仇子龍
1940年代,美國坎納(L Kanner)醫(yī)生發(fā)現(xiàn)一類奇怪的孩子,他們仿佛只活在自己的世界中,不愿與別人交流。這些孩子往往有一些重復(fù)刻板的動作,不太說話或者語言模式古怪,缺乏溝通和語言交流,他給這種病起了一個名字:自閉癥(autism)。在距離自閉癥被發(fā)現(xiàn)后的半個多世紀(jì)中,醫(yī)生還發(fā)現(xiàn)自閉癥兒童除了具有坎納醫(yī)生發(fā)現(xiàn)的經(jīng)典癥狀外,其中少數(shù)人具有機械記憶力超強與對數(shù)學(xué)、音樂有特殊才能的現(xiàn)象。
近年來,隨著社會大眾對自閉癥的不斷關(guān)注,大量國內(nèi)外描寫自閉癥的影視作品紛紛出現(xiàn),讓人們對這種神秘的疾病充滿了好奇。自閉癥究竟是什么原因?qū)е碌??目前自閉癥的發(fā)病率究竟有多少?能否治愈?隨著醫(yī)學(xué)與科學(xué)的逐漸發(fā)展,臨床醫(yī)生與科學(xué)家緊密合作,已對自閉癥的起因與發(fā)展有了一些了解??茖W(xué)家在研究自閉癥的過程中發(fā)現(xiàn),人類許多精神癥狀與基因關(guān)系密切,人類在研究自閉癥的過程中也更深刻地認(rèn)識了自身。
先天生成與后天形成
最早研究自閉癥的時候,坎納醫(yī)生認(rèn)為這種病可能是父母對孩子的過分冷漠而導(dǎo)致的。這樣。完全由后天因素導(dǎo)致自閉癥的觀點曾經(jīng)流行了很長時間。一直到研究者發(fā)現(xiàn)在一個家庭中,如果一個孩子患有自閉癥,其他孩子也是自閉癥患者的概率大大上升;并且家族中出現(xiàn)自閉癥患者,家族內(nèi)其他成員罹患自閉癥的概率也大大上升,這些說明自閉癥具有比較明確的家族遺傳模式,提示自閉癥與遺傳因素密切相關(guān)。
疫苗疑云與遺傳之謎
1998年國際醫(yī)學(xué)學(xué)術(shù)期刊《柳葉刀》(Lancet)發(fā)表了一篇報道,英國韋克菲爾德(A.Wakefield)醫(yī)生發(fā)現(xiàn)8位兒童在接種了麻疹、腮腺炎和風(fēng)疹疫苗(MMR)后一個月內(nèi)開始出現(xiàn)了自閉癥癥狀,因而懷疑MMR疫苗接種有可能導(dǎo)致自閉癥。此研究掀起一場軒然大波,無數(shù)家長擔(dān)心孩子安全而不敢給孩子接種MMR疫苗。在之后的十余年中,疫苗與自閉癥的關(guān)系始終撲朔迷離。2010年2月,因為發(fā)表的數(shù)據(jù)存在很大問題,《柳葉刀》宣布撤銷了這篇引起很大爭議的文章。美國疾病控制與預(yù)防中心在2011-2013年接連發(fā)布了一系列研究結(jié)果,通過大規(guī)模的數(shù)據(jù)分析及實驗證明,8種用于小兒免疫接種的主要疫苗十分安全,不會導(dǎo)致自閉癥。
盡管官方已出具權(quán)威的報告,民眾始終很難完全放心,究竟給孩子接種疫苗是否安全?1998年的報道暗示接種疫苗可能導(dǎo)致發(fā)生自閉癥。
讓我們回顧性地思考一下這些病例,現(xiàn)在已知自閉癥與遺傳因素密切相關(guān),因此是否有可能這8個自閉癥患兒本身的基因有易感性。而疫苗接種起到了引發(fā)作用?如果是這樣,那么疫苗接種引發(fā)的機體免疫反應(yīng)與自閉癥的發(fā)展又是什么關(guān)系?與免疫反應(yīng)相關(guān)的基因突變是否有可能與自閉癥有關(guān)?隨著科學(xué)研究的進展,這些未解之謎慢慢被揭開。首先,必須尋找導(dǎo)致自閉癥的罪魁禍?zhǔn)住z傳因素。
科學(xué)家從20世紀(jì)最后10年開始了尋找自閉癥易感基因的競賽。有趣的是,遺傳性疾病與基因突變的關(guān)系也在對自閉癥的研究中得到重新認(rèn)識。傳統(tǒng)的觀點認(rèn)為,遺傳性疾病往往可以找到少數(shù)幾種明確的致病基因.比如鐮狀細(xì)胞貧血往往由編碼血紅蛋白的基因發(fā)生突變所致,各種癌癥也往往與癌基因的突變緊密相關(guān)。當(dāng)研究者在收集成百上千例自閉癥患者及其直系親屬的遺傳樣本后。運用經(jīng)典的基因組關(guān)聯(lián)分析(genome-wide association study,GWAS)方法,卻極少能找到自閉癥患者中出現(xiàn)明確的致病基因。并發(fā)現(xiàn)自閉癥患者中發(fā)生的遺傳突變往往因人而異,各人之間大多不一樣,很少有共同的致病基因,基因組關(guān)聯(lián)分析法在尋找自閉癥致病基因的過程中陷入了困境。而恰恰在這個時刻,生物學(xué)一場革命的悄悄到來,給自閉癥致病基因的篩查帶來了希望。
人類基因組計劃
人類基因組終于在世界各國科學(xué)家共同努力下,在20世紀(jì)最后10年被成功破譯,組成人類基因組的30億個堿基被測序完成,這個龐大的項目被稱作人類基因組計劃(Human Genome Proiect)。人類終于可以對自己的遺傳信息有全面的認(rèn)識。當(dāng)初并沒有人可以預(yù)見的是,十幾年前需要天價才能完成的基因測序,由于測序技術(shù)的飛速發(fā)展,目前的價格已下降到令人咂舌的地步:在20世紀(jì)需要世界各國科學(xué)家花費30億美元10年時間得到的人類基因組全序列,在21世紀(jì)的今天,用最新的測序機器可以在幾周之內(nèi),以低于1萬元人民幣的價格完成!
在基因組測序已經(jīng)變成檢測基因突變的日常手段的時候,該如何尋找自閉癥的致病基因呢?目前的基因組測序比較常用的方法包括獲取基因組全部信息的全基因組測序(whole-genome sequencing,WGS)和獲取編碼蛋白外顯子組全部信息的全外顯子測序(whole-exome sequencing,WES)。由于測序準(zhǔn)確、價格便宜,全外顯子測序成為科學(xué)家尋找遺傳疾病致病基因普遍采用的一種方式。
在過去5年中,尤其是在2014年,一系列通過收集上千例自閉癥病例的研究,利用全外顯子測序等方式全面尋找了自閉癥可能的致病基因,找到的相關(guān)基因突變約100多個。這100多個基因的突變是如何導(dǎo)致自閉癥的?
神經(jīng)科學(xué)研究
既然遺傳學(xué)無法破解基因突變與自閉癥的相互關(guān)系,那么可否借助神經(jīng)科學(xué)的研究,來確定某種基因的突變究竟是否會導(dǎo)致自閉癥。
自閉癥是一種精神疾病,同屬于精神疾病范疇的還包括精神分裂癥、雙向情感障礙及抑郁癥等。精神疾病不同于神經(jīng)退行性疾病,如阿爾茨海默癥(又稱老年癡呆癥)與帕金森病等等,并沒有明顯的神經(jīng)元病變,面對精神疾病患者,往往需要磁共振等腦成像工具來對大腦進行無創(chuàng)傷的研究。而自閉癥患者往往是少年兒童,他們往往很難與人正常溝通,不易采集高質(zhì)量的腦成像。因此世界各國對于自閉癥的腦成像研究一直進展緩慢。
對神經(jīng)生物學(xué)家來說,首先要解決的問題是,究竟這些在自閉癥病人中發(fā)生突變的基因?qū)ι窠?jīng)系統(tǒng)有哪些重要的功能?科學(xué)家在對自閉癥的遺傳分析中發(fā)現(xiàn),許多突觸蛋白的編碼基因發(fā)生了突變。突觸(synapse)是大腦的基本組成單元,是神經(jīng)細(xì)胞之間進行通訊的基本單位。突觸中有許多蛋白質(zhì)有重要功能,突觸本身具有可塑性,即對突觸進行一系列的刺激后,突觸會發(fā)生更容易激活或更容易抑制。這種可塑性很可能是大腦進行學(xué)習(xí)記憶和情緒反應(yīng)等認(rèn)知功能的神經(jīng)生物學(xué)基礎(chǔ)。
找到了那些與神經(jīng)細(xì)胞突觸傳導(dǎo)功能關(guān)系密切的基因后,需要探究其發(fā)生突變后所產(chǎn)生的結(jié)果。首先,在自閉癥患者中這些基因突變是否影響其編碼蛋白的正常功能。其次,運用基因工程方法,在模式動物(例如嚙齒類或非人靈長類)中引入自閉癥相關(guān)的基兇突變。在含有同樣基因突變的動物模型中,觀察是否有可能出現(xiàn)類似孤獨癥的癥狀。神經(jīng)科學(xué)研究者在過去10年中對這兩大問題進行了深入研究。
突觸蛋白與自閉癥
在自閉癥患者身上發(fā)現(xiàn)的一大類基因突變都發(fā)生在一些在突觸中起粘聯(lián)功能的蛋白的編碼基因中,這類突觸粘聯(lián)蛋白負(fù)責(zé)把突觸連接起來。這個家族蛋白中的神經(jīng)配蛋白(neuroligin)位于突觸的接收端,而神經(jīng)連接蛋白(neurexin)位于突觸的信號發(fā)放端,它們相互作用使神經(jīng)細(xì)胞間得以進行正常的信號傳遞。neurexin蛋白和neuroligin蛋白于1992-1995年被聚德霍夫(T.Sydhof)教授用生物化學(xué)的方法純化出來。在自閉癥中的遺傳篩選分析大多都是如此,找到很多在自閉癥患者身上發(fā)生突變的基因都是以前被發(fā)現(xiàn)有重要功能的蛋白編碼基因。當(dāng)它們被發(fā)現(xiàn)在自閉癥患者中有突變的時候,研究者才意識到它們的重要性。
聚德霍夫在得知neuroligin-neurexin家族蛋白的編碼基因在自閉癥患者中發(fā)生突變后,立即進行了大量研究工作,其中最著名的研究即是2007年將在自閉癥患者中找到的一個基因突變neuoroligin3 R451C移植到小鼠中,將小鼠的同源基因neuroligin3也在同樣位點做了基因突變,這個攜帶有與人類自閉癥相同突變的小鼠居然表現(xiàn)出與人類自閉癥患者非常相似的表型,表現(xiàn)出重復(fù)刻板的行為和不愿意與同伴小鼠進行交往等行為。深入的研究發(fā)現(xiàn),攜帶neuroligin3 R451C突變的小鼠大腦中,抑制性突觸比正常小鼠的多,功能更強。這項研究首次成功地在小鼠中顯示了人類自閉癥的表型,也提示可以用基因工程的方法。在動物模型中模擬人類自閉癥,探討發(fā)病原因,并篩選改善和治療自閉癥的藥物。
基因的過猶不及
在自閉癥的遺傳學(xué)研究中,除導(dǎo)致突觸蛋白結(jié)構(gòu)變化的編碼基因突變外,近年來還發(fā)現(xiàn)有另外一類的基因突變,表現(xiàn)為一段染色體區(qū)域的倍增或缺失,即拷貝數(shù)變異(copy number variations)??截悢?shù)變異也是在完成了人類基因組測序之后才被發(fā)現(xiàn)的。染色體區(qū)段的缺失往往導(dǎo)致基因的丟失,而染色體區(qū)段的倍增則會導(dǎo)致基因過多。原來除了基因突變導(dǎo)致蛋白質(zhì)喪失功能,居然某些基因過多也會導(dǎo)致對神經(jīng)系統(tǒng)的破壞。
2009年醫(yī)生和科學(xué)家發(fā)現(xiàn),在一些嚴(yán)重自閉癥患者中,一個甲基化DNA結(jié)合蛋白MeCP2(methyl CpG-binding protein 2)的編碼基因出現(xiàn)拷貝數(shù)的倍增。MeCP2是一個甲基化DNA結(jié)合蛋白,具有調(diào)控基因表達(dá)的重要功能。1999年佐格比(H_Zoghbi)教授發(fā)現(xiàn)一種嚴(yán)重的神經(jīng)發(fā)育性疾病——瑞特綜合征(Rettsyndrome)也與MeCP2基因突變密切相關(guān),95%的瑞特綜合征患者攜帶的MeCP2基因發(fā)生缺失功能的突變。瑞特綜合征患者因為有部分與自閉癥患者類似的表型,早期也被歸為自閉癥譜系障礙的一種(autism spectrum disorders)。因此這些證據(jù)表明,基因表達(dá)的表觀遺傳學(xué)調(diào)控與神經(jīng)系統(tǒng)的發(fā)育與功能密切相關(guān),如果失調(diào)可能導(dǎo)致神經(jīng)發(fā)育性疾病,例如自閉癥等。
經(jīng)過數(shù)年的深入研究,科學(xué)家發(fā)現(xiàn)MeCP2蛋白質(zhì)確實對神經(jīng)元的突觸功能有重要影響。接下來,研究者陸續(xù)制作了多種MeCP2基因敲除與轉(zhuǎn)基因的小鼠模型,來觀察如果小鼠攜帶有過多的MeCP2蛋白,是否能表現(xiàn)出類似自閉癥的表型。2006年佐格比研究組將人MeCP2基因轉(zhuǎn)入小鼠后,驚奇地發(fā)現(xiàn)攜帶人類MeCP2基因的轉(zhuǎn)基因小鼠表現(xiàn)出焦慮水平上升和社會交往行為缺陷等類自閉癥表型。這個小鼠模型極大地推動了自閉癥的研究。人們可以研究過多的MeCP2蛋白究竟如何影響大腦發(fā)育,更重要的是,這個模型是否能告訴我們含有自閉癥基因突變的哺乳類大腦在發(fā)生社交障礙的時候,大腦里究竟發(fā)生了什么。
免疫導(dǎo)致的自閉癥動物模型
2007年帕特森(P.Patterson)教授研究組發(fā)現(xiàn)用給懷孕母鼠注射白介素6(IL-6)的方法可以誘導(dǎo)子代小鼠出現(xiàn)明顯的類自閉癥與精神分裂癥表型,這種方法被稱為母源免疫激活(maternal immune activation.MIA)。研究者發(fā)現(xiàn),在MIA誘導(dǎo)的類自閉癥小鼠模型中出現(xiàn)了代謝系統(tǒng)紊亂,而改善代謝紊亂的藥物居然可顯著改善MIA小鼠模型的自閉癥表型。
這些研究結(jié)果令人振奮,但是同時必須認(rèn)識到,自閉癥的起因多種多樣,用MIA方法誘導(dǎo)的模型是否能夠完全模擬人類自閉癥還需深入研究。例如需要將MIA模型與其他自閉癥基因突變小鼠進行仔細(xì)比較.并研究在MIA模型中出現(xiàn)的代謝異常等現(xiàn)象是否在其他自閉癥小鼠模型中也會出現(xiàn)。
該項研究不禁讓我們回想起當(dāng)年的小兒疫苗疑云.難道免疫系統(tǒng)的異常與因神經(jīng)系統(tǒng)功能異常而產(chǎn)生的自閉癥有相關(guān)性嗎?我們必須認(rèn)真看待這個問題。因為免疫系統(tǒng)與神經(jīng)系統(tǒng)的相互作用近年來被逐漸關(guān)注。還不能定論免疫系統(tǒng)的缺損與異常是否一定會導(dǎo)致自閉癥,但是對于這個前沿領(lǐng)域的深入研究必然讓我們對機體中兩大系統(tǒng)如何相互作用的機理有更深刻的了解。
更接近人類的自閉癥動物模型
雖然在小鼠中引入與人類自閉癥相關(guān)的突變.進而研究自閉癥基因突變?nèi)绾斡绊懘竽X發(fā)育已經(jīng)有很多重要發(fā)現(xiàn),但是人們始終疑惑的是,像自閉癥這種復(fù)雜的精神疾病,能否用嚙齒類來準(zhǔn)確模擬呢?能否確定小鼠的類自閉癥狀是否與人類的自閉癥足夠相像呢?更重要的是,人類的大腦溝回很多,整體大腦的體積與復(fù)雜程度,是嚙齒類動物的大腦完全無法比擬的。目前在小鼠中嘗試成功的一些神經(jīng)疾病藥物結(jié)果,在人類病患身上的臨床試驗很少獲得成功。因此,是否可以用進化上與人類盡可能相近的生物來構(gòu)建自閉癥動物模型還是一個問題。
從2013年開始興起的基因編輯技術(shù)為直接操作與人類親緣最近的動物——非人靈長類(猴類)提供了巨大便利。2014年,中國科學(xué)家陸續(xù)報道了一系列利用非人靈長類制作疾病動物模型的工作,包括瑞特綜合征與帕金森病等。有了這些攜帶人類疾病基因的靈長類模型,就有可能在更接近人類的動物系統(tǒng)中研究這些基因突變怎樣改變靈長類動物大腦,進而獲得更接近人類的藥物篩選系統(tǒng)。
自閉癥研究的未來
自閉癥是一種異常復(fù)雜的精神疾病,對醫(yī)學(xué)與神經(jīng)科學(xué)研究提出了巨大挑戰(zhàn)。自閉癥研究讓我們認(rèn)識到。人類的復(fù)雜社交行為有可能是通過精妙的神經(jīng)環(huán)路來調(diào)控的。因此對自閉癥的科學(xué)研究,將為深入認(rèn)識人類社交行為的神經(jīng)環(huán)路基礎(chǔ)提供重要線索。
得益于DNA測序技術(shù)的飛速進步,未來對自閉癥的遺傳分析可以更加深入和全面,可以揭示以前無法找到的基因突變與染色體結(jié)構(gòu)變異。在對疾病基因的神經(jīng)生物學(xué)研究方面,科學(xué)家也將積累更多的數(shù)據(jù),有助于對某些基因突變是否與疾病相關(guān)的判斷。筆者相信神經(jīng)科學(xué)在自閉癥動物模型中的研究,在不遠(yuǎn)的將來.定會幫助我們找到基因突變?nèi)绾螌?dǎo)致自閉癥的機理和有效的干預(yù)方法。