賴紹聰趙少偉
摘要:川西北塔公地區(qū)位于青藏高原東部,屬于松潘—甘孜造山帶的東南部邊緣。塔公石英閃長巖侵位于晚三疊世地層中,巖體的KAr同位素年齡為134~136 Ma,形成于早白堊世。巖石SiO2質(zhì)量分?jǐn)?shù)為61.37%~62.25%,鋁飽和指數(shù)為0.93~0.95,全堿質(zhì)量分?jǐn)?shù)為5.46%~5.77%,里特曼指數(shù)為1.62~1.74,樣品屬于亞堿性準(zhǔn)鋁質(zhì)高鉀鈣堿系列石英閃長巖。巖石Mg#值較高,總體具有高Sr含量、低Nd含量的同位素地球化學(xué)特征。N(87Sr)/N(86Sr)值為0.712 589~0.713 009,初始N(87Sr)/N(86Sr)值為0.709 503~0.709 878,N(143Nd)/N(144Nd)值為0.512 135~0.512 196,εNd(t)值均為負(fù)(-86~-7.5),Nd模式年齡為1.33~1.41 Ga,Hf模式年齡為1.13~1.37 Ga。該巖體是早白堊世期間,川西北地區(qū)陸緣陸內(nèi)造山環(huán)境下由松潘—甘孜造山帶古老的下地殼鎂鐵質(zhì)物質(zhì)局部熔融形成的晚碰撞碰撞后非分異Ⅰ型花崗巖類。
關(guān)鍵詞:石英閃長巖;早白堊世;地球化學(xué);巖石成因;花崗巖;下地殼局部熔融;松潘—甘孜造山帶;川西北
中圖分類號:P588.12文獻(xiàn)標(biāo)志碼:A
Geochemistry and Petrogenesis of Quartz Diorite in Tagong Area of Northwest Sichuan
LAI Shaocong1,2, ZHAO Shaowei1,2
(1. State Key Laboratory of Continental Dynamics, Northwest University, Xian 710069, Shaanxi, China;
2. Department of Geology, Northwest University, Xian 710069, Shaanxi, China)
Abstract: Tagong area of Northwest Sichuan is located in the east of QinghaiTibet Plateau, and belongs to the southeast margin of SongpanGanzi orogenic belt. The quartz diorites in Tagong area form in Early Cretaceous with KAr isotopic ages of 134136 Ma, and emplace into Late Triassic strata. Mass fractions of SiO2 are 61.37%62.25%, A/CNK values are 0.930.95, mass fractions of total alkali are 5.46%5.77%, Rittmann indexes are 1.621.74, so that the samples belong to subalkaline metaperaluminous highK calcalkaline series quartz diorites. The rocks have relative high Mg# values with the isotopic geochemical characteristics of high contents of Sr and low contents of Nd. N(87Sr)/N(86Sr) is 0.712 5890.713 009 with the initial N(87Sr)/N(86Sr) of 0.709 5030.709 878, N(143Nd)/N(144Nd) is 0.512 1350.512 196 with negative εNd(t) of -8.6-7.5; Nd and Hf model ages are 1.331.41 Ga and 1.131.37 Ga, respectively. The quartz diorites belong to undifferentiation Ⅰtype granitoids with late to postcollision caused by partial melting of ancient lower crust mafic materials at the continental marginintercontinental orogenic setting in Northwest Sichuan.
Key words: quartz diorite; Early Cretaceous; geochemistry; petrogenesis; granite; partial melting of lower crust; SongpanGanzi orogenic belt; Northwest Sichuan
0引言
松潘—甘孜造山帶位于青藏高原東部,經(jīng)歷了由古特提斯到新特提斯的兩個(gè)連續(xù)造山事件。許志琴等認(rèn)為松潘—甘孜造山帶是由北部勞亞板塊(昆侖地體)、東部揚(yáng)子板塊及西部羌塘—昌都板塊等3個(gè)不同方位的板塊之間俯沖、碰撞及陸內(nèi)匯聚的結(jié)果[13]。松潘—甘孜造山帶北側(cè)以阿尼瑪卿印支縫合帶與勞亞板塊相隔,西側(cè)以義敦島弧帶(包括甘孜—理塘印支蛇綠混雜巖帶、金沙江東蛇綠混雜巖帶及義敦島弧巖漿巖帶)與羌塘—昌都微板塊比鄰,東緣以龍門山—錦屏山與揚(yáng)子克拉通相連。許志琴等研究認(rèn)為,松潘—甘孜造山帶內(nèi)廣泛發(fā)育巨厚的三疊紀(jì)復(fù)理石沉積[2]。由于經(jīng)歷了特提斯演化的復(fù)雜歷史,所以區(qū)內(nèi)構(gòu)造形跡十分復(fù)雜,其主要變形過程發(fā)生在晚三疊世[13]。
松潘—甘孜造山帶內(nèi)廣泛出露中生代花崗巖。這些花崗巖類侵位于三疊系地層中,它們是松潘—甘孜造山帶構(gòu)造發(fā)展過程中的一個(gè)重要組成部分。袁海華等對松潘—甘孜造山帶內(nèi)的花崗巖類進(jìn)行了部分巖石地球化學(xué)和年代學(xué)研究[49],初步揭示了該區(qū)花崗巖類的時(shí)空分布和巖石地球化學(xué)特征。Roger等認(rèn)為松潘—甘孜造山帶造山過程中大型滑脫構(gòu)造所產(chǎn)生的剪切熱能可能是造成源區(qū)物質(zhì)部分熔融形成花崗巖的主要原因[6];胡健民等則認(rèn)為這些花崗巖的形成很可能與部分地幔熱源的參與有關(guān)[9];同時(shí),胡健民等在該區(qū)花崗巖中獲得部分太古代的鋯石,從而提出松潘—甘孜造山帶可能存在古老的結(jié)晶基底[9]。很顯然,對該區(qū)中生代花崗巖類的進(jìn)一步深入研究,對于澄清松潘—甘孜造山帶內(nèi)中生代花崗巖類的形成時(shí)代、巖石學(xué)及地球化學(xué)特征、巖漿起源過程及巖漿源區(qū)性質(zhì)等重要問題,以及探討松潘—甘孜造山帶基底性質(zhì)及地質(zhì)演化歷史具有十分重要的科學(xué)意義。本文選擇四川省康定縣新都橋北側(cè)出露的塔公石英閃長巖進(jìn)行系統(tǒng)的巖石學(xué)、地球化學(xué)和SrNdPb同位素分析,并探討其巖石成因和物質(zhì)來源,為該區(qū)晚中生代巖漿作用過程及其地質(zhì)構(gòu)造演化歷史提供了新的重要約束。
1地質(zhì)背景及巖相學(xué)特征
松潘—甘孜造山帶呈EW向延伸、東寬西窄的三角形形態(tài)(圖1)。造山帶內(nèi)5~10 km厚的三疊系復(fù)理石沉積整合覆蓋于4~6 km厚的震旦系—古生界地層之上。松潘—甘孜造山帶東部的龍門山斷裂帶附近出露有前震旦系結(jié)晶基底。四川塔公地區(qū)屬于松潘—甘孜造山帶的東南部邊緣(圖1)。
塔公石英閃長巖位于四川省康定縣新都橋以北31 km處的塔公鄉(xiāng)南側(cè)(圖1);區(qū)內(nèi)深大斷裂縱貫全區(qū),形成以NW—SE向?yàn)橹黧w的斷裂構(gòu)造體系;區(qū)內(nèi)中生代花崗巖類廣泛出露,分布面積較大。這些花崗巖體的巖石類型主要為花崗巖、花崗閃長巖、正長花崗巖、二長花崗巖、英云閃長巖和石英閃長巖等;花崗質(zhì)侵入巖體大多呈巖基、巖株或巖枝狀產(chǎn)出。
塔公石英閃長巖侵位于上三疊統(tǒng)地層中。該區(qū)上三疊統(tǒng)地層主要為卡尼期—諾尼期的侏倭組、新都橋組、兩河口組及雅江組。其巖性主要為一套巨厚的陸屑濁積復(fù)理石建造,古生物化石以瓣腮為主[10]。
塔公石英閃長巖呈淺灰色—暗灰色,新鮮無蝕變[圖2(a)],呈中?!屑?xì)粒半自形粒狀結(jié)構(gòu)、塊狀構(gòu)造[圖2(b)],主要組成礦物有斜長石(體積分?jǐn)?shù)為40%~45%)、角閃石(25%~30%)、石英(10%~15%)、鉀長石(約10%)、黑云母(5%~10%)等。副礦物(體積分?jǐn)?shù)約3%)主要有榍石、磷灰石、鋯石以及磁鐵礦。斜長石粒徑為2~3 mm,呈半自形長條板狀,An牌號為35~40,鏡下發(fā)育鈉長石雙晶[圖2(c)、(d)],部分顆粒見有環(huán)帶結(jié)構(gòu);堿性長石主要為條紋長石,自形程度不如斜長石;角閃石呈墨綠色、自形短柱狀,常和黑云母相互交生;石英呈他形粒狀分布在長石中。
2分析方法
分析測試的樣品是在巖石薄片鑒定的基礎(chǔ)上精心挑選出來的。首先經(jīng)鏡下觀察,選取新鮮的、無后期交代脈體貫入的樣品,先粗碎成直徑為5~10 mm的小顆粒,經(jīng)蒸餾水洗凈和烘干之后,在碎樣機(jī)內(nèi)粉碎至200目(孔徑0071 mm)待分析測試。
主量和微量元素測試在西北大學(xué)大陸動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成。主量元素采用XRF法,微量元素用ICPMS測定。微量元素樣品用HNO3和HF混合酸溶解2 d后,用VG Plasmaquad Excell ICPMS完成測試。對國際標(biāo)準(zhǔn)參考物質(zhì)BHVO1(玄武巖)、BCR2(玄武巖)和AGV1(安山巖)的同步分析結(jié)果表明,微量元素分析的精度和準(zhǔn)確度優(yōu)于10%。詳細(xì)的分析流程見文獻(xiàn)[11]。SrNdPb同位素分析在西北大學(xué)大陸動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成,Sr、Nd同位素分別采用AG50WX8(200~400 目,孔徑為0038~0071 mm)、HDEHP和AG1X8(200~400 目,孔徑為0038~0071 mm)離子交換樹脂進(jìn)行分離,同位素測試則在該實(shí)驗(yàn)室的多接收電感耦合等離子體質(zhì)譜儀(MCICP MS, Nu Plasma HR, Nu Instruments, Wrexham, UK)上采用靜態(tài)模式(Static Mode)進(jìn)行[12]。
3結(jié)果分析
3.1主量元素
塔公石英閃長巖的主量元素分析結(jié)果列于表1。從表1可以看出:SiO2含量(質(zhì)量分?jǐn)?shù),下同)為61.37%~62.25%,平均為6195%,在R1R2圖解[圖3(a)]中樣品均位于二長閃長巖與英云閃長巖之間;K2O含量為3.22%~3.59%,Na2O含量為2.15%~2.27%,w(K2O)/w(Na2O)值為1.44~165,全堿含量(w(K2O)+w(Na2O))為5.46%~5.77%,里特曼指數(shù)為1.62~1.74,在SiO2K2O圖解上樣品位于高鉀鈣堿性系列巖石范圍內(nèi)[圖3(b)];CaO含量為5.22%~5.61%,平均為5.41%;TiO2含量(0.60%~0.63%)不高,樣品富鋁(Al2O3含量為15.80%~16.30%,平均為16.09%),鋁飽和指數(shù)(A/CNK)為0.93~0.95,樣品屬于準(zhǔn)鋁質(zhì)系列[圖3(c)];MgO含量為2.92%~3.15%,Mg#值較高,為47.8~48.3。綜上所述,本區(qū)巖石為亞堿性準(zhǔn)鋁質(zhì)高鉀鈣堿系列石英閃長巖類。
3.2微量元素
塔公石英閃長巖的微量元素分析結(jié)果列于表1。在稀土元素球粒隕石標(biāo)準(zhǔn)化配分模式(圖4)中,巖石均顯示為右傾負(fù)斜率輕稀土元素富集型。巖石稀土元素總含量為(130.45~156.40)×10-6,平均為146.11×10-6,wLREE/wHREE值較穩(wěn)定,為214~2.84,平均為2.53,w(La)N/w(Yb)N值為566~841,平均為7.18,w(Ce)N/w(Yb)N值為4.66~6.39,平均為5.58,Eu異常為064~074,平均為0.68。巖石樣品的稀土元素總含量較高,輕、重稀土元素分異強(qiáng),Eu虧損明顯,符合中酸性侵入巖類稀土元素化學(xué)成分演化趨勢[1314]。
原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(圖5)顯示石英閃長巖樣品具有完全一致的配分型式。配分曲線均顯示為右傾負(fù)斜率富集型配分型式,曲線的前半部分元素總體呈富集狀態(tài),而曲線后半部分相容元素富集度相對較低;元素Nb、Ta和Sr呈現(xiàn)輕微的
R1=4w(SiO2)11(w(Na2O)+w(K2O))-2(w(Fe2O3T)+w(TiO2));R2=6w(CaO)+2w(MgO)+w(Al2O3);圖件引自文獻(xiàn)[15]~[17]
圖3塔公石英閃長巖R1R2圖解、SiO2K2O圖解和A/NKA/CNK圖解
Fig.3Diagrams of R1R2, SiO2K2O and A/NKA/CNK for Quartz Diorite in Tagong Area
ws為樣品含量;wc為樣品球粒隕石含量;球粒隕石標(biāo)準(zhǔn)值引自文獻(xiàn)[18]
圖4塔公石英閃長巖球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式
Fig.4Chondritenormalized REE Pattern of Quartz Diorite in Tagong Area
wp為原始地幔含量;原始地幔標(biāo)準(zhǔn)值引自文獻(xiàn)[19]
圖5塔公石英閃長巖原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖
Fig.5Primitive Mantlenormalized Trace Element Spider
Diagram of Quartz Diorite in Tagong Area
負(fù)異常,元素P和Ti負(fù)異常較明顯,而元素Zr顯示弱的正異常。
3.3SrNdPb同位素
塔公石英閃長巖3個(gè)樣品的SrNdPb同位素分析結(jié)果列于表2。從表2可以看出:巖石總體具有較高Sr含量以及相對低Nd含量的同位素地球化學(xué)特征。巖石N(87Sr)/N(86Sr)值為0712 589~0713 009,平均為0.712 794,初始N(87Sr)/N(86Sr)值為0.709 503~0.709 878,εSr(t)值為73.29~7861,平均為75.98;N(143Nd)/N(144Nd) 值為0512 135~0.512 196,平均為0.512 164,εNd(t) 值為-8.6~-7.5。根據(jù)N(143Nd)/N(144Nd)N(87Sr)/N(86Sr)圖解(圖6),本區(qū)巖石的SrNd同位素組成
注:試驗(yàn)數(shù)據(jù)由西北大學(xué)大陸動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室采用XRF和ICPMS測試;w(·)為元素或化合物含量;wtotal為主量元素總含量;wREE為稀土元素總含量;wLREE為輕稀土元素總含量;wHREE為重稀土元素總含量;w(·)N為元素含量球粒隕石標(biāo)準(zhǔn)化后的值;δ(·)為元素異常;Q為石英;An為鈣長石;Di為透輝石;Or為正長石;Ab為鈉長石;Hy為紫蘇輝石;Mt為磁鐵礦;Ilm為鈦鐵礦;Ap為磷灰石。
投影在高Sr含量和相對低Nd含量的區(qū)域。
塔公石英閃長巖N(206Pb)/N(204Pb) 值為18754 7~18.777 5,平均為18.7672,N(207Pb)/N(204Pb)值為15.687 5~15.690 6,平均為15.688 6,N(208Pb)/N(204Pb)值為39.025 4~39.105 0,平均為39.064 1。在Pb同位素組成圖解(圖7)中,本區(qū)巖石
表2塔公石英閃長巖SrNdPb同位素分析結(jié)果
Tab.2SrNdPb Isotopic Analysis Results of Quartz Diorite in Tagong Area
樣品編號TG05TG06TG08
w(Pb)/10-621.723.022.3
w(Th)/10-612.312.713.1
w(U)/10-62.282.667.20
N(206Pb)/N(204Pb)18.769 5±0.000 318.754 7±0.000 518.777 5±0.000 4
N(207Pb)/N(204Pb)15.687 6±0.000 215.687 5±0.000 415.690 6±0.000 3
N(208Pb)/N(204Pb)39.105 0±0.000 639.025 4±0.001 139.061 9±0.000 9
Δ7/416.198 616.349 016.411 9
Δ8/478.567 572.396 873.290 3
w(Sr)/10-6275279279
w(Rb)/10-6155155155
n(87Rb)/n(86Sr)1.630 01.610 01.610 0
N(87Sr)/N(86Sr)0.713 009±0.000 0100.712 783±0.000 0060.712 589±0.000 007
ΔSr130.1127.8125.9
εSr(t)78.6176.0473.29
初始N(87Sr)/N(86Sr)0.709 8780.709 6970.709 503
w(Nd)/10-623.623.823.0
w(Sm)/10-65.095.004.90
n(147Sm)/n(144Nd)0.130 4000.127 0000.128 800
N(143Nd)/N(144Nd)0.512 196±0.000 0050.512 161±0.000 0050.512 135±0.000 005
εNd(t)-7.5-8.1-8.6
TDM(Nd)/Ma1.331.371.41
N(176Hf)/N(177Hf)0.282 618±0.000 0030.282 602±0.000 0040.282 511±0.000 003
TDM(Hf)/Ma1.131.171.37
注:N(·)/N(·)為同一元素同位素比值,N(·)為該元素的原子豐度;n(·)/n(·)為不同元素同位素比值,n(·)為元素的物質(zhì)的量;εNd=[(N(143Nd)/N(144Nd))s/(N(143Nd)/N(144Nd))CHUR-1]×104,εSr=[(N(87Sr)/N(86Sr))i/(N(87Sr)/N(86Sr))CHUR-1]×104,Δ7/4 = [(N(207Pb)/N(204Pb))s- 0.108 4×(N(206Pb)/N(204Pb))s-13.491]×100,Δ8/4=[(N(208Pb)/N(204Pb))s-1.209×(N(206Pb)/N(204Pb))s- 15.627]×100,ΔSr=[(N(87Sr)/N(86Sr))s-0.7]×10 000,下標(biāo)s表示樣品的比值,下標(biāo)CHUR表示球粒隕石均一源與樣品同時(shí)的比值;εNd(t)為年齡t對應(yīng)的εNd值;εSr(t)為年齡t對應(yīng)的εSr值;(N(143Nd)/N(144Nd))CHUR 值為0.512 638;(N(87Sr)/N(86Sr))CHUR值為0.698 990;εNd(t)值和εSr(t) 值采用135 Ma做年齡校正;TDM(Nd)為Nd模式年齡;TDM(Hf)為Hf模式年齡;試驗(yàn)數(shù)據(jù)由西北大學(xué)大陸動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室MCICPMS測試。
無論是在N(207Pb)/N(204Pb)N(206Pb)/N(204Pb)圖解中,還是在N(208Pb)/N(204Pb)N(206Pb)/N(204Pb)圖解中,均位于w(Th)/w(U)=4.0的北半球參考線(NHRL)之上,并在N(208Pb)/N(204Pb)N(206Pb)/N(204Pb)圖解中具有與地球總成分(BSE)接近的同位素組成,而在N(207Pb)/N(204Pb)N(206Pb)/N(204Pb)圖解中則處在下地殼的區(qū)域內(nèi)。
圖中百分比為部分熔融程度
圖6N(143Nd)/N(144Nd)N(87Sr)/N(86Sr)圖解和εNdN(87Sr)/N(86 Sr)圖解
Fig.6Diagrams of N(143Nd)/N(144Nd)N(87Sr)/N(86 Sr) and εNdN(87Sr)/N(86 Sr)
EMI為Ⅰ型富集地幔;EMII為Ⅱ型富集地幔;HIMU為異常高n(238U)/n(204Pb)地幔;圖件引自文獻(xiàn)[22]
圖7鉛同位素組成圖解
Fig.7Diagrams of Pb Isotopic Composition
4討論
4.1巖石成因類型
在塔公石英閃長巖中普遍出現(xiàn)了Ⅰ型花崗巖的典型礦物學(xué)標(biāo)志角閃石,巖石的副礦物組合中常見榍石、磁鐵礦,而未見富鋁礦物,從而明顯區(qū)別于S型花崗巖[20]。本區(qū)巖石SiO2含量為6137%~6225%,A/CNK值為0.93~0.95,w(K2O)+w(Na2O)值為5.46%~5.77%,里特曼指數(shù)為162~1.74,樣品屬于準(zhǔn)鋁質(zhì)系列,主量元素特征與 I型花崗巖較一致。王德滋等認(rèn)為元素Rb和K有相似的地球化學(xué)性質(zhì)[21],隨著殼幔分離和陸殼的逐漸演化,Rb富集于成熟度高的地殼中;元素Sr和Ca有相似的地球化學(xué)行為,Sr富集于成熟度低、演化不充分的地殼中。因此,w(Rb)/w(Sr)值能靈敏地記錄源區(qū)物質(zhì)的性質(zhì)。當(dāng)w(Rb)/w(Sr)>0.9時(shí),樣品為S型花崗巖;當(dāng)w(Rb)/w(Sr)<0.9時(shí),樣品為Ⅰ型花崗巖[21]。本區(qū)石英閃長巖w(Rb)/w(Sr)值為0.51~0.58,平均為0.55,樣品明顯屬于Ⅰ型花崗巖。
地球化學(xué)特征表明,本區(qū)巖石Ga含量較低((18.5~18.8)×10-6),10 000w(Ga)/w(A1)值變化范圍很?。?18~221),且低于Whalen等建議的A型花崗巖下限(260)[23]。在以10 000w(Ga)/w(A1)值為基礎(chǔ)的多種判別圖解中,它們均投影在I、S和M型花崗巖區(qū)內(nèi)[圖8(a)~(c)]。在區(qū)分A型和分異I型花崗巖的(Na2O+K2O)/CaOZr+Nb+Ce+Y圖解[圖8(d)]中,本區(qū)巖石均位于非分異的鈣堿性花崗巖區(qū)域。因此,塔公石英閃長巖應(yīng)該屬于非分異的I型花崗巖類。
4.2巖漿源區(qū)性質(zhì)
Allegre等研究認(rèn)為,巖漿在分離結(jié)晶作用中親巖漿元素的豐度隨著超親巖漿元素的富集呈同步增長趨勢[24]。因此,巖漿在分離結(jié)晶作用中w(La)/w(Sm)值基本保持為一常數(shù)。而在平衡部分熔融過程中,隨著源區(qū)物質(zhì)中元素La快速進(jìn)入熔體,元素Sm也會在熔體中富集,但元素Sm的增長速度比元素La要慢。這是因?yàn)樵豅a在結(jié)晶相和熔體之間的分配系數(shù)比元素Sm要小得多。因此,La/SmLa圖解[圖9(a)]可以有效地判別一組相關(guān)巖石的成巖作用方式。從圖9可以看出,隨著元素La豐度的增高,本區(qū)石英閃長巖w(La)/w(Sm)值同步快速增高,充分說明它們?yōu)樵磪^(qū)巖石局部熔融的產(chǎn)物。Zr/SmZr圖解[圖9(b)]反映了同樣的規(guī)律。
在原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(圖5)中,本區(qū)巖石中元素Nb、Ta、Sr、P輕微虧損以及元素La、Zr、Hf、Nd等輕微正異常,說明斜長石可能作為熔融殘留相或結(jié)晶分離相存在,即在熔融過程中斜長石相可能沒有被完全耗盡[2528]。巖石中元素Zr的富集和元素Nb、Ta的虧損表明,源區(qū)巖石中可能以陸殼組分為主[2931]。元素Ti在巖漿巖中易形成獨(dú)立礦物相,主要是鈦鐵氧化物類,而在造巖礦物中,元素Ti在鏈狀硅酸鹽中的含量最高,其次是層狀硅酸鹽,架狀硅酸鹽中元素Ti的含量較低[32],表明本區(qū)巖石中元素Ti的虧損可能受控于巖漿中副礦物鈦鐵氧化物的早期分離結(jié)晶[3341]
4.3巖石形成環(huán)境及地質(zhì)意義
野外地質(zhì)特征表明,塔公石英閃長巖侵位于晚三疊世地層中,其形成年齡應(yīng)該晚于晚三疊世。根據(jù)《四川省區(qū)域地質(zhì)志》[46],塔公巖體的KAr同位素年齡為134~136 Ma。因此,可以初步判定塔公石英閃長巖體形成于早白堊世。
在RbY+Nb圖解[圖11(a)]中,本區(qū)石英閃長巖數(shù)據(jù)點(diǎn)位于后碰撞花崗巖區(qū)域內(nèi)。在Rb/30Hf3Ta圖解[圖11(b)]中,本區(qū)巖石主要位于火山弧花崗巖與晚碰撞碰撞后花崗巖的交界區(qū)域附近。結(jié)果表明,本區(qū)石英閃長巖應(yīng)該形成于后碰撞或碰撞后的大地構(gòu)造環(huán)境。
川西北地區(qū)屬于松潘—甘孜造山帶,在中生代主要遭受了華北陸塊與揚(yáng)子陸塊碰撞后的板內(nèi)匯聚作用;新生代又受到了印度板塊與歐亞板塊碰撞作用的影響。近年來的研究表明,川西北花崗巖形成于中生代陸內(nèi)收縮的褶皺造山過程[13]。晚三疊世之后,川西北地區(qū)結(jié)束了主要沉積歷史,進(jìn)入陸緣陸內(nèi)造山時(shí)期,大量中生代巖漿侵位,這些巖體主要侵位于三疊紀(jì)淺變質(zhì)巖系中[6]。巖體多呈圓形或長條狀產(chǎn)出,其中巖體形態(tài)呈圓形者多橫跨不同方向的褶皺,沿褶皺疊加所形成的穹窿狀背斜核部侵入,巖體邊緣常??梢砸姷狡闋顦?gòu)造[7]。各巖體的侵位時(shí)代不大相同,自印支晚期至燕山晚期乃至喜山期皆有巖漿活動[8]。
塔公石英閃長巖形成于早白堊世期間(134~136 Ma),屬于燕山晚期—喜山早期巖漿活動,說明松潘—甘孜造山帶花崗質(zhì)巖漿活動至少可以延續(xù)至喜山早期,印證了松潘—甘孜造山帶的構(gòu)造巖漿演化歷史。塔公石英閃長巖屬于亞堿性準(zhǔn)鋁質(zhì)高鉀鈣堿系列,其偏高的Mg#值,尤其是高Sr含量、低Nd含量的同位素地球化學(xué)特征和
εNd(t)值(-86~-75),明顯區(qū)別于幔源巖漿系列,表明其來源于下地殼鎂鐵質(zhì)物質(zhì)的局部熔融,沒有幔源物質(zhì)的明顯參與。巖漿起源應(yīng)該與松潘—甘孜造山帶造山過程中大型滑脫構(gòu)造所產(chǎn)生的剪切熱能造成源區(qū)物質(zhì)部分熔融密切相關(guān),這與Roger等的研究結(jié)果[6]基本一致,說明塔公石英閃長巖是由于川西北地區(qū)在燕山晚期—喜山早期總體處于陸緣陸內(nèi)造山的構(gòu)造環(huán)境下,剪切熱能造成下地殼鎂鐵質(zhì)物質(zhì)的局部熔融而形成的晚碰撞碰撞后I型花崗巖類。該區(qū)巖石的Nd和Hf模式年齡(113~141 Ga)與胡健民等在該區(qū)花崗巖中獲得部分太古代鋯石的事實(shí)[9]完全吻合,也與趙永久等在川西老君溝和孟通溝花崗巖研究中獲得的Nd模式年齡(1.23~1.44 Ga)[49]相一致,均反映了松潘—甘孜造山帶的基底性質(zhì)不是洋殼,松潘—甘孜造山帶不屬于特提斯殘留洋盆,而是具有類似于揚(yáng)子板塊的中元古代陸殼基底,因此,松潘—甘孜造山帶結(jié)晶基底可能是古揚(yáng)子板塊的重要組成部分。
5結(jié)語
(1)川西北塔公閃長石SiO2含量為6137%~6225%,鋁飽和指數(shù)為093~095,w(K2O)/w(Na2O)值為144~165,里特曼指數(shù)為162~174,樣品屬于亞堿性準(zhǔn)鋁質(zhì)高鉀鈣堿系列石英閃長巖類。
(2)塔公石英閃長巖是早白堊世期間,川西北地區(qū)在陸緣陸內(nèi)造山環(huán)境下,由松潘—甘孜造山帶古老的下地殼鎂鐵質(zhì)物質(zhì)局部熔融形成的晚碰撞碰撞后非分異Ⅰ型花崗巖類。
(3)松潘—甘孜造山帶的基底性質(zhì)不是洋殼,其結(jié)晶基底可能是古揚(yáng)子板塊的重要組成部分。
參考文獻(xiàn):
References:
[1]許志琴,侯立瑋,王大可,等.“西康式”褶皺及其變形機(jī)制:一種新的造山帶褶皺類型[J].中國區(qū)域地質(zhì),1991(1):19.
XU Zhiqin,HOU Liwei,WANG Dake,et al.“Xikangtype” Folds and Their Deformation Mechanism:A New Fold Type in Orogenic Belts[J].Regional Geology of China,1991(1):19.
[2]許志琴,侯立瑋,王宗秀,等.中國松潘—甘孜造山帶的造山過程[M].北京:地質(zhì)出版社,1992.
XU Zhiqin,HOU Liwei,WANG Zongxiu,et al.Orogenic Processes of the SongpanGanzi Orogenic Belt of China[M].Beijing:Geological Publishing House,1992.
[3]許志琴,張建新,徐惠芬,等.中國主要大陸山鏈韌性剪切帶及動力學(xué)[M].北京:地質(zhì)出版社,1997.
XU Zhiqin,ZHANG Jianxin,XU Huifen,et al.Shear Zone and Its Dynamics of the Main Continental Mountain Chain in China[M].Beijing:Geological Publishing House,1997.
[4]袁海華,張志蘭,張平.龍門山老君溝花崗巖的隆升及冷卻史[J].成都地質(zhì)學(xué)院學(xué)報(bào),1991,18(1):1722.
YUAN Haihua,ZHANG Zhilan,ZHANG Ping.The Uplifting and Cooling Histories of the Laojungou Granite in Longmen Mountains[J].Journal of Chengdu College of Geology,1991,18(1):1722.
[5]袁海華,張志蘭.龍門山?jīng)_斷帶西側(cè)印支—燕山期花崗巖類巖石年代學(xué)研究[M]∥羅志立.龍門山造山帶的崛起和四川盆地的形成與演化.成都:成都科技大學(xué)出版社,1994:330337.
YUAN Haihua,ZHANG Zhilan.A Study of the Chronology of Granitoid Rocks in Indosinian,Yanshan Period at the West Longmen Mountains[M]∥LUO Zhili.Uplifting of Longmen Mountains and Formation and Evolution of Sichuan Basin.Chengdu: Chengdu University of Science and Technology Press,1994:330337.
[6]ROGER F,MALAVIEILLE J,LELOUP P H,et al.Timing of Granite Emplacement and Cooling in the SongpanGarze Fold Belt(Eastern Tibetan Plateau)with Tectonic Implications[J].Journal of Asian Earth Sciences,2004,22:465481.
[7]侯立瑋,付小方.松潘—甘孜造山帶東緣穹窿狀變質(zhì)地質(zhì)體[M].成都:四川大學(xué)出版社,2002.
HOU Liwei,F(xiàn)U Xiaofang.The Dome Shaped Metamorphic Geologic Body in the Eastern Margin of the SongpanGanzi Orogen[M].Chengdu:Sichuan University Press,2002.
[8]王全偉,姚書振,駱耀南.川西北微細(xì)浸染型金礦床區(qū)域成礦動力學(xué)模式[J].四川地質(zhì)學(xué)報(bào),2004,24(1):49.
WANG Quanwei,YAO Shuzhen,LUO Yaonan.A Dynamic Model for Regional Metallogenesis of Finedisseminated Gold Deposits in Northwest Sichuan[J].Acta Geologica Sichuan,2004,24(1):49.
[9]胡健民,孟慶任,石玉若,等.松潘—甘孜地體內(nèi)花崗巖鋯石SHRIMP UPb定年及其構(gòu)造意義[J].巖石學(xué)報(bào),2005,21(3):867880.
HU Jianmin,MENG Qingren,SHI Yuruo,et al.SHRIMP UPb Dating of Zircons from Granitoid Bodies in the SongpanGanzi Terrance and Its Implications[J].Acta Petrologica Sinica,2005,21(3):867880.
[10]王暉,阮林森,郭建秋,等.四川雅江盆地三疊紀(jì)晚期沉積地球化學(xué)特征及其大地構(gòu)造意義[J].西北地質(zhì),2012,45(2):8898.
WANG Hui,RUAN Linsen,GUO Jianqiu,et al.Late Triassic Sedimentary Geochemistry and Tectonic Significance in the Yajiang Basin,Sichuan[J].Northwestern Geology,2012,45(2):8898.
[11]劉曄,柳小明,胡兆初,等.ICPMS測定地質(zhì)樣品中37個(gè)元素的準(zhǔn)確度和長期穩(wěn)定性分析[J].巖石學(xué)報(bào),2007,23(5):12031210.
LIU Ye,LIU Xiaoming,HU Zhaochu,et al.Evaluation of Accuracy and Longterm Stability of Determination of 37 Trace Elements in Geological Samples by ICPMS[J].Acta Petrologica Sinica,2007,23(5):12031210.
[12]YUAN H L,GAO S,LIU X M,et al.Accurate UPb Age and Trace Element Determinations of Zircon by Laser Ablationinductively Coupled Plasmamass Spectrometry[J].Geostandards and Geoanalytical Research,2004,28(3):353370.
[13]PEARCE J A.The Role of Subcontinental Lithosphere in Magma Genesis at Destructive Plate Margins[M]∥HAWKS W.Continental Basalts and Mantle Xenoliths.London:Nantwich Shiva Press,1983:230249.
[14]WILSON M.Igneous Petrogenesis[M].London:Unwin Hyman Press,1989.
[15]BARKER F.Trondhjemite:Definition,Environment and Hypotheses of Origin[J].Developments in Petrology,1979,6:112.
[16]ROLLINSON H R.Using Geological Data:Evalution,Presentation,Interpretation[M].London:Person Education Limited,1993.
[17]MANIAR P D,PICCOLI P M.Tectonic Discrimination of Granitoids[J].Geological Society of American Bulletin,1989,101(5):635643.
[18]SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Ocean Basins:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313345.
[19]WOOD D A,JORON J L,TREUIL M,et al.Elemental and Sr Isotope Variations in Basic Lavas from Iceland and the Surrounding Ocean Floor[J].Contributions to Mineralogy and Petrology,1979,70(3):319339.
[20]CHAPPELL B W,WHITE A J R.Two Contrasting Granite Types[J].Pacific Geology,1974,8:173174.
[21]王德滋,劉昌實(shí),沈渭洲,等.桐廬I和相山S型兩類碎斑熔巖對比[J].巖石學(xué)報(bào),1993,9(1):4454.
WANG Dezi,LIU Changshi,SHEN Weizhou,et al.The Contrast Between Tonglu Itype and Xiangshan Stype Clastoporphyritic Lava[J].Acta Petrologica Sinica,1993,9(1):4454.
[22]HUGH R R.Using Geochemical Data[M].Singapore:Longman Singapore Publishers,1993.
[23]WHALEN J B,CURRIE K L,CHAPPELL B W.Atype Granites:Geochemical Characteristics,Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407419.
[24]ALLEGRE C J,MINSTER J F.Quantitative Models of Trace Element Behavior in Magmatic Processes[J].Earth and Planetary Science Letters,1978,38:125.
[25]PATINODOUCE A E,JOHNSTON A D.Phase Equilibria and Melt Productivity in the Pelitic System:Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites[J].Contributions to Mineralogy and Petrology,1991,107(2):202218.
[26]PATINODOUCE A E,BEARD J S.Dehydrationmelting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J].Journal of Petrology,1995,36(3):707738.
[27]PATINODOUCE A E,HARRIS N.Experimental Constraints on Himalayan Anatexis[J].Journal of Petrology,1998,39(4):689710.
[28]PATINODOUCE A E.What Do Experiments Tell Us About the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas[J].Geological Society,London,Special Publications,1999,168:5575.
[29]GREEN T H,PEARSON N J.An Experimental Study of Nb and Ta Partitioning Between Tirich Minerals and Silicate Liquids at High Pressure and Temperature[J].Geochimica et Cosmochimica Acta,1987,51(1):5562.
[30]GREEN T H.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crustmantle System[J].Chemical Geology,1995,120(3/4):347359.
[31]BARTH M G,MCDONOUGH W F,RUDNICK R L.Tracking the Budget of Nb and Ta in the Continental Crust[J].Chemical Geology,2000,165(3/4):197213.
[32]劉英俊,曹勵明,李兆麟,等.元素地球化學(xué)[M].北京:科學(xué)出版社,1984.
LIU Yingjun,CAO Liming,LI Zhaolin,et al.Element Geochemistry[M].Beijing:Science Press,1984.
[33]賴紹聰,劉池陽,OREILLY S Y.北羌塘新第三紀(jì)高鉀鈣堿火山巖系的成因及其大陸動力學(xué)意義[J].中國科學(xué):D輯,地球科學(xué),2001,31(增):3442.
LAI Shaocong,LIU Chiyang,OREILLY S Y.Petrogenesis and Its Significance to Continental Dynamics of the Neogene Highpotassium Calcalkaline Volcanic Rock Association from North Qiangtang,Tibetan Plateau[J].Science in China:Series D,Earth Sciences,2001,31(S):3442.
[34]LAI S C,LIU C Y,YI H S.Geochemistry and Petrogenesis of Cenozoic Andesitedacite Association from the Hoh Xil Region,Tibetan Plateau[J].International Geology Review,2003,45(11):9981019.
[35]LAI S C,QIN J F,LI Y F.Partial Melting of Thickened Tibetan Crust:Geochemical Evidence from Cenozoic Adakitic Volcanic Rocks[J].International Geology Review,2007,49(4):357373.
[36]LAI S C,QIN J F,RODNEY G.Petrochemistry of Granulite Xenoliths from the Cenozoic Qiangtang Volcanic Field,Northern Tibetan Plateau:Implications for Lower Crust Composition and Genesis of the Volcanism[J].International Geology Review,2011,53(8):926945.
[37]賴紹聰,劉池陽.青藏高原北羌塘榴輝巖質(zhì)下地殼及富集型地幔源區(qū):來自新生代火山巖的巖石地球化學(xué)證據(jù)[J].巖石學(xué)報(bào),2001,17(3):459468.
LAI Shaocong,LIU Chiyang.Enriched Upper Mantle and Eclogitic Lower Crust in North Qiangtang,QinghaiTibet Plateau:Petrological and Geochemical Evidence from the Cenozoic Volcanic Rocks[J].Acta Petrologica Sinica,2001,17(3):459468.
[38]賴紹聰,秦江鋒,李永飛,等.青藏高原新生代火車頭山堿性及鈣堿性兩套火山巖的地球化學(xué)特征及其物源討論[J].巖石學(xué)報(bào),2007,23(4):709718.
LAI Shaocong,QIN Jiangfeng,LI Yongfei,et al.Geochemistry and Petrogenesis of the Alkaline and Calcalkaline Series Cenozoic Volcanic Rocks from Huochetou Mountain,Tibetan Plateau[J].Acta Petrologica Sinica,2007,23(4):709718.
[39]賴紹聰,秦江鋒,趙少偉,等.青藏高原東北緣柳坪新生代苦橄玄武巖地球化學(xué)及其大陸動力學(xué)意義[J].巖石學(xué)報(bào),2014,30(2):361370.
LAI Shaocong,QIN Jiangfeng,ZHAO Shaowei,et al.Geochemistry and Its Continental Dynamic Implication of the Cenozoic Sodic Picritic Basalt from the Liuping Area,Northeastern Margin of the Tibetan Plateau[J].Acta Petrologica Sinica,2014,30(2):361370.
[40]賴紹聰,朱韌之.西秦嶺竹林溝新生代堿性玄武巖地球化學(xué)及其成因[J].西北大學(xué)學(xué)報(bào):自然科學(xué)版,2012,42(6):975984.
LAI Shaocong,ZHU Renzhi.Geochemistry and Petrogenesis of the Cenozoic Alkaline Basalt from the Zhulingou Area,Western Qinling Mountain[J].Journal of Northwest University:Natural Science Edition,2012,42(6):975984.
[41]賴紹聰,秦江鋒,李學(xué)軍,等.昌寧—孟連縫合帶干龍?zhí)痢蜕呔G巖地球化學(xué)及SrNdPb同位素組成研究[J].巖石學(xué)報(bào),2010,26(11):31953205.
LAI Shaocong,QIN Jiangfeng,LI Xuejun,et al.Geochemistry and SrNdPb Isotopic Features of the GanlongtangNongba Ophiolite from the ChangningMenglian Suture Zone[J].Acta Petrologica Sinica,2010,26(11):31953205.
[42]DEPAOLO D J,DALEY E E.Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning During Continental Extension[J].Chemical Geology,2000,169(1/2):157185.
[43]徐士進(jìn),王汝成,沈渭洲,等.松潘—甘孜造山帶中晉寧期花崗巖的UPb,RbSr同位素定年及其大地構(gòu)造意義[J].中國科學(xué):D輯,地球科學(xué),1996,26(1):5258.
XU Shijin,WANG Rucheng,SHEN Weizhou,et al.UPb,RbSr Isotopic Chronology of Jinning Granites in the SongpanGanzi Orogenic Belt and Its Tectonic Significance[J].Science in China:Series D,Earth Sciences,1996,26(1):5258.
[44]凌洪飛,徐士進(jìn),沈渭洲,等.格宗、東谷巖體Nd,Sr,Pb,O同位素特征及其與揚(yáng)子板塊邊緣其他晉寧期花崗巖對比[J].巖石學(xué)報(bào),1998,14(3):269277.
LING Hongfei,XU Shijin,SHEN Weizhou,et al.Nd,Sr,Pb and O Isotopic Compositions of Late Proterozoic Gezong and Donggugranites in the West Margin of Yangtze Plate and Comparison with Other Coeval Granitoids[J].Acta Petrologica Sinica,1998,14(3):269277.
[45]JAHN B M,WU F Y,LO C H,et al.Crustmantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and SrNd Isotopic Evidence from Postcollisional Maficultramafic Intrusions of the Northern Dabie Complex,Central China[J].Chemical Geology,1999,157(1/2):119146.
[46]四川省地質(zhì)礦產(chǎn)局.四川省區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社,1991.
Sichuan Bureau of Geology and Mineral Resources.Regional Geology of Sichuan Province[M].Beijing:Geological Publishing House,1991.
[47]PEARCE J A.Sources and Setting of Granitic Rocks[J].Episodes,1996,19(4):120125.
[48]HARRIS N B W,PEARCE J A,TINDLE A G.Geochemical Characteristics of Collisionzone Magmatism[J].Geological Society,London,Special Publication,1986,19:6781.
[49]趙永久,袁超,周美夫,等.川西老君溝和孟通溝花崗巖的地球化學(xué)特征、成因機(jī)制及對松潘—甘孜地體基底性質(zhì)的約束[J].巖石學(xué)報(bào),2007,23(5):9951006.
ZHAO Yongjiu,YUAN Chao,ZHOU Meifu,et al.Geochemistry and Petrogenesis of Laojungou and Mengtonggou Granites in Western Sichuan,China:Constraints on the Nature of SongpanGanzi Basement[J].Acta Petrologica Sinica,2007,23(5):9951006.