et al.Measurement of neutron total cross sections up to 560MeV[J].Physical Review C,2001,63:044608.
[21]VEESER L R,ARTHUR E D.Measurement of(n,3n)cross sections for235U and238U[C]∥International Conference on Neutral Physics and Nuclear Data.Harwell:[s.n.],1978:1 054-1 056.
[22]KNIGHT J D,SMITH R K,WARREN B.238U(n,2n)237U cross section from 6to 10MeV[J].Physical Review,1958,112:259-261.
[23]CHOU Y P.Measurement of U-238(n,2n)cross-sections,HSJ-77091[R].[S.l.]:[s.n.],1978.
[24]KARIUS H,ACKERMANN A,SCOBEL W.The pre-equilibrium contribution to the(n,2n)reactions of Th-232and U-238[J].Journal of Physics G,1979,5(5):715-720.
[25]KORNILOV N V,ZHURAVLEV B V,SAL′-NIKOV O A.Measurement of cross sections for the U-238(n,2n)reaction from 6.5to 14.8MeV[J].Atomnaya Energiya,1980,49:283-286.
[26]RAICS P,NAGY S,DAROCZY S,et al.Measurement of the cross sections for the238U(n,2n)and232Th(n,2n)reactions in the 13.5-14.8MeV energy range,INDC(HUN)-029[R].Vienna:INDC,1990.
[27]FILATENKOV A A,CHUVAEV S V,AKSENOV V N,et al.Systematic measurement of activation cross sections at neutron energies from 13.4to 14.9MeV,reports 252[R].Leningrad:Khlopin Radiev Inst,1999.
[28]WANG Xianggao,JIANG Shan,DONG Kejun,et al.Accurate determination of cross sections for238U(n,2n)237U induced by neutrons around 14MeV[J].Nucl Instrum Methods Phy Res A,2010,621:326-330.
[29]ZHU Chuanxin,CHEN Yuan,MOU Yunfeng,et al.Measurements of(n,2n)reaction cross sections at 14MeV for several nuclei[J].Nuclear Science and Engineering,2011,169:188-197.
[30]NAIK H,SURYANARAYANA S V,MULIK V K,et al.Measurement of the neutron capture cross-section of238U using the neutron activation technique[J].Journal of Radioanalytical and Nuclear Chemistry,2012,293:469-478.
[31]ALLEN K W,BOMYER P,PERKIN J L.The interaction of 14MeV neutrons with uranium[J].Journal of Nuclear Energy A+B,1961,14:100-106.
[32]WHITE P H.The value of ETA for U-238with neutrons of energy between 12MeV and 19MeV[J].Journal of Nuclear Energy A+B,1962,16:261-273.
[33]MATHER D S,BAMPTON P F,COLES R E,et al.Measurement of(n,2n)cross sections for incident energies between 6and 14MeV,reports 72/72[R].UK:[s.n.],1972.
[34]FREHAUT J,BERTIN A,BOIS R,et al.Status of(n,2n)cross section measurements at Bruyeres-le-Chatel,INDC(USA)-84(1),399[R].[S.l.]:[s.n.],1980.
[35]WANG Xianggao,JIANG Shan,HE Ming,et al.Determination of cross sections for the238U(n,3n)236U reaction induced by 14MeV neutrons with accelerator mass spectrometry[J].Physical Review C,2013,87:014612.
[36]FRICKE M P,LOPEZ W M,F(xiàn)RIESENHAHNS J,et al.Measurements of cross sections for radioactive capture of 1keV to 1MeV neutrons by Mo,Rh,Gd,Ta,W,Re,Au and U-238[J].Nuclear Physics A,1970,146:337-342.
[37]MOXON M C.Capture cross section measurements of Th-232and U-238,reports 17644[R].US:AEC,1968.
[38]DRAKE D,BERGQVIST I,MCDANIELS D K.Dependence of 14MeV radioactive neutron capture on mass number[J].Physics Letters B,1971,36:557-562.
[39]RYVES T B,HUNT J B,ROBERTSON J C.Neutron capture cross section measurements for U-238and In-115between 150and 630keV[J].Journal of Nuclear Energy,1973,27:519-525.
[40]POENITZ W P.Measurements of the neutron capture cross sections of gold-197and uranium-238between 20and 3 500keV[J].Nuclear Science and Engineering,1975,57:300-304.
[41]LINDNER M,NAGLE R J,LANDRUM J H.Neutron capture cross-sections from 0.1to 3MeV by activation measurements[J].Nuclear Science and Engineering,1976,59:381-385.
[42]HUANG Zhengde,CAO Zhong,WANG Huizhu,et al.Radioactive capture of 14.2MeV neutrons by Fe-56and U-238[C]∥4th Symp Neutr Capt Gamma-ray Spectrosc.Grenoble:[s.n.],1981.
[43]POENITZ W P,F(xiàn)AWCETT L R,SMITH D L.Measurements of the 238-U(n,gamma)cross section at thermal and fast neutron energies[J].Nuclear Science and Engineering,1981,78:239-245.
[44]DANIELS D K,VARGHESE P,DRAKE D M,et al.Radiative capture of fast neutrons by 165-Ho and 238-U[J].Nuclear Physics A,1982,384:88-92.
[45]BULEEVA N N,DAVLETSHIN A N,TIPUNKOV O A,et al.Activation-measured radiative neutron-capture cross sections for U-236,U-238,Np-237[J].Atomnaya Energiya,1988,65(5):348-352.
[46]VOIGNIER J,JOLY S,GRENIER G.Capture cross sections and gamma-ray spectra from the interaction of 0.5to 3.0MeV neutron with nuclei in the mass range A=63to 209[J].Nuclear Science and Engineering,1992,112:87-92.
[47]VOROTNIKOV P E,DUBROVINA S M,KOLTYPIN E A,et al.U-238fission by the neutron with energy lower than fission threshold and fissionable isomer production by neutron inelastic scattering on U-238,reports 20[R].[S.l.]:[s.n.],1975.
[48]LEUGERS B,CIERJACKS S,BROTZ P,et al.The U-235and U-238neutron induced fission cross sections relative to the H(n,p)cross section[C]∥Meeting on Fast Neutron Cross Section of U and Pu.Argonne:[s.n.],1976:246.
[49]CIERJACKS S,LEUGERS B,KARI K,et al.Measurements of neutron induced fission cross section ratios at the Karlsruhe Isochronous Cyclotron[C]∥Meeting on Fast Neutron Cross Section of U and Pu.Argonne:[s.n.],1976:94.
[50]BEHRENS J W,CARLSON G W.Measurements of the neutron-induced fission cross sections of234U,236U,and238U relative to235U from 0.1to 30MeV[J].Nuclear Science and Engineering,1977,63:250-255.
[51]ANDROSENKO K H D,KOROLEV G G,SHPAK D L.U-238to U-235fission cross-section ratio measurement in the energy range 0.85-3.70MeV[C]∥6th All Union Conf on Neutron Physics.Kiev:[s.n.],1983:153.
[52]MANABE F,KANDA K,IWASAKI T,et al.Measurements of neutron induced fission cross section ratios of232Th,233U,234U,236U,238U,237Np,242Pu and243Am relative to235U around 14MeV[J].Fac of Engineering,1988,52(2):97-101.
[53]LISOWSKI P W,GAVRON A,PARKER W E,et al.Fission cross sections in the intermediate energy region,reports 305[R].[S.l.]:[s.n.],1991.
[54]SHCHERBAKOV O A,DONETS A Y,EVDOKIMOV A V,et al.Neutron-induced fission of 233-U,238-U,232-Th,239-Pu,237-Np,nat-Pb and 209-Bi relative to 235-U in the energy range 1-200MeV[J].Journal of Nuclear Science and Technology,2002,2(1):230-240.
[55]CRANBERG L,LEVIN J S.Inelastic neutron scattering by U-238[J].Physical Review,1958,109:2 063-2 070.
[56]GLAZKOV N P.Spectra and cross-sections of the neutron inelastic scattering in the energyrange of 0.4-1.2MeV on the nuclei U,Th,Hg,W,Sb,Cd,Mo,Nb,F(xiàn)e[J].Atomnaya Energiya,1963,14(4):400-410.
[57]TSANG F Y,BRUGGER R M.The differential neutron scattering cross section of uranium-238 at 144keV[J].Nuclear Science and Engineering,1978,65:70-74.
[58]GUENTHER P,HAVEL D,SMITH A.Fast neutron excitation of the ground-state rotational band of238U,reports 16[R].US:Argonne National Laboratory,1975.
[59]VOROTNIKOV P E,VUKOLOV V A,KOLTYPIN E A,et al.Fast neutron scattering on uranium-238[C]∥4th All Union Conf on Neutron Phys.[S.l.]:[s.n.],1977.
[60]BEGHIAN L E,KEGEL G H R,MARCELLA T V,et al.Neutron scattering cross sections of uranium-238[J].Nuclear Science and Engineering,1979,69:191-195.
[61]WINTERS R R,HILL N W,MACKLIN R L,et al.Uranium-238inelastic neutron scattering at 82keV[J].Nuclear Science and Engineering,1981,78:147-152.
[62]LITVINSKII L L,VERTEBNYI V P,LIBMAN V A,et al.Neutron cross sections and average resonance parameters of238U for 55-and 144-keV neutrons[J].Atomnaya Energiya,1987,62(3):192-196.
[63]MOXON M C,WARTENA J A,WEIGMANN H,et al.Inelastic neutron scattering from U-238[C]∥Conf on Nucl Data for Sci and Techn. Gatlinburg:[s.n.],1994.
[64]KORNILOV N V,KAGALENKO A B.Inelastic neutron scattering on the first level of U-238[J].Nuclear Science and Engineering,1995,120:55-60.
[65]MIURA T,BABA M,IBARAKI M,et al.Measurement of neutron elastic and inelastic scattering cross section for the first level of238U in hundreds of keV range[J].Annals of Nuclear Energy,2000,27:625-630.
[66]SMITH A B.Scattering of fast neutrons from natural uranium[J].Nuclear Physics,1963,47:633-640.
[67]MASLOV V,PORODZINSKIJ Y V,TETEREVA N A,et al.Neutron data evaluation of238U,INDC(BLR)-014[R].Vienna:International Atomic Energy Agency,2003.
[68]HAOUAT G,LACHKAR J,LAGRANGE C,et al.Reaction cross section described by a black sphere approximation of nuclei[J].Nuclear Science and Engineering,1982,81(4):491-500.
[69]BUCHER W,HOLLANDSWORTH C E,YOUNGBLOOD J E.Small-angle scattering of fast neutrons[J].Physical Review Letters,1975,35:1 419-1 425.
[70]QI Huiquan,CHEN Hongbin,CHEN Yingtang,et al.Optical model parameters and fast neutron small angles scattering cross sections,Chinese report to the INDC No.030[R].Vienna:INDC,1993.
Application of EMPIRE for Nuclear Data Calculation of n+238U Reaction up to 30 MeV
CHEN Guo-chang1,CAO Wen-tian2,*,TANG Guo-you2,YU Bao-sheng1
(1.China Institute of Atomic Energy,P.O.Box275-46,Beijing102413,China;
2.State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing100871,China)
To improve the evaluation method,the EMPIRE was employed to analyze n+238U reaction up to 30MeV.According to the special characteristics of neutron induced reaction of actinide nuclei,and chosing proper reaction mechanisms,the model parameters were adjusted and reasonable neutron reaction data were obtained based on the experimental data.Comparing the EMPIRE calculation results with the data of evaluations and measurements,it is found that EMPIRE can obtain reasonable results for n+238U reaction up to 30MeV.
EMPIRE;neutron;cross section;238U;nuclear data
O571.54
A
1000-6931(2015)03-0385-09
10.7538/yzk.2015.49.03.0385
2013-12-20;
2014-06-03
陳國(guó)長(zhǎng)(1978—),男,浙江臺(tái)州人,副研究員,博士,粒子物理與原子核物理專業(yè)
*通信作者:曹文田,E-mail:cao@pku.edu.cn