趙 劼,王永紅,儲 炬,張嗣良,莊英萍
(華東理工大學(xué) 生物工程學(xué)院,上海 200237)
丙酮酸氧化酶(EC1.2.3.3)是一種十分重要的醫(yī)用試劑酶.在PO4-3和O2存在條件下,它能夠催化丙酮酸脫羧產(chǎn)生H2O2,CO2和乙酰磷酸[1].在過氧化物酶的共同作用下,丙酮酸氧化酶可以用于人體血液中丙氨酸氨基轉(zhuǎn)移酶和天冬氨酸氨基轉(zhuǎn)移酶的測定[2],同時(shí),還可用于河水和廢水[3]中磷酸根離子含量的測定.然而,商品化的PyOD幾乎都來源于野生型的植物乳桿菌和綠色氣球菌,發(fā)酵單位最高僅為120 U/L[4-6].大腸桿菌是一種通用的外源蛋白表達(dá)載體,迄今為止,重組大腸桿菌已經(jīng)成功應(yīng)用于許多醫(yī)用蛋白[7-9]的外源表達(dá).在以前的研究中,對重組大腸桿菌DH5α/pSMLPyOD異源表達(dá)PyOD做了初步優(yōu)化,使得發(fā)酵單位提高到了670 U/L[10].然而,在重組大腸桿菌的發(fā)酵過程中,質(zhì)粒不穩(wěn)定性(Plasmid instability)是一個(gè)比較嚴(yán)重的問題,會導(dǎo)致目的產(chǎn)物水平的下降.在工業(yè)發(fā)酵過程中,對重組細(xì)胞要求質(zhì)粒穩(wěn)定性保持在25代以上[11].因此,研究重組細(xì)胞質(zhì)粒的穩(wěn)定性對于提高發(fā)酵效率有著十分重要的意義[12].從目前已有報(bào)道來看,影響質(zhì)粒穩(wěn)定性的因素很多,比如生長培養(yǎng)基組分[13-14]、質(zhì)??截悢?shù)[15]、宿主遺傳背景、培養(yǎng)條件、比生長速率[16]、培養(yǎng)溫度[17]、外源蛋白表達(dá)水平[18]以及所表達(dá)蛋白的毒性等[19].本文從碳源、培養(yǎng)溫度、溶氧,pH值以及外源蛋白表達(dá)等因素對重組大腸桿菌DH5α/pSMLPyOD搖瓶發(fā)酵過程質(zhì)粒穩(wěn)定性進(jìn)行研究.
重組大腸桿菌DH5α/pSMLPyOD由本實(shí)驗(yàn)室構(gòu)建,丙酮酸氧化酶基因克隆自Aerococcus viridans ATCC10400(AvPyOD).重組大腸桿菌DH5α/pSMLPyOD能夠組成型表達(dá)丙酮酸氧化酶.
1.2.1 質(zhì)粒穩(wěn)定性測定
參照Zhang等[12]方法進(jìn)行.
1.2.2 菌體生物量測定
菌體生長量以600 nm處光密度(OD600)表示.
1.2.3 丙酮酸氧化酶活性測定
參照Zhao等[10]方法測定丙酮酸氧化酶活性.
1.2.4 碳源對發(fā)酵過程中質(zhì)粒穩(wěn)定性的影響
保持培養(yǎng)基中其他組分不變,分別以1%的葡萄糖,甘油和糊精為碳源,考察不同碳源條件下,發(fā)酵過程中菌體生長,質(zhì)粒穩(wěn)定性及產(chǎn)酶情況.
1.2.5 溫度對發(fā)酵過程中質(zhì)粒穩(wěn)定性的影響
選擇28,32,37℃三個(gè)不同溫度進(jìn)行發(fā)酵,研究發(fā)酵溫度對重組大腸桿菌DH5α/pSMLPyOD發(fā)酵過程中菌體生長,質(zhì)粒穩(wěn)定性及產(chǎn)酶的影響.
1.2.6 溶氧對質(zhì)粒穩(wěn)定性的影響
采用不同裝液量法,250 ml三角瓶分別盛裝30,60,90 ml培養(yǎng)基,同等條件培養(yǎng),考察溶氧對工程菌生長,產(chǎn)酶,質(zhì)粒穩(wěn)定性的影響.
1.2.7 發(fā)酵過程pH值對質(zhì)粒穩(wěn)定性的影響
采用pH搖床,控制培養(yǎng)過程中搖瓶pH值為6,6.5,7,7.5,以研究不同pH培養(yǎng)條件對工程菌生長,產(chǎn)酶,質(zhì)粒穩(wěn)定性的影響.
1.2.8 外源蛋白表達(dá)對質(zhì)粒穩(wěn)定性的影響
重組質(zhì)粒pSMLPyOD轉(zhuǎn)入空載大腸桿菌JM109(recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi△(lac-proAB)F traD36proAB,lacIqlacZ△M15),得到重組大腸桿菌JM109/pSMLPyOD,該重組菌為誘導(dǎo)型表達(dá).將JM109/pSMLPyOD與DH5α/pSMLPyOD在37℃同等條件下培養(yǎng),以考察外源丙酮酸氧化酶表達(dá)對質(zhì)粒pSMLPyOD穩(wěn)定性的影響.
圖1 不同碳源條件下DH5α/pSMLPyOD發(fā)酵過程中質(zhì)粒穩(wěn)定性
在無抗生素選擇性壓力條件下,碳源對重組大腸桿菌DH5α/pSMLPyOD搖瓶發(fā)酵過程中的質(zhì)粒穩(wěn)定性影響較大.當(dāng)以葡萄糖為碳源時(shí),質(zhì)粒穩(wěn)定性最差,發(fā)酵終點(diǎn)時(shí),質(zhì)粒穩(wěn)定性僅有11%左右,而且菌體生長及產(chǎn)酶處于較低水平,分別 為 光 密 度OD600nm為4.8和88 U/L.而以甘油為碳源時(shí),重組菌在整個(gè)發(fā)酵過程中一直保持著較高的質(zhì)粒穩(wěn)定性,發(fā)酵終了時(shí),質(zhì)粒穩(wěn)定性仍高達(dá)88%,光密度 OD600nm為 18,酶產(chǎn)量700 U/L,遠(yuǎn)高于葡萄糖和糊精(見圖1a,1b,1c). 黃華等[20]在利用重組大腸桿菌DH5a/AfPGA發(fā)酵表達(dá)青霉素G?;傅难芯恐幸舶l(fā)現(xiàn),葡萄糖為碳源時(shí),質(zhì)粒穩(wěn)定性較差,XU Zhi-nan等[21]在研究培養(yǎng)基組分對質(zhì)粒DNA復(fù)制的影響中也發(fā)現(xiàn),以甘油為碳源時(shí),宿主大腸桿菌細(xì)胞內(nèi)質(zhì)粒產(chǎn)量最高.
從pH值變化情況可以看出(圖1d),當(dāng)以葡萄糖為碳源時(shí),過程pH值下降很快,最低pH值僅有4.5左右.而以甘油為碳源時(shí),過程pH值始終穩(wěn)定在6.5左右,這可能與重組菌對不同碳源的代謝速率不同有關(guān).從碳流平衡角度看,流入細(xì)胞的碳流應(yīng)相當(dāng)于細(xì)胞用于生物合成和產(chǎn)生能量的碳流,但當(dāng)碳流超過主要代謝途徑的容量時(shí),代謝發(fā)生不平衡,就可能通過形成代謝副產(chǎn)物乙酸來實(shí)現(xiàn)代謝平衡.葡萄糖作為碳源,其吸收速率遠(yuǎn)遠(yuǎn)大于其他碳源,代謝失衡極易發(fā)生[22],從而產(chǎn)生乙酸并分泌到發(fā)酵體系中,當(dāng)乙酸積累到一定程度,就會抑制菌體生長[23],無質(zhì)粒細(xì)胞由于其代謝壓力較輕,因而對乙酸的耐受性可能要高于帶質(zhì)粒細(xì)胞.如果以甘油作為碳源,則可以顯著降低乙酸產(chǎn)量或者不產(chǎn)生乙酸,與葡萄糖相比,細(xì)胞吸收甘油的速率較低,所以進(jìn)入糖酵解的碳流下降,從而大大減少了乙酸的生成.當(dāng)以糊精為碳源時(shí),由于其為慢利用碳源,重組細(xì)胞必須先將其水解為葡萄糖,培養(yǎng)體系呈碳源限制性狀態(tài),菌體生長明顯受到抑制,另外,由于細(xì)胞可能會利用培養(yǎng)基中的蛋白胨和酵母粉為碳源,因而造成培養(yǎng)體系pH值過高,達(dá)7.5以上.
不同培養(yǎng)溫度下,重組大腸桿菌DH5α/pSML?PyOD質(zhì)粒穩(wěn)定性情況如圖2所示.37℃條件下,質(zhì)粒pSMLPyOD穩(wěn)定性最好,14 h發(fā)酵終了時(shí)依然保持在85%以上,而28℃和32℃條件下,盡管菌體生長速率較慢(圖2b),但質(zhì)粒穩(wěn)定性也較低.這與Gupta等[17]在研究質(zhì)粒pCPPS-31在大腸桿菌DH5α中的穩(wěn)定性時(shí)得到的結(jié)果基本一致.Oscam[24]等在研究質(zhì)粒pTB13在枯草芽孢桿菌中的穩(wěn)定性時(shí)也發(fā)現(xiàn),較高培養(yǎng)溫度下質(zhì)粒更穩(wěn)定,進(jìn)一步研究發(fā)現(xiàn),在較高培養(yǎng)溫度下宿主細(xì)胞內(nèi)質(zhì)??截悢?shù)也較高.低溫盡管能夠控制宿主的比生長速率,但低溫對質(zhì)粒的復(fù)制也有抑制作用,低溫也可能不利于質(zhì)粒在細(xì)胞間的分配.但對于不同的宿主菌和質(zhì)粒來說,溫度對質(zhì)粒穩(wěn)定性的影響不盡相同,據(jù)K wang等[25]報(bào)道,Bacil?lus megateriu/pCKI08在低溫30℃條件下培養(yǎng)質(zhì)粒最穩(wěn)定.
圖2 不同培養(yǎng)溫度下DH5α/pSMLPyOD發(fā)酵過程中質(zhì)粒穩(wěn)定性
盡管低溫條件下重組大腸桿菌DH5α/pSMLPyOD的質(zhì)粒穩(wěn)定性較差,但從圖2c可以看出,工程菌的產(chǎn)酶水平并沒有降低,36 h發(fā)酵終了時(shí),32℃條件下PyOD水平高達(dá)1078 U/L,而37℃條件下PyOD水平在14 h達(dá)到最高,僅為930 U/L.低溫條件下有利于重組大腸桿菌中外源蛋白的表達(dá)[26],但影響機(jī)理比較復(fù)雜,據(jù)Corisdeo等[27]報(bào)道,低溫有利于外源基因mRNA的翻譯,也有報(bào)道認(rèn)為,溫度會影響外源蛋白的分泌及胞內(nèi)蛋白酶的活性[28].
溶氧是發(fā)酵過程中影響重組菌生長及質(zhì)粒穩(wěn)定性的又一因素,富氧能維持較高的比生長速率,但氧氣對好氧微生物有著潛在的毒性副作用;低溶氧水平有時(shí)對生產(chǎn)有利,但過低的溶氧會導(dǎo)致乙酸的大量生成,菌體生長受到抑制,比生長速率下降,而比生長速率過高或過低都可能影響質(zhì)粒的穩(wěn)定性[29].通過改變培養(yǎng)基在搖瓶中的裝液量以研究不同溶氧水平對重組大腸桿菌DH5α/pSMLPyOD質(zhì)粒穩(wěn)定性的影響.結(jié)果表明(見圖3),溶氧對菌體生長是有影響的,裝液量越小,菌體比生長速率越高,當(dāng)裝液量為30 mL時(shí),最大比生長速率達(dá)0.26 h-1,而裝液量為60和90 mL時(shí),最大比生長速率分別為0.22 h-1和0.17 h-1,質(zhì)粒穩(wěn)定性也隨裝液量的變化而變化,在裝液量為30和60 mL時(shí),質(zhì)粒穩(wěn)定性均保持較高水平,其中以60 mL裝液量最高,發(fā)酵14 h時(shí)仍保持在88%左右,但可以看出,在各裝液量條件下,細(xì)胞質(zhì)粒均保持了較高的穩(wěn)定性.
有關(guān)溶氧對質(zhì)粒穩(wěn)定性影響的報(bào)道較多,但對其機(jī)理目前還不清楚.Huang等[30]的研究表明,質(zhì)粒穩(wěn)定性與比生長速率無關(guān),溶氧過高或過低都會引起質(zhì)粒的丟失[31].研究發(fā)現(xiàn),質(zhì)粒穩(wěn)定性與比生長速率是相關(guān)的,在較低搖床轉(zhuǎn)速下,質(zhì)粒穩(wěn)定性和比生長速率隨攪拌轉(zhuǎn)速的提高而同時(shí)提高,當(dāng)攪拌轉(zhuǎn)速達(dá)到100 rpm時(shí),比生長速率達(dá)到0.52 h-1,此時(shí)質(zhì)粒穩(wěn)定性可保持在92%,但當(dāng)攪拌轉(zhuǎn)速提高到250 rpm時(shí),比生長速率達(dá)0.92 h-1,此時(shí)質(zhì)粒穩(wěn)定性降至80%左右,因而,控制溶氧的目的就是為了使質(zhì)粒復(fù)制速率與宿主菌生長速率之間的差別最小化.他們還發(fā)現(xiàn),當(dāng)搖瓶裝液系數(shù)為0.1時(shí),質(zhì)粒穩(wěn)定性最高,這與我們的實(shí)驗(yàn)結(jié)果基本一致.
利用pH搖床控制過程中pH值分別為6.0,6.5,7.0,7.5,結(jié)果表明(見圖4),在各pH條件下,重組菌質(zhì)粒穩(wěn)定性均較好(85%以上),但在pH7.5條件下,工程菌的生長及產(chǎn)酶均受到抑制.有關(guān)pH值對質(zhì)粒穩(wěn)定性影響的報(bào)道并不多見,Marmelstein等[32]在研究Clostridium acetobutylicum的發(fā)酵過程時(shí)發(fā)現(xiàn),低pH條件下質(zhì)粒更加穩(wěn)定,但研究表明,pH值對質(zhì)粒穩(wěn)定性沒有顯著影響,也有報(bào)道指出當(dāng)發(fā)酵過程的pH值控制在6.5~7.0之間時(shí),質(zhì)??截悢?shù)最低[33].
另外,從單位菌體產(chǎn)酶情況來看(見表1),低pH條件有利于酶的表達(dá),當(dāng)發(fā)酵過程pH水平控制在6.5時(shí),菌體比酶活最高,當(dāng)pH值高于7,菌體產(chǎn)酶水平降低,pH值7.5時(shí),菌體比酶活僅有23 U/L/OD600.
圖3 不同溶氧條件下DH5α/pSMLPyOD發(fā)酵過程中質(zhì)粒穩(wěn)定性
表1 不同pH條件下單位菌體產(chǎn)酶水平/U/L/OD600
圖4 不同pH條件下DH5α/pSMLPyOD發(fā)酵過程中質(zhì)粒穩(wěn)定性
將重組質(zhì)粒pSMLPyOD轉(zhuǎn)入大腸桿菌JM109,所得到的重組菌JM109/pSMLPyOD為誘導(dǎo)型表達(dá),將其與重組菌DH5α/pSMLPyOD在同等條件下培養(yǎng),研究外源丙酮酸氧化酶表達(dá)對質(zhì)粒pSMLPyOD穩(wěn)定性的影響.結(jié)果表明(見圖5),在誘導(dǎo)型重組菌搖瓶發(fā)酵過程中,質(zhì)粒穩(wěn)定性始終保持在高水平,發(fā)酵結(jié)束時(shí)仍高達(dá)91%,高于表達(dá)外源蛋白的重組菌DH5α/pSMLPyOD.據(jù)Bentley等[34]研究報(bào)道,外源蛋白表達(dá)會給宿主細(xì)胞帶來代謝和生長壓力,這就造成了帶質(zhì)粒細(xì)胞和空載細(xì)胞生長速率的差異,從而引起發(fā)酵過程中質(zhì)粒的丟失.由于JM109/pSMLPyOD不表達(dá)外源丙酮酸氧化酶,帶質(zhì)粒的JM109和空載JM109之間的生長差異較小,因而使得質(zhì)粒穩(wěn)定性保持在較高水平.不過從圖5中也可看出,JM109的生長速率和最終菌體量都遠(yuǎn)小于DH5α/pSMLPyOD,這可能是由于培養(yǎng)基是以后者為對象進(jìn)行優(yōu)化的,因而不適于JM109的生長.
圖5 外源丙酮酸氧化酶表達(dá)對質(zhì)粒穩(wěn)定性的影響
對重組大腸桿菌DH5α/pSMLPyOD搖瓶發(fā)酵過程中質(zhì)粒穩(wěn)定性的研究表明,碳源、溫度、溶氧及外源蛋白表達(dá)對重組大腸桿菌DH5α/pSMLPyOD的質(zhì)粒穩(wěn)定性均有影響.以甘油為碳源,37℃,裝液量10%~15%條件下重組菌質(zhì)粒穩(wěn)定性最好.另外,當(dāng)發(fā)酵過程中體系pH值在6~7之間時(shí),質(zhì)粒穩(wěn)定性較高,但當(dāng)pH值提高至7.5時(shí),質(zhì)粒穩(wěn)定性會有所下降.低pH條件有利于重組菌產(chǎn)丙酮酸氧化酶.外源蛋白表達(dá)使得重組菌質(zhì)粒穩(wěn)定性有所下降.
[1]Tittmann K,Proske D,Spinka M,et al.Activation of Thiamin Diphosphate and FAD in the Phosphatedependent Pyruvate Oxidase from Lactobacillus lantarum[J].The Journal of Biological Chemistry,1998,273(21):12929-12934.
[2]Tao J Q.High Yield Leakage Expression of Recombinant Pyruvate Oxidase from Aerococcus viridans ATCC10400 in Escherichia coli and Its Purification[J].EastChinaUniversity of Science and Technology,2007,2(1):129-134.
[3]Kwan R C H,Leung H F,Hon P Y T,et al.A screen-printed biosensor using pyruvate oxidase for rapid determination of phosphate in synthetic wastewater[J].Appl Microbiol Biotechnol,2005,66:377-383.
[4]Elstner E,Schleifer K,Gotz F.Pyruvate oxidase:US,4,666,832[P].[1987-05-19].
[5]Hideo M,Kazuo M,Saburo H,et al.Process for the manufacture of pyruvate oxidase,and analytical method and kit for the use of the same:US,4,246-342,832[P].[1981-01-20].
[6]Yamamoto,Kazumi,Toshiro K,et al.Pyruvate oxidase and an analytical method using the same:US,4,965,194[P].[1990-10-23].
[7]Jeong K J,Choi J H,Yoo W M,et al.Constitutive production of human leptin by fed-batch cultureof recombinant rpoS Escherichia coli[J].Protein Expression and Purification,2004,36:150-156.
[8]Khalilzadeh R,Shojaosadati S A,Maghsoudi N,et al.Process Development For Production Of Recombinant Human Interferon-C Expressed In Escherichia Coli[J].J Ind Microbiol Biotechnol,2004,31:63-69.
[9]Looser V,Hammes F,Keller M,et al.Flow-Cytometric Detection of Changes in the Physiological State of E.coli Expressing a Het?erologous Membrane Protein During Carbon-Limited Fedbatch Cultivation[J].Biotechnology And Bioengineering,2005,92(2):69-78.
[10]Zhao J,Wang Y H,Chu J,et al.Statistical optimization of medium for the production of pyruvate oxidase by the recombinant E.coli[J].J Ind Microbiol Biotechnol,2008(3):61-64.
[11]Imanaka T,Aiba S.A perspective on the application of genetic engineering stability of recombinant plasmid[J].Ann NY Acad Sci,1981,369:1-14.
[12]Zhang Y,Li T,Liu J.Low temperature and glucose enhanced T7 RNA polymerase-based plasmid stability for increasing expres?sion of glucagon-like peptide-2 in Escherichia coli[J].Protein Expression and Purification,2003,29:132-139.
[13]Matsui T,Sato H,Sato S,et al.Effects of nutritional conditions on plasmid stability and production of tryptophan synthase by a re?combinant Escherichia coli[J].Agric Biol Chem,1990,54:619-624.
[14]Shoham Y,Demain A L.Effect of medium composition on the maintenance of a recombinant plasmid in B.subtilis[J].Enzyme Mi?crob Technol,1990,12:330.
[15]Togna A P,Shuler M L,Wilson D B.Effect of plasmid copy number and runway plasmid replication on over production and excre?tion of p-lactamase from Escherichia coli[J].Biotechnol Prog,1993,9:31-39.
[16]Nancib N,Bordrant J.Effect of growth rate on stability and gene expression of a recombinant plasmid during continuous culture of E.coli in a non-selective medium[J].Biotechnol Lett,1992,14:643-648.
[17]Gupta R,Sharma P,Vyas V V.Effect of growth environment on the stability of a recombinant shuttle plasmid pCPPS-31 in Esche?richia coli[J].Journal of Biotechnology,1995,41:29-37.
[18]Parker C,DiBiasio D.Effect of growth rate and expression level on plasmid stability in Saccharomyces cerevisiae[J].Biotechnolo?gy and Bioengineering,1987,29:215-221.
[19]Corchero J L,Villaverde A.Plasmid maintenance in Escherichia coli recombinant cultures is dramatically,steadily,and specifical?ly influenced by features of the encoded proteins[J].Biotechnology And Bioengineering,1998,58:625-632.
[20]黃華,茍斌全,王永紅,等.組成型表達(dá)糞產(chǎn)堿桿菌青霉素G?;钢亟M大腸桿菌發(fā)酵條件研究[J].生物技術(shù),2006,16:57-63.
[21]XU Zhi-nan,SHEN Wen-he,CHEN Hao,et al.Effects of medium composition on the production of plasmid DNA vector potential?ly for human gene therapy[J].J Zhejiang Univ SCI,2005,6B:396-400.
[22]Holms W H.The central metabolic pathways in Escherichia coli:relationship between flux and control at a branchpoint,efficiency of conversion to biomass,and excretion of acetate[J].Current Topics in Cellular Regulation,1986,28:69-105.
[23]Lee S Y.High cell density culture of Escherichia coli[J].Trends Biotechnology,1996,14:98-105.
[24]Oscam L,Venena G,Bron S.Plasmid pTB-913 derivatives are segregationally stable in B.subtilis at elevated temperatures[J].Plasmid,1992,28:70-79.
[25]Kwang H S,Jong H J,Jung H K.Effect Of Temperature On Plasmid Stability And Expression Of Cloned Cellulase Gene In A Re?combinant Bacillus Megaterium[J].Biotechnology Letters,1987,9:821-824.
[26]葉姣,陳長華,夏杰,等.溫度對重組大腸桿菌生長及外源蛋白表達(dá)的影響[J].華東理工大學(xué)學(xué)報(bào),2002,28:364-368.
[27]Corisdeo S,Wang B.Functional expression and display of an antibody Fab fragment in Escherichia coli:Study of vector designs and culture conditions[J].Protein Expression and Purification,2004,34:270-279.
[28]Bird P I,Pak S C,Worrall D M,et al.Production of recombinant serpins in Escherichia coli[J].Methods,2004,32:169-176.
[29]蔡豐聚,徐英黔.基因工程菌穩(wěn)定性的若干影響因素[J].生命的化學(xué),2006,26:451-453.
[30]Huang J,Dhulster P,Barbotin J N,et al.Effects of oxygen diffusion on recombinant E.coli B(pTG201)plasmid stability,growth rate,biomass production,and enzyme activity in immobilized and free bacteria during continuous culture[J].J Chem Tech Bio?technol,1989,45:259-269.
[31]Count P,Limpoolsup A,Greenfield P F.The effect of oxygen limitation on stability of a recombinant plasmid in S.cereuisiae[J].Biotechnol Lett,1989,11:5-10.
[32]Marmelstein L D,Papoutsakis E T.Evolution of microlide and lincosamide antibiotics for plasmid maintenance in low pH Cl.ace?tobutylicum ATCC-824 fermentations[J].FEMS Microbial Lett,1993,113:71-76.
[33]Reinikainen P,Virkajarvi T.E.coli growth and plasmid copy numbers in continuous cultivations[J].Biotechnol Lett,1989,11:225-230.
[34]Bentley W E,Kompala D S.Stability in continuous culture in recombinant bacteria:a metabolic approach[J].Biotechnol Lett,1990,12:329-334.