王漢封+鄒超+王啟文+何旭輝
摘要:通過風(fēng)洞試驗(yàn)對(duì)均勻來流中長徑比為5的懸臂圓柱體氣動(dòng)力進(jìn)行了研究.試驗(yàn)中圓柱直徑為200 mm,來流風(fēng)速為5~45 m/s,對(duì)應(yīng)的雷諾數(shù)為0.68×105~6.12×105,涵蓋了亞臨界、臨界與超臨界區(qū)間.研究表明,盡管懸臂圓柱處于均勻流中,但其氣動(dòng)力特性在不同高度上仍存在顯著的差異,懸臂圓柱氣動(dòng)力也存在著明顯的雷諾數(shù)效應(yīng).其從亞臨界進(jìn)入臨界區(qū)所對(duì)應(yīng)的臨界雷諾數(shù)略大于二維圓柱.懸臂圓柱阻力系數(shù)在臨界雷諾數(shù)范圍內(nèi)的減小幅度明顯小于二維圓柱.在亞臨界區(qū)內(nèi),懸臂圓柱阻力系數(shù)小于二維圓柱的對(duì)應(yīng)值,而在超臨界區(qū)則大于后者.盡管處于均勻流中,懸臂圓柱不同高度所對(duì)應(yīng)的臨界雷諾數(shù)并不相同,越接近自由端越早出現(xiàn)從亞臨界向臨界區(qū)的轉(zhuǎn)變.
關(guān)鍵詞:鈍體繞流;懸臂圓柱;氣動(dòng)力;雷諾數(shù)效應(yīng)
中圖分類號(hào):TU317.1 文獻(xiàn)標(biāo)識(shí)碼:A
Reynolds Number Effects on the Aerodynamic Forces of a
Cantilevered Circular Cylinder in Uniform Flow
WANG Han-feng1, 2, ZOU Chao1, WANG Qi-wen3, HE Xu-hui1,2
(1.School of Civil Engineering, Central South Univ, Changsha, Hunan410075,China;
2. National Laboratory for High-Speed Railway Construction, Central South Univ, Changsha, Hunan410075,China;
3. Shenzhen General Institute of Architecture Design and Research, Shenzhen, Guangdong518031, China)
Abstract: The aerodynamic forces on a cantilevered circular cylinder with an aspect ratio of 5 were experimentally investigated in a wind tunnel. The diameter of the cylinder d was 200 mm. The oncoming flow velocity ranged from 5 m/s to 45 m/s, corresponding to Reynolds number of 0.68×105 ~6.12×105, which covered subcritical, critical and transcritical regimes. It was found that, although the cantilevered cylinder is in uniform flow, its aerodynamic forces present significant differences at various spanwise positions, indicating a strong three dimensionality. Reynolds number has profound effect on the aerodynamic forces on the cantilevered cylinder. The critical Reynolds number is smaller for the cantilevered cylinder relative to that of 2D cylinder. In the critical regime, reduction in the drag coefficient (Cd) of the cantilevered cylinder is relatively smaller compared with that of 2D cylinder. In subcritical regime, Cd of the cantilevered cylinder is smaller than that of 2D cylinder. On the other hand, Cd of the former is larger in transcritical regime. The critical Reynolds number is different at various spanwise locations for the cantilevered cylinder. Transition from subcritical to critical regimes occurs earlier near the free end of the cantilevered cylinder.
Key words: flow around bluff body; cantilevered circular cylinder; aerodynamic forces; Reynolds number effects
鈍體繞流問題廣泛存在于土木建筑、海洋工程與交通工程等領(lǐng)域.流體流經(jīng)鈍體時(shí),可能伴隨有流動(dòng)分離、再附和漩渦的脫落等復(fù)雜的流動(dòng)現(xiàn)象.由于工程應(yīng)用中的廣泛需求,鈍體繞流的雷諾數(shù)效應(yīng)問題逐漸引起人們的重視[1].
對(duì)于正方形棱柱等帶有尖銳棱角的鈍體,其流動(dòng)分離點(diǎn)固定在前緣棱角處,在不存在流動(dòng)再附的情況下,雷諾數(shù)效應(yīng)不顯著[2].而對(duì)于圓柱等具有曲面的鈍體,其氣動(dòng)力和尾流特性都與雷諾數(shù)密切相關(guān).圍繞二維圓柱繞流雷諾數(shù)效應(yīng)已進(jìn)行了大量研究[3-5].依據(jù)圓柱繞流與氣動(dòng)力特性,通??蓪⒗字Z數(shù)分為4個(gè)區(qū)域,即亞臨界區(qū)、臨界區(qū)、超臨界區(qū)與跨臨界區(qū)[6].在亞臨界區(qū),圓柱表面邊界層為層流分離,分離角約為80°,尾流區(qū)較寬,對(duì)應(yīng)的阻力系數(shù)(Cd)約為1.2.亞臨界區(qū)一直持續(xù)到Re ≈ 2×105.該臨界雷諾數(shù)與很多因素有關(guān),如:湍流度、模型表面粗糙度以及風(fēng)洞阻塞度等.隨著Re的增大,圓柱繞流進(jìn)入臨界區(qū),某一側(cè)邊界層分離后會(huì)轉(zhuǎn)變?yōu)橥牧鞑⒃诜蛛x點(diǎn)下游某處發(fā)生再附,在圓柱表面形成一分離泡,并在下游某處再次發(fā)生分離.由于此時(shí)流動(dòng)不穩(wěn)定,分離泡可能只在圓柱的某一側(cè)出現(xiàn),另一側(cè)仍為層流分離[6].臨界區(qū)內(nèi)圓柱兩側(cè)分離點(diǎn)不對(duì)稱,有分離泡的一側(cè)分離角約為140°.臨界區(qū)內(nèi)Cd會(huì)急劇減小,且時(shí)均升力(Cl)不為零.當(dāng)Re繼續(xù)增大至4×105左右時(shí),圓柱繞流進(jìn)入超臨界區(qū),圓柱兩側(cè)邊界層均轉(zhuǎn)變?yōu)橥牧鞣蛛x,分離點(diǎn)重新恢復(fù)為對(duì)稱狀態(tài).此時(shí)分離角略為減小至120°左右,尾流區(qū)變窄,對(duì)應(yīng)的Cd約為0.2~0.3.在臨界區(qū)與超臨界區(qū),圓柱尾流無顯著的周期性漩渦脫落.超臨界區(qū)內(nèi),Cd會(huì)隨Re增大而緩慢增大.至Re ≈ 5×106,Cd達(dá)到0.52左右并不再隨Re變化,尾流中又重新出現(xiàn)較為規(guī)則的漩渦脫落,此時(shí)流動(dòng)進(jìn)入跨臨界區(qū)[1].二維圓柱氣動(dòng)力雷諾數(shù)效應(yīng)對(duì)干索馳振等現(xiàn)象有直接影響[7- 8].
目前大部分研究都是圍繞二維圓柱展開的,而工程中大量存在著有限長的三維懸臂圓柱結(jié)構(gòu),如煙囪、高層建筑等[9-11].對(duì)于一端固定于壁面另一端為自由端的三維懸臂圓柱,由于受自由端后下掃流等三維流動(dòng)影響,其氣動(dòng)力特性與尾流結(jié)構(gòu)都與二維圓柱有很大差別[9].通常認(rèn)為懸臂圓柱體的Cd與脈動(dòng)升力系數(shù)C′l都小于二維圓柱的對(duì)應(yīng)值[10-11].在亞臨界區(qū),懸臂圓柱體的Cd會(huì)隨著H/d減小而逐漸減小 [12-13].當(dāng)1 ≤ H/d < 6時(shí),局部Cd最大值出現(xiàn)在自由端以下0.5倍圓柱直徑的位置上,且小于二維圓柱Cd;而當(dāng)H/d > 7時(shí),局部Cd最大值出現(xiàn)在自由端處,且大于二維圓柱對(duì)應(yīng)值[14].Uematsu等[15]比較了亞臨界與超臨界區(qū)域內(nèi)H/d = 1~5圓柱的Cd的變化規(guī)律.他們發(fā)現(xiàn),亞臨界區(qū)內(nèi),當(dāng)H/d < 5時(shí),其對(duì)Cd的影響并不顯著;而在超臨界區(qū)內(nèi),對(duì)于所有H/d,Cd均減小到了亞臨界對(duì)應(yīng)值的43%左右.最近,Wang等[16]在亞臨界與臨界區(qū)內(nèi)研究了H/d對(duì)懸臂圓柱體氣動(dòng)力的影響.發(fā)現(xiàn)壁面上的湍流邊界層會(huì)減小懸臂圓柱體的臨界雷諾數(shù);而在均勻流中,懸臂圓柱體柱與二維圓柱臨界雷諾數(shù)并無顯著的區(qū)別.
Basu等[17-18]指出懸臂圓柱氣動(dòng)力在臨界與超臨界區(qū)域內(nèi)的試驗(yàn)數(shù)據(jù)非常缺乏,這一情況至今仍然未得到徹底的改變.相對(duì)于二維圓柱,懸臂圓柱體氣動(dòng)力雷諾數(shù)效應(yīng)的研究目前仍非常少見,相關(guān)研究大多僅集中于亞臨界區(qū).雷諾數(shù)對(duì)懸臂圓柱氣動(dòng)力尤其是不同高度局部氣動(dòng)力的影響規(guī)律目前仍不清楚.本文以長徑比H/d=5的懸臂圓柱體為研究對(duì)象,通過風(fēng)洞試驗(yàn)測量了柱體不同高度處局部氣動(dòng)力,系統(tǒng)地研究了雷諾數(shù)對(duì)懸臂圓柱體氣動(dòng)力的影響規(guī)律.
1試驗(yàn)介紹
本試驗(yàn)在中南大學(xué)高速鐵路建造技術(shù)國家工程實(shí)驗(yàn)室下屬高速鐵路風(fēng)洞內(nèi)完成.該風(fēng)洞為雙試驗(yàn)段回流式風(fēng)洞,其中低速試驗(yàn)段寬12 m,高3.5 m,長18 m,風(fēng)速為2~18 m/s,湍流度小于2%;高速試驗(yàn)段寬3 m,高3 m,長15 m,風(fēng)速為5~90 m/s,湍流度小于0.5%.本文所述全部試驗(yàn)均在風(fēng)洞高速試驗(yàn)段內(nèi)進(jìn)行.試驗(yàn)?zāi)P蜑閐 = 200 mm,H/d=5的懸臂圓柱體.模型所造成的風(fēng)洞阻塞度約為2.2%,其影響可忽略不計(jì).由于圓柱迎風(fēng)側(cè)風(fēng)壓變化劇烈,模型表面壓力測點(diǎn)采用了非均勻布置形式.迎風(fēng)側(cè)每5°布置一壓力測點(diǎn),背風(fēng)側(cè)每10°布置一個(gè),沿圓周共計(jì)54個(gè)測點(diǎn).為研究懸臂圓柱體不同
高度上的氣動(dòng)力特性,在底部附近,中間高度和柱體自由端附近等展向位置布置了壓力測點(diǎn),測點(diǎn)分別位于z*=1,z*= 2.5,z*= 4和z*= 4.5(本文中上標(biāo)*表示用d與自由來流速度U∞無量綱化).模型及測點(diǎn)布置情況如圖1所示.圓柱軸線位置處風(fēng)洞壁面邊界層的厚度約為d,即試驗(yàn)中懸臂圓柱體的絕大部分都處于均勻流中,試驗(yàn)中還對(duì)二維圓柱風(fēng)壓分布進(jìn)行了測量,以提供對(duì)比參照.
試驗(yàn)中自由來流風(fēng)速U∞為5 ~ 45 m/s,對(duì)應(yīng)的基于d與U∞的Re = 0.68×105 ~ 6.12×105,涵蓋了亞臨界、臨界和超臨界區(qū)域.模型表面各壓力測點(diǎn)用內(nèi)徑0.6 mm的PVC測壓管與壓力掃描閥對(duì)應(yīng)通道連接.掃描閥的采樣頻率為625 Hz,每通道的采樣樣本數(shù)20 000個(gè).
模型表面各測壓點(diǎn)平均壓力系數(shù)Cp與脈動(dòng)壓力系數(shù)C′p的定義如下:
式中:P為各測點(diǎn)風(fēng)壓的平均值;P∞為風(fēng)洞靜壓;Prms為脈動(dòng)風(fēng)壓的均方根值.模型的時(shí)均阻力與升力系數(shù)Cd和Cl可通過平均壓力系數(shù)Cp沿圓周積分獲得,如式(3)所示,其中θ為測壓點(diǎn)與模型迎風(fēng)面駐點(diǎn)之間的順時(shí)針方向夾角.
Cd=12∫2π0Cpcosθdθ;Cl=12∫2π0Cpsin θdθ.(3)
2結(jié)果與討論
2.1時(shí)均阻力與升力
圖2給出了H/d=5懸臂圓柱體阻力系數(shù)隨雷諾數(shù)的變化規(guī)律,同時(shí)圖中還給出了二維圓柱的對(duì)應(yīng)結(jié)果以供對(duì)比.本試驗(yàn)所測二維圓柱的CdRe曲線與文獻(xiàn)[19-20]的結(jié)果吻合很好,這驗(yàn)證了本試驗(yàn)測試方法與試驗(yàn)結(jié)果的可靠性.圖2中二維圓柱CdRe曲線明顯可分為3個(gè)區(qū)域.Re < 2×105的亞臨界區(qū),Cd≈ 1.2且基本為常數(shù);在2×105 < Re < 4×105的臨界區(qū),Cd隨Re的增大迅速減小,當(dāng)Re ≈ 4×105時(shí)Cd達(dá)到最小值0.27左右,相對(duì)于亞臨界區(qū)減小了約83%;在Re > 4×105的超臨界區(qū), Cd基本不再隨Re變化.
與二維圓柱類似,H/d=5懸臂圓柱體的CdRe曲線同樣存在類似的3個(gè)區(qū)域,但各區(qū)域?qū)?yīng)的Re范圍以及Cd值并不相同.亞臨界范圍內(nèi)H/d=5的圓柱Cd≈ 0.85,明顯小于二維圓柱對(duì)應(yīng)值,這與Wang等[16]的試驗(yàn)結(jié)果基本吻合.這是由于懸臂圓柱自由端后下掃流會(huì)削弱展向渦脫落并顯著提高柱體背壓[16],因此其Cd會(huì)明顯小于二維圓柱對(duì)應(yīng)值.即使當(dāng)H/d=30,這一現(xiàn)象仍非常顯著[10].
文獻(xiàn)[16]并未給出Re > 2×105的結(jié)果,但從本試驗(yàn)結(jié)果可以看出,當(dāng)Re = 2×105時(shí),H/d=5的懸臂圓柱的Cd并未開始迅速減小.這說明懸臂圓柱體所對(duì)應(yīng)的亞臨界雷諾數(shù)范圍可能比二維圓柱對(duì)應(yīng)范圍更大,即懸臂圓柱的臨界雷諾數(shù)要大于二維圓柱對(duì)應(yīng)值.從圖2可以看出,當(dāng)Re > 2×105時(shí),懸臂圓柱的Cd隨著Re增加開始緩慢減小.當(dāng)Re = 4×105時(shí),Cd ≈ 0.7.而當(dāng)Re進(jìn)一步增大時(shí),Cd突然減小,最小至0.4左右并基本不再變化.由此可知,H/d=5的懸臂圓柱臨界雷諾數(shù)應(yīng)在4×105左右,遠(yuǎn)大于二維圓柱對(duì)應(yīng)值.亞臨界區(qū)內(nèi),H/d = 5懸臂圓柱Cd明顯小于二維圓柱;而超臨界區(qū)內(nèi)則明顯大于后者.H/d = 5懸臂圓柱Cd在臨界區(qū)內(nèi)減小了約53%;而二維圓柱則減小了約83%,即二維圓柱在臨界區(qū)內(nèi)的阻力下降更為顯著.
圖3給出了不同高度處局部時(shí)均阻力系數(shù)的CdRe曲線.可以看出,盡管試驗(yàn)中懸臂圓柱絕大部分處于均勻來流中,但不同高度的局部Cd仍存在顯著差異.總體來看,各高度處的CdRe曲線均存在3個(gè)區(qū)間,這與二維圓柱定性上是類似的.亞臨界區(qū)內(nèi),越接近柱體自由端,Cd越大.而超臨界區(qū)內(nèi),z* = 4.5處的Cd最大,中間高度z* =2.5處Cd相對(duì)最小.仔細(xì)觀察圖3可發(fā)現(xiàn),不同高度處的臨界雷諾數(shù)并不相同.z*=4.5與4處比z*=2.5與1提前進(jìn)入臨界區(qū),即靠近自由端附近的流動(dòng)會(huì)首先進(jìn)入臨界區(qū),這一現(xiàn)象將在2.2與2.3節(jié)中詳細(xì)討論.
圖4給出了懸臂圓柱局部時(shí)均升力系數(shù)的ClRe曲線,還給出了二維圓柱對(duì)應(yīng)結(jié)果以供對(duì)比.
對(duì)于二維圓柱,亞臨界區(qū)內(nèi)的Cl基本為零;臨界區(qū)內(nèi),Cl隨Re的增大先增大后減小,當(dāng)Re ≈ 2.6×105時(shí),Cl出現(xiàn)最大值0.32.進(jìn)入超臨界區(qū)后,Cl又基本恢復(fù)為零.而懸臂圓柱不同高度處出現(xiàn)Cl大幅上升所對(duì)應(yīng)的Re不相同,越接近自由端對(duì)應(yīng)的Re數(shù)越小.如圖4所示,z*= 4.5處Cl上升對(duì)應(yīng)的Re
≈ 2.0×105;而z*= 4處則在Re > 2.8×105后才出現(xiàn)Cl的大幅上升.更接近底部平面的z*= 2.5和1處,Cl上升的幅度相對(duì)較弱,且對(duì)應(yīng)的Re也更大.Cl的大幅上升是與臨界區(qū)內(nèi)圓柱某側(cè)首先出現(xiàn)分離泡而形成的風(fēng)壓不對(duì)稱現(xiàn)象有關(guān).上述現(xiàn)象再次證明懸臂圓柱不同高度上對(duì)應(yīng)的臨界雷諾數(shù)是不同的.
2.2表面風(fēng)壓
圖5和圖6分別給出了典型雷諾數(shù)下懸臂圓柱不同高度的時(shí)均與脈動(dòng)風(fēng)壓分布,圖中二維圓柱對(duì)應(yīng)結(jié)果用實(shí)線給出以供對(duì)比.由圖5可知,不同高度處Cp差異主要出現(xiàn)在分離點(diǎn)附近以及背風(fēng)側(cè),而迎風(fēng)側(cè)Cp分布則基本相同.當(dāng)Re = 1.08×105,即處于亞臨界區(qū)時(shí),所有高度上的時(shí)均風(fēng)壓均為對(duì)稱分布.各高度迎風(fēng)側(cè)駐點(diǎn)(θ = 0°)Cp均為1.隨著θ的增大,Cp迅速減小,當(dāng)θ ≈ 35°時(shí),風(fēng)壓變?yōu)樨?fù)值,這與二維圓柱情況類似.隨著θ的逐漸增大,Cp繼續(xù)減小至最小值Cp_min,然后略為增大并在背風(fēng)側(cè)大部分區(qū)域內(nèi)保持恒定.可以看出,Cp_min及其所對(duì)應(yīng)的角度在不同高度上均不相同.從自由端向下Cp_min分別為-1.04,-1.02,-0.84和-0.69,對(duì)應(yīng)θ約分別為65°,65°,62°和60°.由此可知,在亞臨界區(qū),越接近自由端,Cp_min越低,且其對(duì)應(yīng)的方位角更大;越接近自由端,柱體背壓(Cpb)最低,但始終高于二維圓柱的背壓.
由圖5(b)可知,當(dāng)Re = 2.32×105時(shí),z*=4.5處的Cp出現(xiàn)了不對(duì)稱分布,與二維圓柱結(jié)果定性上類似.其一側(cè)Cp_min減小至約-1.75,而另一側(cè)相對(duì)于亞臨界無明顯變化.此時(shí)其他高度處的Cp仍為對(duì)稱分布且與亞臨界區(qū)(如圖5(a)所示)基本相同.造成上述不對(duì)稱風(fēng)壓分布的原因是圓柱一側(cè)首先出現(xiàn)了分離泡,而另一側(cè)則沒有[6].出現(xiàn)分離泡的一側(cè)Cp_min對(duì)應(yīng)角度明顯向下游推遲.隨著Re的增大至2.74×105,z*=4.5處的Cp仍不對(duì)稱,且z*=4處的Cp也表現(xiàn)出向不對(duì)稱轉(zhuǎn)變的趨勢.值得注意的是,z*=4.5處的Cp_min在圖5(b),5(c)中出現(xiàn)在了柱體不同的兩側(cè),這是由于臨界區(qū)內(nèi)圓柱表面分離泡可能隨機(jī)出現(xiàn)在柱體任何一側(cè).
當(dāng)Re增大至3.42×105時(shí)(圖5(d)),z*=4.5處Cp已基本恢復(fù)為對(duì)稱狀態(tài),而z*=4處Cp仍處于臨界區(qū)的非對(duì)稱狀態(tài).此時(shí),z*=2.5和1處Cp仍處于亞臨界區(qū).這表明即使在均勻來流中,懸臂圓柱不同高度可能處于不同的流動(dòng)狀態(tài),即當(dāng)自由端附近流動(dòng)已進(jìn)入超臨界區(qū)時(shí),柱體中部與底部流動(dòng)仍處于亞臨界區(qū).隨Re進(jìn)一步增大至5.47×105以上,如圖5(f)所示,z*=2.5和1高度處Cp也進(jìn)入了超臨界區(qū).相對(duì)于亞臨界區(qū),此時(shí)懸臂圓柱不同高度處的Cpb變得非常接近且近似等于二維圓柱的對(duì)應(yīng)值.
圖6給出了C′p隨Re的變化情況,總的來看,不同高度處C′p分布所表現(xiàn)出的雷諾數(shù)效應(yīng)也不盡相同.懸臂圓柱自由端附近的C′p首先進(jìn)入臨界區(qū),而柱體中部與底部進(jìn)入臨界區(qū)相對(duì)較晚.這一現(xiàn)象與圖5所示Cp雷諾數(shù)效應(yīng)的規(guī)律是類似的.此外,亞臨界區(qū)內(nèi)懸臂圓柱的C′p遠(yuǎn)小于二維圓柱的對(duì)應(yīng)值,約相當(dāng)于后者的1/4;而超臨界區(qū)內(nèi),兩者C′p基本相當(dāng).這可能是因?yàn)?,亞臨界區(qū)內(nèi)C′p主要受周期性的漩渦脫落影響,而懸臂圓柱的卡門渦街遠(yuǎn)弱于二維圓柱;但在超臨界區(qū),不存在周期性漩渦脫落,C′p主要受到圓柱表面湍流邊界層的影響.
2.3雷諾數(shù)區(qū)間的劃分
由2.1與2.2節(jié)可知,懸臂圓柱氣動(dòng)力會(huì)表現(xiàn)出強(qiáng)烈的雷諾數(shù)效應(yīng),且不同高度所對(duì)應(yīng)的臨界雷諾數(shù)并不相同.為準(zhǔn)確確定各高度所對(duì)應(yīng)的雷諾數(shù)區(qū)間,可用風(fēng)壓極小值與背壓之差Cpm-Cpb作為評(píng)價(jià)指標(biāo)[15,21],如圖7所示.對(duì)于二維圓柱,當(dāng)Re ≤ 2.0×105時(shí),Cpm-Cpb非常小且基本不隨Re變化,該范圍即為亞臨界區(qū);2.0×105 < Re ≤ 4.0×105,Cpm-Cpb隨Re增加而迅速增大,該范圍為臨界區(qū);而Re > 4.0×105后,Cpm-Cpb又基本不隨Re變化,此時(shí)已進(jìn)入超臨界區(qū).其中2.0×105可視為亞臨界區(qū)向臨界區(qū)轉(zhuǎn)變所對(duì)應(yīng)的臨界雷諾數(shù).
懸臂圓柱不同高度Cpm-Cpb隨Re的變化規(guī)律與二維圓柱存在顯著差別.z* = 4.5處,臨界雷諾數(shù)為2.0×105,這與二維圓柱類似.隨Re的進(jìn)一步增大,Cpm-Cpb逐漸增大,直至Re ≈ 5.5×105,Cpm-Cpb才達(dá)到最大值,即z* = 4.5處臨界雷諾數(shù)范圍約為2.0×105 < Re < 5.5×105.對(duì)于z* = 4處,Cpm-Cpb迅速增大處所對(duì)應(yīng)的臨界雷諾數(shù)約為2.7×105.對(duì)于z*=2.5 和1處,Cpm-Cpb迅速增大所對(duì)應(yīng)的臨界雷諾數(shù)更大,約為3.0×105左右.由此可知,懸臂圓柱的臨界雷諾數(shù)在不同高度上并不相同,z* = 4.5臨界雷諾數(shù)Re = 2.0×105;z* = 4處為2.7×105,而z* = 2.5和1處約為3.0×105.此外,懸臂圓柱不同高度處由臨界區(qū)變化為超臨界區(qū)所對(duì)應(yīng)的雷諾數(shù)基本相等,都為Re = 5.5×105左右,遠(yuǎn)大于二維圓柱的對(duì)應(yīng)值.
3結(jié)論
通過風(fēng)洞試驗(yàn)對(duì)均勻流中H/d = 5的懸臂圓柱氣動(dòng)力進(jìn)行了測量,試驗(yàn)雷諾數(shù)為0.68×105~6.12×105,涵蓋了亞臨界、臨界與超臨界區(qū)間.通過本文研究可得到如下結(jié)論:
1)懸臂圓柱氣動(dòng)力與二維圓柱類似,也具有明顯的雷諾數(shù)效應(yīng),存在亞臨界、臨界、超臨界區(qū).亞臨界區(qū)內(nèi),懸臂圓柱局部阻力系數(shù)沿展向存在明顯差異,越接近自由端背壓越低、阻力系數(shù)越大,但都明顯小于二維圓柱對(duì)應(yīng)值.
2)臨界區(qū)內(nèi),懸臂圓柱平均風(fēng)壓分布不對(duì)稱,時(shí)均升力不為零,且越接近自由端時(shí)均升力值越大.懸臂圓柱阻力系數(shù)在臨界區(qū)內(nèi)的下降幅度遠(yuǎn)小于二維圓柱的對(duì)應(yīng)值;在超臨界區(qū)內(nèi),風(fēng)壓恢復(fù)對(duì)稱分布,時(shí)均升力降為零,懸臂圓柱各高度局部阻力系數(shù)均大于二維圓柱對(duì)應(yīng)值.
3)均勻流中的懸臂圓柱,其總體阻力系數(shù)由亞臨界區(qū)至臨界區(qū)轉(zhuǎn)變所對(duì)應(yīng)的臨界雷諾數(shù)大于二維圓柱對(duì)應(yīng)值.懸臂圓柱不同展向高度上臨界雷諾數(shù)不相同,越接近自由端,臨界雷諾數(shù)越小.均勻流中的懸臂圓柱體可能會(huì)出現(xiàn)自由端附近已進(jìn)入臨界區(qū)甚至超臨界區(qū),而柱體下半部仍處于亞臨界區(qū)的狀態(tài).
參考文獻(xiàn)
[1]顧明, 王新榮.工程結(jié)構(gòu)雷諾數(shù)效應(yīng)的研究進(jìn)展[J]. 同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版, 2013, 41(7):961-968.
GU Ming, WANG Xinrong. Research progress of Reynolds number effect of engineering structures[J]. Journal of Tongji University:Natural Science,2013,41(7):961-968.(In Chinese)
[2]SCHEWE G. Reynoldsnumber effects in flow around moreorless bluff ?bodies[J].Journal of Wind Engineering and Industrial Aerodynamics,2001, 89(14/15):1267-1289.
[3]HOXEY R P, REYNOLDS A M, RICHARDSON G M,et al. Observations of Reynolds number sensitivity in the separated flow region on a bluff body[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 73(3) :231-249.
[4]HIGUCHI H, KIM H J,F(xiàn)ARELL C. On flow separation and reattachment around a circular cylinder at critical Reynolds numbers [J]. Journal of Fluid Mechanics, 1989, 200: 149-171.
[5]WILLIAMSON C H K. The existence of two stages in the transition to threedimensionality of a cylinder wake[J]. Physics of Fluids, 1988, 31(11): 3165-3168.
[6]BEARMAN P W. On vortex shedding from a circular cylinder in the critical Reynolds number regime[J]. Journal of Fluid Mechanics, 1969, 37: 577-585.
[7]杜曉慶,顧明. 臨界雷諾數(shù)下斜拉橋拉索的平均風(fēng)壓和風(fēng)力特性[J]. 空氣動(dòng)力學(xué)學(xué)報(bào),2010,28(6): 639-644.
DU Xiaoqing , GU Ming. Wind pressure distribution and aerodynamic characteristic of stay cable in the critical Reynolds number regime[J]. Acta Aerodynamica Sinica,2010,28(6):639-644.(In Chinese)
[8]劉慶寬,鄭云飛,馬文勇,等. 雷諾數(shù)效應(yīng)對(duì)斜拉索氣動(dòng)特性的影響[J]. 工程力學(xué),2013,30(6): 284-289.
LIU Qingkuan, ZHENG Yunfei, MA Wenyong,et al. ?Reynolds number effect on aerodynamic characteristics of staycables[J]. Engineering Mechanics,2013,30(6):284-289.(In Chinese)
[9]王磊,梁樞果,鄒良浩,等. 超高層建筑抗風(fēng)體型選取研究[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2013,40(11):34-39.
WANG Lei, LIANG Shuguo, ZOU Lianghao, et al. Study on the body shape selection of super highrise building from the point of wind resistance[J]. Journal of Hunan University: Natural Sciences, 2013, 40(11): 34-39. (In Chinese)
[10]李正農(nóng),郝艷峰,劉申會(huì). 不同風(fēng)場下高層建筑風(fēng)效應(yīng)的風(fēng)洞實(shí)驗(yàn)研究[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2013,40(7):9-15.
LI Zhengnong, HAO Yanfeng, LIU Shenhui. Wind tunnel of tall building wind effect in different geomorphologic terrain categories[J]. Journal of Hunan University:Natural Sciences, 2013, 40(7): 9-15. (In Chinese)
[11]FOX T A,WEST G S. Fluidinduced loading of cantilevered circular cylinder in a lowturbulence uniform flow. part 2: fluctuating loads on a cantilever of aspect ratio of 30[J]. Journal of Fluids and Structures, 1993, 7(1): 15-28.
[12]BABAN F, RMC S. Aspect ratio effect on flowinduced forces on circular cylinders in a crossflow[J]. Experiments in Fluids, 1991, 10: 313-321.
[13]OKAMOTO T,SUNABASHIRI Y. Vortex shedding from a circular cylinder of finite length placed on a ground plane[J]. Journal of Fluids Engineering, 1992, 114: 512-521.
[14]OKAMOTO T,YAGITA M. The experimental investigation on the flow past a circular cylinder of finite length placed normal to the plane surface in a uniform flow[J]. Bulletin of JSME, 1973, 16: 805-814.
[15]UEMATSU Y,YAMADA M. Effects of aspect ratio and surface roughness on the timeaveraged aerodynamic forces on cantilevered circular cylinders at high Reynolds numbers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54: 301-312.
[16]WANG H F, ZHOU Y, MI J. Effects of aspect ratio on the drag of a wallmounted finitelength cylinder in subcritical and critical regimes[J].Experiments in Fluids,2012,53(2):423-436.
[17]BASU R I. Aerodynamic forces on structures of circular crosssection, part 1. modelscale data obtained under twodimensional conditions in lowturbulence streams[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1985, 21: 273-295.
[18]BASU R I. Aerodynamic forces on structures of circular crosssection, part 2. the influence of turbulence and threedimensional effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 24: 33-59.
[19]FARELL C, BLESSMANN J. On critical flow around smooth circular cylinders[J]. Journal of Fluid Mechanics, 1983, 136: 375-391.
[20]GU Z F, SUN T F. On interference between two circular cylinder in staggered arrangement at high subcritical Reynolds number[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80: 287-309.
[21]GUVEN O, FARELL C, PATEL V C. Surfaceroughness effects on the mean flow past circular cylinders[J]. Journal of Fluid Mechanics, 1980, 98(4): 673-701.