聶立軍,于宏斌,張建澤,王 聰,李 棟,李 陽
吉林省區(qū)域地質(zhì)礦產(chǎn)調(diào)查所,長春 130022
?
吉林省下三疊統(tǒng)盧家屯組LA-ICP-MS鋯石U-Pb定年及其地質(zhì)意義
聶立軍,于宏斌,張建澤,王 聰,李 棟,李 陽
吉林省區(qū)域地質(zhì)礦產(chǎn)調(diào)查所,長春 130022
盧家屯組按巖性組合自下而上分為影背山礫巖段、漏斗山雜色巖段、楊樹河子黑色巖段,前人采集到的Palaeanodonta-Palaeomutela動物群、Pleuroneia?sp.和葉肢介等生物化石組合指示時代為二疊紀。本次對九臺市影背山--雙頂山盧家屯組建組剖面下、中、上段進行了系統(tǒng)的碎屑鋯石U-Pb同位素年代學研究,證實盧家屯組由下至上存在3個最小鋯石年齡峰值,分別為(283.4±7.9)、(262.4±3.9)、(255.5±5.8) Ma,確定了盧家屯組的上限為晚二疊世。根據(jù)盧家屯組中碎屑鋯石存在1 800 Ma和2 500 Ma左右的典型華北板塊基底年齡,認為華北板塊北緣與其北側(cè)地塊群最終閉合時間應(yīng)為P3-T1。
盧家屯組;下三疊統(tǒng);碎屑鋯石;LA-ICP-MS鋯石U-Pb定年;吉林省
盧家屯組作為吉林省目前唯一確認的下三疊統(tǒng)地層[1],其構(gòu)造環(huán)境及構(gòu)造意義在區(qū)域地質(zhì)構(gòu)造研究中占有重要的位置。而二疊紀--三疊紀這一時間段對于吉林省乃至整個東北亞地質(zhì)構(gòu)造演化意義重大。很多學者將其和華北板塊北緣與其北側(cè)地塊的碰撞拼貼的演化過程及最終的閉合時間聯(lián)系在一起,并有如下幾種觀點:吉黑復合造山帶古亞洲洋構(gòu)造體制結(jié)束的綜合標志時間為250~230 Ma[2];古亞洲構(gòu)造域一部分的古亞洲洋結(jié)束于中三疊世[3];華北北部晚古生代末--中生代初正處在2個構(gòu)造域疊加的重要時期[4];興蒙造山帶東段的西拉木倫河--長春--延吉板塊縫合帶應(yīng)于二疊紀末期最終閉合[5]。
最新的年代學研究[6]表明,現(xiàn)劃分的華北板塊北緣以北地區(qū)出露的蛇綠巖的形成時代多集中在中二疊世:如溫都爾廟蛇綠巖年齡為(260±12) Ma,半拉山蛇綠巖年齡為256 Ma。此外,西拉木倫河北部杏樹洼蛇綠巖帶硅質(zhì)巖中放射蟲的時代為二疊紀[7];古亞洲洋在華北板塊以北地區(qū)的最晚閉合位置為索倫--延吉縫合帶,自西向東閉合時間為260~250 Ma[8];西拉木倫河沿岸雙井地區(qū)同碰撞花崗巖體侵位時間主要集中在晚二疊世--早三疊世[9];西拉木倫河縫合帶東段吉中地區(qū)同碰撞花崗巖、碰撞相關(guān)的變質(zhì)事件的年齡也主要集中在二疊紀末--早三疊世[10-11]??梢姡B紀--三疊紀是華北板塊北緣與其北側(cè)地塊碰撞拼貼演化的關(guān)鍵時期。但對于二者之間的具體演化過程和模式,不同學者對它們的認識有所不同。針對這一問題,筆者從碎屑鋯石年代學的角度,對盧家屯組碎屑巖進行碎屑鋯石年代學研究,以進一步對古亞洲洋的最終閉合時間和華北板塊與蒙古陸塊的最終碰撞時間等問題進行探討。
研究區(qū)位于興蒙顯生宙造山帶東段,大黑山條壘東北端。西側(cè)為松遼地塊,由四平--德惠斷裂與條壘相隔;東側(cè)有伊通--依蘭伸展-走滑復合盆地,其內(nèi)沉降了巨厚層的新生代陸相碎屑巖,并且基性火山活動強烈,該盆地與條壘由伊通--依蘭斷裂帶的西支斷裂相隔。
研究區(qū)內(nèi)最老地層為上二疊統(tǒng)楊家溝組,分布于南側(cè)雞冠山一帶,主要巖性組合為含礫砂巖、黑灰色粉砂巖、細砂巖、板巖等,其內(nèi)產(chǎn)海相瓣鰓、苔蘚蟲和陸相瓣鰓及植物化石,具有海陸交互相特征,被上三疊統(tǒng)西土山組角度不整合覆蓋和早侏羅世花崗巖侵入;其次為下三疊統(tǒng)盧家屯組(圖1),分布面積較大,被上三疊統(tǒng)西土山組或下白堊統(tǒng)營城組角度不整合覆蓋,是本次研究的地質(zhì)體。上三疊統(tǒng)西土山組分布于大孤家子南,主要為一套中--酸性火山巖夾少量碎屑巖,底部為礫巖,被下白堊統(tǒng)營城組角度不整合覆蓋及早侏羅世花崗巖侵入。西土山組上部為下白堊統(tǒng)營城組火山巖和古近系碎屑巖及第四系沉積物。
侵入巖主要為一套中生代侵入巖,主要有早侏羅世石英閃長巖、花崗閃長巖、二長花崗巖和早白堊世堿長花崗巖。
圖1 九臺市沐石河--盧家地質(zhì)圖Fig. 1 Geological map of the Mushihe-Lujia in Jiutai
盧家屯組分布于吉林省九臺市盧家屯、李家屯、永安屯、大孤家子影背山等地,呈北東東方向展布,被早侏羅世二長花崗巖侵入,構(gòu)造單元屬大黑山地壘。1959年九臺縣工業(yè)局九臺地質(zhì)隊曾將該套地層定為波泥河組。吉林地質(zhì)局、長春地質(zhì)學院合辦隊1975年將該地層下部雜色砂巖、礫巖歸入一拉溪組,上部含化石的黑色粉砂巖、泥巖歸入楊家溝組,時代為晚二疊世。1980年吉林省地質(zhì)礦產(chǎn)局區(qū)域地質(zhì)調(diào)查所開展1∶20萬舒蘭縣幅區(qū)域地質(zhì)調(diào)查期間,在九臺市影背山、楊家溝、雙頂山發(fā)現(xiàn)了大量的動、植物化石,其中瓣鰓類有Palaeanodontatungussica(Ragozin)、P.opinata(Ragozin)、P.obrutschevi(Ragozin),葉肢介有CorniasubquadrataZaspelove、C.lutkevichiZasp、C.elataZasp,植物有Neocalamitessp.、Cladophlebissp.、Taeniopterissp.等,首次提出在華北板塊北緣有早三疊世地層存在, 并建立了盧家屯組。盧家屯組可劃分下、中、上三段:下段(影背山礫巖段)以粗碎屑巖為主,構(gòu)成礫巖-含礫砂巖-砂巖基本層序,礫石成分復雜,沉積物以雜色為主,厚度上千米,從沉積物顆粒分析,反映為從山麓相向河流相發(fā)展階段堆積的產(chǎn)物,明顯具磨拉石建造特征;中段(漏斗山雜色巖段)以雜色石英長石粉砂巖、泥巖互層,底部為紫色砂、礫巖;上段(楊樹河子黑色巖段)以細碎屑為主,由礫巖、砂巖、泥巖(夾泥質(zhì)巖及石膏)構(gòu)成兩個韻律層,并產(chǎn)動、植物化石,沉積物以黑色為主夾紫色,厚度逾千米,反映湖相階段形成。
盧家屯組還產(chǎn)有豐富的雙殼類化石:Palaeanodontatungussca(Ragozin)、P.opinata(Ragozin)、P.obrutchevi(Ragozin)等見于俄羅斯西伯利亞庫茲巴斯的庫茲涅茨克盆地三疊系下統(tǒng)馬里采夫組和通古斯盆地三疊系下統(tǒng)卡爾文昌組,與Ferganoconcha伴生;Ferganoconcha見于俄羅斯遠東地區(qū)、中國東北的中生代地層中,至今沒有在二疊紀地層中發(fā)現(xiàn);葉肢介CorniasubquadrataZaspelove、C.lutkevichiZasp、C.elataZasp 等是前蘇聯(lián)烏拉爾西北部伯朝拉盆地中早三疊世地層中的重要分子。而從介形蟲Langdaia?sp.、Sphenotasp.、Sphenobaielasp. 等的組合面貌看,其時代區(qū)限是在早三疊世至早中侏羅世之間的組合特點,其中Langdaia?sp.見于貴州朗岱三疊系下統(tǒng)飛仙關(guān)組。植物Palacalamitessp.、Neocalamitessp.、Cladophlebissp.、Taeniopterissp.、Thinnfeldiasp.、Podozamitessp.等化石保存欠佳,無法鑒定到種,其組合除Palacalamites sp.外,常見于三疊紀--侏羅紀。而Paracalamitessp. 是晚期安加拉植物群的代表性分子,時代一般為晚二疊世,除盧家屯組外沒有在吉林省其他中生代地層中發(fā)現(xiàn)過。
縱觀盧家屯組生物化石特征,既有二疊紀標準生物分子(Paracalamitessp.),又有早三疊世--侏羅紀存在的生物化石,時代意義確定還有待商榷。筆者也嘗試從碎屑鋯石測年統(tǒng)計學研究對其形成時代進行探討,力求從另一種思路對生物化石依據(jù)不充分或啞地層進行年代學研究。
圖2 九臺市影背山--雙頂山下三疊統(tǒng)盧家屯組剖面圖(Pm003)Fig.2 Profile of the lower Triassic Lujiatun Formation at Yingbeishan-Shuangdingshan in Jiutai City,Jilin Province(Pm003)
在對盧家屯組建組剖面修測(圖2)時,于影背山礫巖段2層(東經(jīng)126°14′13″,北緯44°13′17″)、漏斗山雜色巖段17層(東經(jīng)126°14′13″,北緯44°14′44″)及楊樹河子黑色巖段24層(東經(jīng)126°13′53″,北緯44°17′04″)分別采集3件樣品:Pm003-2,野外巖石定名為紫灰色厚層復成分礫巖,其單層厚度為50~60 cm,礫石成分復雜,有花崗巖、石英脈、中細粒砂巖及紫色粉砂巖,礫石分選差,最大者8.0 cm,小者0.5 cm,礫石磨圓差,多為棱角狀和次棱角狀,硅質(zhì)膠結(jié);Pm003-17,野外定名為灰色中薄層細粒長石石英砂巖,單層厚度10~20 cm,細砂巖中的微層理比較發(fā)育,鏡下為鈣質(zhì)細砂巖;Pm003-24,野外定名為灰色中薄層泥質(zhì)細砂巖,單層厚度>20 cm,其內(nèi)含泥質(zhì)成分較多。露頭處發(fā)育碳酸鹽細脈,寬0.5~1.0 mm,同時見有原生黃鐵礦立方體,單晶1.0 mm±,部分氧化形成褐鐵礦,鏡下定名為褐鐵礦化泥質(zhì)細砂巖。
盧家屯組層型剖面地層層序特征及樣品采集位置如下:
—————————— 未 見 頂 ——————————
楊樹河子黑色巖段
24.灰色褐鐵礦化泥質(zhì)細砂巖,采集碎屑鋯石
163.5 m
23.黑灰色凝灰質(zhì)粉砂巖,單層厚度為10~20 cm,產(chǎn)動物化石
57.3 m
22.黃灰色粉砂巖夾粉砂質(zhì)泥巖
64.1 m
21.灰白色粉砂質(zhì)泥巖
94.8 m
漏斗山雜色巖段
20.紫色泥巖
143.5 m
19.青灰色含粉砂質(zhì)泥巖
57.9 m
18.黑灰色粉砂巖,局部菱鐵礦化
30.5 m
17.灰色鈣質(zhì)細砂巖,見褐鐵礦化,采集碎屑鋯 石
127.9 m
16.褐鐵礦化石英長石粉砂巖
127.9 m
15.褐鐵礦化石英長石細砂巖
127.9 m
14.灰黑色鈣質(zhì)粉砂巖
39.5 m
13.黃灰色褐鐵礦化石英長石粉砂巖
74.4 m
12.紫色泥巖
91.5 m
11.青灰色含粉砂質(zhì)泥巖,含有褐鐵礦斑點
59.8 m
10.黃灰色雜砂質(zhì)石英長石粉砂巖
59.8 m
9.青灰色粉砂巖
59.8 m
8.紫色細粒雜砂巖
278.9 m
7.紫色礫巖
235.5 m
影背山礫巖段
6.紫色凝灰質(zhì)粉砂巖
124.7 m
5.灰綠色輕微變質(zhì)粉砂巖
720.7 m
4.青灰色鈣質(zhì)細粒雜砂巖
233.7 m
3.灰黑色泥質(zhì)粉砂巖
157.2 m
2.紫灰色厚層復成分礫巖,采集碎屑鋯石
169.4 m
1.青灰色中粒雜砂巖
1 073.0 m
————-- 早侏羅世二長花崗巖侵入 ————--
4.1 樣品制作及分析方法
將上述3件人工重砂樣品,委托吉林省區(qū)域地質(zhì)礦產(chǎn)調(diào)查所巖礦室加工分選。按常規(guī)方法分別進行破碎至80~100目,后經(jīng)重力分選,利用礦物介電分選儀進行磁選,重液先選,于雙目鏡下挑選出晶形相對較好、無明顯裂痕和包體的單顆粒鋯石晶體,將其粘貼在雙面膠上,灌入環(huán)氧樹脂冷卻凝固后,打磨拋光露出鋯石表面,對其進行透射光、反射光和陰極發(fā)光(CL)圖像的采集。鋯石的制靶和顯微圖像的采集均在中國地質(zhì)科學研究院國家重點開放實驗室完成。
鋯石LA-ICP-MS U-Pb同位素分析在國家地質(zhì)實驗測試中心完成。U-Pb同位素測定使用Agilent 7500Ce( New Wave UP213)和德國Lambdaphysik公司的Compex102 ArF準分子激光器以及Microlas 公司的Geolas 200M光學系統(tǒng)聯(lián)機進行。鋯石測定過程中激光束斑直徑為30 μm,激光剝蝕樣品的深度為20~40 μm。實驗中采用He作為剝蝕物質(zhì)載氣;用人工合成硅酸鹽玻璃標準參考物質(zhì)NISTSRM610進行儀器最佳化。鋯石年齡采用國際標準鋯石91500作為外標標準物質(zhì);含量采用NISTSRM610作為外標,同時使用鋯石中含量穩(wěn)定的29Si作為內(nèi)標。所測單點的同位素比值及元素含量采用Glitter (Var4.0 Macquarie University)程序進行計算。對所有數(shù)據(jù)進行普通鉛校正,諧和圖的繪制采用Isololt 3.0完成[12-13]。單個分析點的同位素比值和同位素年齡的誤差(標準偏差)為1σ,206Pb/238U加權(quán)平均年齡按95%的置信度給出。詳細的實驗分析步驟和數(shù)據(jù)處理方法均按文獻[14]所提出的精度和要求進行。
4.2 同位素測試結(jié)果
Pm003-2(影背山礫巖段),測定了120個單顆粒鋯石,每個鋯石1個點。從圖3中可見,所有鋯石均顯示清晰的振蕩生長環(huán)帶,個別具核幔結(jié)構(gòu);由表1可知,Th/U為0.05~1.71,平均值為0.65,故所測鋯石均具巖漿成因特點[15]。其表面年齡按分布頻率明顯可劃分為7組(圖4):第一組,n=20,(1 738.7±16.3)~(2 579.6±19.9) Ma;第二組,n=5,(1 496.8±13.2)~(1 602.1±14.9) Ma;第三組,n=2,(1 177.8±11.1)~(1 214.7±11.0)Ma;第四組,n=7,(837.2±10.9)~(955.8±7.9)Ma;第五組,n=22,(411.9±3.7)~(542.1±5.2)Ma;第六組,n=53,(251.5±2.4)~(398.8±4.3)Ma;第七組,n=11, (179.6±1.6)~(243.8±2.3)Ma。從圖5a中可明顯地看到第五組年齡數(shù)據(jù)點密集地分布在諧和線上,剔除遠離諧和線的樣品,獲得206Pb/238U加權(quán)平均年齡為(283.4±7.9)Ma(n=41,MSWD=71)(圖5b),代表了樣品沉積時限晚于早二疊世。特別指出,第一組加權(quán)年齡值((2 448.0±23.0)Ma,n=3,MSWD = 0.48)(圖5c)可能為捕獲松嫩地塊的殘留(老)鋯石年齡,也可能為來自華北板塊的基底鋯石年齡。
圖3 Pm003-2典型鋯石陰極發(fā)光圖像Fig.3 A typical Cathodoluminescence image of Zircon of Pm003-2
圖4 Pm003-2碎屑鋯石U-Pb年齡分布頻率圖Fig. 4 Distribution frequence of the detrital zircon U-Pb ages of Pm003-2
樣品測點Th/U同位素比值207Pb/206Pb±1σ206Pb/238U±1σ207Pb/235U±1σt/Ma206Pb/238U±1σPm003-2-10.090.054010.001760.078580.001200.563050.024634887Pm003-2-20.080.053100.000990.040560.000490.292210.006332563Pm003-2-30.620.070420.000720.153960.001541.513910.017659239Pm003-2-40.370.146160.001410.481110.005419.551740.12257253224Pm003-2-50.400.052920.000620.049410.000490.360250.004493113Pm003-2-60.180.164460.002750.057820.000681.296320.032723624Pm003-2-70.470.157800.001570.463370.0046410.216950.12244245420Pm003-2-80.660.157410.001550.464450.0048210.189610.12579245921Pm003-2-90.090.104990.001540.143220.001721.996570.0484286310Pm003-2-100.050.065890.001010.087290.000900.769630.015685405Pm003-2-110.660.053230.000600.043770.000440.316540.003832763Pm003-2-120.310.052610.000770.039970.000400.290710.004712532Pm003-2-130.950.055030.000770.069860.000660.518210.008464354Pm003-2-141.040.052740.000660.046570.000430.338060.004462933Pm003-2-150.930.052620.000720.044540.000450.326140.004992813Pm003-2-161.000.051010.000630.044550.000450.317770.004272813Pm003-2-170.890.108280.001190.318960.003064.804850.08267178515Pm003-2-180.760.056190.000980.050430.000520.378800.007843173Pm003-2-190.660.053880.000980.045910.000480.345170.007342893Pm003-2-200.890.052750.000820.044950.000500.328020.005922843Pm003-2-210.830.150790.001640.404640.004008.535650.16287219018Pm003-2-220.930.162270.001630.436120.004769.726080.14113233321Pm003-2-230.810.111190.001150.282140.002974.213390.05826160215Pm003-2-240.760.152480.001540.403050.004228.322920.11632218319Pm003-2-250.720.061720.000970.048380.000460.412140.007503053Pm003-2-260.830.059450.000730.074900.000660.600580.008014664Pm003-2-270.780.058990.000930.045940.000460.381250.006912903Pm003-2-281.000.114870.001190.332110.003315.373130.07319184916Pm003-2-290.880.117970.001210.350980.003375.777770.07270193916Pm003-2-301.030.053990.001000.049690.000600.364890.008103134Pm003-2-310.590.066490.001250.044830.000460.421540.009572833Pm003-2-320.630.055020.000860.044890.000420.346910.006092833Pm003-2-330.170.120530.001300.159830.001422.689820.035679568Pm003-2-340.870.056380.000780.036570.000340.291480.004282322Pm003-2-350.480.052300.000640.028240.000250.207420.002481802Pm003-2-360.610.055850.000990.039780.000390.300870.006052522Pm003-2-370.410.051310.000650.030660.000270.214970.002711952Pm003-2-380.950.080650.001260.152000.001501.737150.045919128Pm003-2-390.390.057020.000810.068390.000630.548120.009214274Pm003-2-400.530.057350.001090.058990.000600.475580.011293704
表1(續(xù))
表1(續(xù))
圖5 Pm003-2碎屑鋯石U-Pb年齡諧和圖Fig. 5 Concordan diagrams of the detrital zircon U-Pb ages of Pm003-2
Pm003-17(漏斗山雜色巖段),測定了80個單顆粒鋯石,每個鋯石1個點。從圖6中可見,所有鋯石均顯示清晰的振蕩生長環(huán)帶;從表2可知,Th/U值為0.34~10.89,平均值為2.00,故所測鋯石均具巖漿成因特點。其表面年齡明顯可劃分為10組(圖7):第一組,n=3,(2 093.6±19.1)~(2 562.4±20.8)Ma;第二組,n=2,(1 452.4±14.1)~(1 508.9±14.0)Ma;第三組,n=3,(1 144.7±12.6)~(1 261.8±13.0)Ma;第四組,n=3,(940.6±9.2)~(978.5±9.9)Ma;第五組,n=3,(659.9±7.7)~(752.8±7.9)Ma;第六組,n=8,(464.3±5.2)~(558.5±6.3)Ma;第七組,n=6,(367.8±4.5)~(423.5±4.7)Ma;第八組,n=8,(311.0±3.5)~(355.7±5.1)Ma;第九組,n=37,(201.5±3.0)~(298.2±3.7)Ma;第十組,n=7,(163.±1.7)~(199.6±2.3)Ma。從圖8a中可明顯地看到第九組年齡數(shù)據(jù)點密集地分布在諧和線上,剔除遠離諧和線的樣品,獲得206Pb/238U加權(quán)平均年齡為(262.4±3.9)Ma(n=23,MSWD=9)(圖8b),代表了樣品沉積時限晚于晚二疊世。第十組加權(quán)年齡值((197.3±2.5)Ma,n=7,MSWD = 1.4)(圖8c)可能混有早侏羅世結(jié)晶鋯石。
Pm003-24(楊樹河子黑色巖段),測定了120個單顆粒鋯石,每個鋯石1個點。從圖9中可見,所有鋯石均顯示清晰的振蕩生長環(huán)帶;由表3可知,Th/U值為0.09~3.13,平均值為0.84,故所測鋯石均具巖漿成因特點。其表面年齡明顯可劃分為7組(圖10、圖11):第一組,n=5,(2 267.4±21.6)~(2 506.4±20.9)Ma;第二組,n=3,(1 819.4±16.4)~(1 984.0±19.8)Ma;第三組,n=2,(1 503.8±15.3)~(1 542.3±16.4)Ma;第四組,n=3,(845.8±8.8)~(1 079.4±13.7)Ma;第五組,n=25,(403.1±5.3)~(507.6±7.2)Ma;第六組,n=47,(200.0±2.2)~(356.3±3.8)Ma;第七組,n=35,(131.6±1.3)~(198.5±2.4)Ma。由圖11可見:第五組剔除遠離諧和線的樣品,表面加權(quán)平均年齡為(439.3±7.9)Ma(n=23,MSWD=13);第六組表面加權(quán)平均年齡為(255.5±5.8)Ma(n=23,MSWD=14);第七組表面加權(quán)平均年齡為(158.7±8.3)Ma(n=34,MSWD=138)。采樣點附近花崗斑巖脈發(fā)育,樣品中可能混有微細脈巖中的鋯石。第五組表面加權(quán)年齡((439.3±7.9)Ma)可能代表晚奧陶世--早志留世時期殘留鋯石年齡;第六組表面加權(quán)平均年齡((255.5±5.8)Ma)可能代表盧家屯組沉積時限晚于晚二疊世;第七組表面加權(quán)平均年齡((158.7±8.3)Ma)可能混有周圍晚侏羅世--早白堊世花崗斑巖結(jié)晶鋯石年齡。
表2 盧家屯組中段Pm003-17碎屑鋯石LA-ICP-MS U-Pb分析結(jié)果
Table 2 LA-ICP-MS U-Pb Results of the detrital zircon of Pm003-17 from the middle section of Lujiatun Formation
樣品測點Th/U同位素比值207Pb/206Pb±1σ206Pb/238U±1σ207Pb/235U±1σt/Ma206Pb/238U±1σPm003-17-13.770.046790.001250.030780.000370.211460.006391952Pm003-17-20.340.050400.000880.039300.000410.273870.005432493Pm003-17-31.940.049860.000890.030460.000310.212410.004151932Pm003-17-41.150.052520.001490.039750.000520.280060.009312513Pm003-17-51.200.060480.000790.046710.000570.364930.005872944Pm003-17-62.960.059440.000950.089690.000980.721770.015315546Pm003-17-72.190.052260.000940.044150.000460.315720.006552793Pm003-17-81.140.070220.001720.041920.000600.417990.012752654Pm003-17-92.680.056840.001000.083070.000890.666480.015655145Pm003-17-101.740.090610.001010.252710.002743.189400.05115145214Pm003-17-110.900.053700.001160.052950.000650.390520.010273334Pm003-17-121.070.059610.001240.065030.000820.522490.013894065Pm003-17-131.520.050790.001100.040580.000470.287350.007292563Pm003-17-141.210.071140.000810.163910.001781.548460.0227797910Pm003-17-150.820.056050.001410.047350.000600.367950.011252984Pm003-17-167.160.064690.000740.123860.001371.101060.015607538Pm003-17-1710.890.060490.001060.090500.001060.748790.017615596Pm003-17-185.020.072500.000760.159690.001711.594850.0193395510Pm003-17-191.460.054400.000770.043040.000480.324750.005262723Pm003-17-201.980.107100.001330.263730.002753.963760.08657150914Pm003-17-211.760.053610.001320.036630.000430.260400.007382323Pm003-17-221.010.061430.000960.107780.001320.913810.019746608Pm003-17-231.840.052740.001080.043300.000560.314010.007612733Pm003-17-240.850.057570.001170.039300.000480.308570.007272493Pm003-17-251.880.055470.001060.065420.000750.493750.011854095Pm003-17-261.640.060120.002130.040780.000610.325550.013822584Pm003-17-271.810.106960.001610.194320.002343.020820.08515114513Pm003-17-282.300.066110.001140.067290.000760.611530.013464205Pm003-17-291.630.052220.000860.042040.000510.304110.005852663Pm003-17-301.490.051580.000910.031110.000350.217290.004241982Pm003-17-311.130.056890.001100.053190.000630.421120.009953344Pm003-17-321.700.084670.000920.205090.002312.450060.03568120312Pm003-17-331.740.121280.001290.216200.002453.622470.05240126213Pm003-17-341.080.077950.000970.055040.000620.598210.008923454Pm003-17-351.760.051690.001020.032640.000420.238180.005392073Pm003-17-360.730.052430.001240.046070.000650.342080.009812904Pm003-17-371.330.053090.000760.049430.000560.361760.006093113Pm003-17-381.480.052290.001760.056720.000830.415890.017593565Pm003-17-394.270.055650.000790.042030.000470.329640.005362653Pm003-17-401.350.139840.001470.383720.004117.590210.11525209419
表2(續(xù))
表3 盧家屯組上段Pm003-24碎屑鋯石LA-ICP-MS U-Pb分析結(jié)果
Table 3 LA-ICP-MS U-Pb Results of the detrital zircon of Pm003-24 from the upper section of Lujiatun Formation
樣品測點Th/U同位素比值207Pb/206Pb±1σ206Pb/238U±1σ207Pb/235U±1σt/Ma206Pb/238U±1σPm003-24-10.750.047150.001250.024020.000340.159890.004641532Pm003-24-20.550.061430.001220.031580.000420.262090.005962003Pm003-24-30.340.048620.001150.031870.000450.210010.005622023Pm003-24-40.710.050670.000780.025900.000290.179850.003041652Pm003-24-50.620.051890.000860.031510.000350.225680.004142002Pm003-24-60.370.053340.000660.031280.000380.216310.003081992Pm003-24-70.650.049940.000890.028500.000380.180070.003651812Pm003-24-80.250.050970.000590.031650.000330.217690.002682012Pm003-24-91.250.049850.000960.029190.000360.195060.004201862Pm003-24-100.800.062970.001310.022950.000310.191320.004401462Pm003-24-110.880.057250.003660.021300.000490.170690.011921363Pm003-24-120.770.049700.001700.021150.000310.145820.005371352Pm003-24-131.500.064460.001720.021930.000320.193050.005651402Pm003-24-140.440.053650.001420.043730.000630.308100.009612764Pm003-24-150.940.048660.001180.024840.000330.163350.004341582Pm003-24-160.720.051070.001600.042190.000630.277790.010152664Pm003-24-170.300.054100.001020.071980.000930.518030.012544486Pm003-24-181.290.054120.000870.073930.000910.532630.010794605Pm003-24-190.880.054970.000760.074520.000850.560550.009604635Pm003-24-201.030.051620.002080.042730.000690.306110.014642704Pm003-24-210.850.154480.001890.360380.004197.419800.20040198420Pm003-24-220.620.058400.001120.070460.000870.561870.013984395Pm003-24-231.260.086900.003540.027220.000510.331250.015701733Pm003-24-240.640.060280.000820.067190.000770.525210.008624195Pm003-24-251.100.082030.001730.037480.000500.409030.010412373Pm003-24-261.210.049560.000910.021440.000250.142570.002811372Pm003-24-270.240.054260.000680.028940.000340.203620.002921842Pm003-24-280.510.163940.002140.033230.000360.730940.011342112Pm003-24-290.640.077290.002970.042460.000720.478920.023772684Pm003-24-300.460.063350.001760.038730.000550.327510.010822453Pm003-24-310.540.056240.000920.066520.000690.511230.010244154Pm003-24-320.950.058090.000900.036730.000430.286280.005102333Pm003-24-331.140.051030.000830.040110.000470.282610.005332543Pm003-24-340.440.116030.001270.326080.003375.184970.08837181916Pm003-24-350.720.056440.000970.074350.000900.579560.012854625Pm003-24-361.130.154720.001730.421540.004778.967100.20316226722Pm003-24-370.500.059270.001120.069230.000810.571730.013924325Pm003-24-380.750.056360.000970.039600.000440.297840.005842503Pm003-24-390.420.050270.000770.032630.000360.220140.003752072Pm003-24-403.130.595370.015090.331030.0075828.705263.34982184337
表3(續(xù))
圖6 Pm003-17典型鋯石陰極發(fā)光圖像Fig. 6 A typical cathodoluminescence image of zircon of Pm003-17
圖7 Pm003-17碎屑鋯石U-Pb年齡分布頻率圖Fig. 7 Distribution frequence of the detrital zircon U-Pb ages of Pm003-17
圖8 Pm003-17碎屑鋯石U-Pb年齡諧和圖Fig. 8 Concordan diagrams of the detrital zircon U-Pb ages of Pm003-17
圖9 Pm003-24典型碎屑鋯石陰極發(fā)光圖像Fig.9 A typical Cathodoluminescence image of Zircon of Pm003-24
圖10 Pm003-24碎屑鋯石U-Pb年齡分布頻率圖Fig.10 Distribution frequence of the detrital zircon U-Pb ages of Pm003-24
圖11 Pm003-24碎屑鋯石U-Pb年齡諧和圖Fig.11 Concordan diagram of the detrital zircon U-Pb ages of Pm003-24
巖石地層的碎屑巖漿成因鋯石高精度測年,當其有足夠數(shù)量樣品和測點時,特別是年譜結(jié)構(gòu),不僅可以確定巖石地層時代屬性,而且可用以揭示盆地形成的構(gòu)造環(huán)境,乃至作為反演區(qū)域構(gòu)造演化的有效手段之一[16-19]。由此,依據(jù)本文所提供盧家屯組自下而上3件樣品320個測點所作的分析可獲得如下有重要地質(zhì)意義的認識。
盧家屯組建組之時,不同古生物門類的研究者曾對其地層時代有過晚二疊世說提出過不同認識。碎屑巖漿成因鋯石所獲年譜特征,為早三疊世說提供了有力的科學證明。這為對生物地層定年有爭議的巖石地層單位,通過碎屑鋯石的裁定提供了范例,亦為長期將Palaeanodonta-Palaeomutela動物群作為晚二疊世陸相地層有效的生物組合標志之一提供了新的解釋,即其一些重要分子可以繁衍到早三疊世。
盧家屯組碎屑鋯石年譜結(jié)構(gòu)特征,與松嫩地塊[20]、張廣才嶺構(gòu)造帶[21]所總結(jié)出的地質(zhì)演化的年譜結(jié)構(gòu)基本一致。區(qū)內(nèi)盧家屯組系陸相沉積,沉積厚度巨大,達4 316.2 m,這表明自晚二疊世地槽回返以后,地殼的沉降幅度仍然很大。巖性生物特征表明了典型湖相沉積的特點,沉積物質(zhì)來源較雜,有火山碎屑物質(zhì)、鐵質(zhì)、鈣質(zhì)、泥質(zhì)、砂、礫等,雖有沉積韻律,但不十分清晰,有粗細混雜的現(xiàn)象。這暗示了盧家屯組沉積盆地形成的構(gòu)造背景為松嫩地塊東南緣(現(xiàn)代方位)山弧帶上所發(fā)育的磨拉石盆地。
比較3件測試樣品年齡分布頻率圖,反映沉積盆地的演化、物源區(qū)裸露的地質(zhì)體及其出露面積發(fā)生過顯著的變化,表明其周邊山地出現(xiàn)了快速隆升、快速剝蝕,并快速搬運至盆地形成快速堆積的磨拉石相地層。刪除微細脈巖中的鋯石,絕大多數(shù)年齡集中在晚古生代--早中生代:Pm003-2有86點集中在(179.6~243.8) ~(411.9~542.0)Ma;Pm003-17有59點集中在(201.5~298.2)~(464.3~558.5)Ma;Pm003-24有72點集中在(200.0~356.3)~(403.1~507.6)Ma,占測點總數(shù)68%以上。并且所取3件樣品均捕獲有較老碎屑鋯石:Pm003-2有20點集中在(1 738.7~2 579.6)Ma;Pm003-17有3點集中在(2 093.6~2 562.4)Ma;Pm003-24有8點集中在(2 267.4~2 506.4)~(1 819.4~1 984.0) Ma。上述年齡峰值與1 800~2 500 Ma華北基底陸殼形成華北板塊的時間吻合。白山鎮(zhèn)、夾皮溝地區(qū)變質(zhì)二長花崗巖-鉀長花崗巖鋯石U-Pb等時線年齡為(2 505±14)Ma[22]、紫蘇花崗巖Sm-Nd全巖等時線年齡為(2 440±159)Ma[23]、柳河地區(qū)之麻粒巖鋯石U-Pb不一致線年齡為(2 511.89±0.75)Ma[24]。可見華北板塊北緣活動帶與佳木斯--興凱地塊南緣活動帶形成時代從晚古生代一直持續(xù)到早中生代。由此基本可以判斷:古亞洲洋的封閉是通過晚古生代的“幕式”碰撞作用,于早三疊世磨拉石發(fā)育完成后,最終閉合,確定認為華北板塊北緣與其北側(cè)地塊群最終閉合時間應(yīng)為P3-T1。
1)盧家屯組三組碎屑巖漿成因鋯石數(shù)據(jù)有力地證明該組的沉積上限為晚二疊世, 為早三疊世說提供了年代學證據(jù)。
2)當碎屑巖漿成因鋯石有足夠數(shù)量的樣品和測點,特別是年譜結(jié)構(gòu)時,不僅可以確定巖石地層時代屬性,還可作為反演區(qū)域構(gòu)造演化的有效手段之一。
3) 通過對盧家屯組大量碎屑鋯石定年數(shù)據(jù)分析及區(qū)域?qū)Ρ瓤梢哉J定:華北板塊北緣與其北側(cè)地塊群最終閉合時間應(yīng)為P3-T1。
[1] 李東津.吉林省巖石地層[M].北京:中國地質(zhì)大學出版社,1997:21-31. Li Dongjin. Jilin Rock Formations[M].Beijing: China University of Geosciences Press,1997:21-31.
[2] 彭玉鯨,齊成棟,周曉東,等.吉黑復合造山帶古亞洲洋向濱太平洋構(gòu)造域轉(zhuǎn)換:時間標志與全球構(gòu)造的聯(lián)系[J].地質(zhì)與資源,2012,21(3):261-265. Peng Yujing, Qi Chengdong, Zhou Xiaodong, et al. Ransition from Paleo-Asian Ocean Domain to Circum-Pacific Ocean Domain for the Ji-Hei Composite Orogenic Belt: Time Mark and Relationship to Global Tectonics[J].Geology and Resources, 2012,21(3): 261-265.
[3] 王五力,郭勝哲.中國東北古亞洲與古太平洋構(gòu)造域演化與轉(zhuǎn)換[J].地質(zhì)與資源,2012,21(1):27-34. Wang Wuli, Guo Shengzhe. The Evolution and Transformation of Paleo-Asia and Paleo-Pacifictectonic Domain of Northeast China[J].Geology and Resources, 2012, 21(1): 27-34.
[4] 邵濟安,牟保磊,何國琦,等.華北北部在古亞洲域與古太平洋域構(gòu)造疊加過程中的地質(zhì)作用[J].中國科學:D輯,1997,27(5):390-394. Shao Ji’an,Mu Baolei,He Guoqi,et al. Geological Processes of the Process of Structural Overlapping Between Paleo-Asian Domain and Paleo-Pacific Domain in Northern Part of North China[J].Science in China:Series D, 1997,27(5):390-394.
[5] 孫德有,吳福元,張艷斌,等.西拉木倫河--長春--延吉板塊縫合帶的最后閉合時間:來自吉林大玉山花崗巖體的證據(jù)[J].吉林大學學報:地球科學版,2004,34(2):174-181. Sun Deyou,Wu Fuyuan,Zhang Yanbin, et al. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone:Evidence from the Dayushan Granitic Pluton, Jilin Province[J].Journal of Jilin University: Earth Science Edition, 2004, 34(2): 174-181.
[6] Miao L C,Fan W M,Liu D Y,et al. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogemc Belt, China[J]. Journal of Asian Earth Sciences, 2008,32:348-370.
[7] 王玉凈,樊志勇.內(nèi)蒙古西拉木倫河北部蛇綠巖帶中二疊紀放射蟲的發(fā)現(xiàn)及其地質(zhì)意義[J].古生物學報,1997,36(1):58-69. Wang Yujing, Fan Zhiyong. Discovery of Permian Radiolarians in Ophiolite Belt on Northern Side of Xar Moron River, Nei Monggol and Its Geological Significance[J].Acta Palaeontologica Sinica, 1997, 36(1): 58-69.
[8] 陳衍景,翟明國,蔣少涌.華北大陸邊緣造山過程與成礦研究的重要進展和問題[J].巖石學報,2009,25(11):2695-2726. Chen Yanjing, Zhai Mingguo, Jiang Shaoyong. Significant Achievements and Open Issues in Study of Orogenesis and Metallogenesis Surrounding the North China Continent[J].Acta Petrologica Sinica, 2009, 25(11):2695-2726.
[9] 李錦軼,高立明,孫桂華,等.內(nèi)蒙古東部雙井子中三疊世同碰撞殼源花崗巖的確定及其對西伯利亞與中朝古板塊碰撞時限的約束[J].巖石學報,2007,23(3):565-582. Li Jinyi, Gao Liming, Sun Guihua, et al. Shuangjingzi Middle Triassic Sys-Clooisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision Between Siberian and Sino-Korean Paleo-Plates[J].Acta Petrologica Sinica, 2007,23(3):565-582.
[10] 張艷斌,吳福元,李惠民,等.吉林黃泥嶺花崗巖體的單顆粒鋯石U-Pb年齡[J].巖石學報,2002,18(4):475-481. Zhang Yanbin,Wu Fuyuan, Li Huimin, et al. Single Grain Zircon U-Pb Ages of the Huangniling Granite in Jilin Province[J].Acta Petrologica Sinica, 2002, 18(4):475-481.
[11] 郗愛華,任洪茂,張寶福,等.吉林中部呼蘭群同位素年代學及其地質(zhì)意義[J].吉林大學學報:地球科學版,2003,33(1):15-18. Xi Aihua, Ren Hongmao, Zhang Baofu, et al.Isotopic Chronology of the Hulan Group and Its Geological Significance in the Central Jilin Province[J].Journal of Jilin University: Earth Science Edition,2003,33(1):15-18.
[12] Andersen T. Correction of Common Lead in U-Pb Analyses that Do not Report204Pb[J]. Chemical Geology, 2002,192(1/2):59-79.
[13] Ludwing K R. Using Isoplot/Ex, Version 2.49: A Geochronological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronological Center Special Publiction, 2001:1-55.
[14] Yuan H L,Gao S,Liu X M,et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation Inductivey Coupled Plasma Mass Spectrometry[J].Geastandard Newsletter, 2004,28(3):353-370.
[15] Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon[J].Journal of Microscopy,1993,171(3):223-232.
[16] Leiss O. Orogenically Controlled Sedimentation in the Lechtaler Kreideschiefer(Lechtal Shale: Cretaceous) and Geodynamics of Inner Western CA(Northern Calearous Alps: Leehatl Alps)[J]. Geological Rundschau, 1992,81(3):603-634.
[17] 肖慶輝,李曉波,賈躍明,等.當代造山帶研究中值得重視的若干前沿問題[J].地學前緣,1995,2(1/2):43-50. Xiao Qinghui, Li Xiaobo, Jia Yueming, et al. Frontiers on Orogenic Belt Researches[J].Earth Science Frontiers, 1995,2(1/2):43-50.
[18] 閆義,林舸,李自安.利用鋯石形態(tài)、成分組成及年齡分析進行沉積物源區(qū)示蹤的綜合研究[J].大地構(gòu)造與成礦學,2003,27(2):184-190. Yan Yi, Lin Ge, Li Zian. Provenance Tracing of Sediments by Means of Synthetic Study of Shape,Composition and Chronology of Zircon[J].Geotectonica et Metallogenia,2003,27(2):184-190.
[19] 韓國卿,劉永江,溫泉波,等.西拉木倫河縫合帶北側(cè)二疊紀砂巖碎屑鋯石LA-ICP-MS U-Pb年代學及其構(gòu)造意義[J].地球科學:中國地質(zhì)大學學報,2011,36(4):687-702. Han Guoqing, Liu Yongjiang,Wen Quanbo,et al. LA-ICP-MS U-Pb Dating of Detrital Zircons from the Permian Sandstones in North Side of Xar Moron River Suture Belt and Its Tectonic Implications[J].Earth Science:Journal of China University of Geosciences,2011 ,36(4):687-702.
[20] 梁爽,彭玉鯨,姜正龍.松遼盆地基底“多層結(jié)構(gòu)”的探討及其構(gòu)造意義[J].世界地質(zhì),2009,28(4):430-437. Liang Shuang, Peng Yujing, Jiang Zhenglong. Discussion on “Multi-Laminate Structure” of Basement in Songliao Basin and Its Significance[J].Global Geology,2009,28(4):430-437.
[21] 許文良,王楓,孟恩,等.黑龍江省東部古生代--早中生代的構(gòu)造演化:火成巖組合與碎屑鋯石U-Pb年代學證據(jù)[J].吉林大學學報:地球科學版,2012,42(5):1378-1389. Xu Wenliang, Wang Feng, Meng En, et al. Paleozoic-Early Mesozoic Tectonic Evolution in the Eastern Heilongjiang Province, NE China:Evidence from Igneous Rock Association and U-Pb Geochronology of Detrital Zircons[J].Journal of Jilin University: Earth Science Edition,2012,42(5):1378-1389.
[22] 李俊建,沈保豐,李雙保,等.遼北--吉南早前寒武紀大陸殼的地質(zhì)特征和演化[J].中國區(qū)域地質(zhì),1998,17(1):30-38. Li Junjian, Shen Baofeng, Li Shuangbao, et al. Geological Feature and Evolution of the Early Precambrian Continental Crust in Northern Liaoning Province and Southern Jilin Province[J].Regional Geology of China,1998,17(1):30-38.
[23] 吳福元,葛文春,孫德有,等.吉林南部太古代花崗巖Sm-Nd,Rb-Sr同位素年齡測定[J] .巖石學報,1997,13(4):499-506. Wu Fuyuan, Ge Wenchun, Sun Deyou, et al. The Sm-Nd,Rb-Sr Isotopic Ages of the Archean Granites in Southern Jilin Province[J].Acta Petrologica Sinica, 1997,13(4):499-506.
[24] 畢守業(yè),張殿發(fā),楊豹.吉林省南部太古宙花崗質(zhì)巖石及其成因探討[J] .吉林地質(zhì),1991(3):12-24. Bi Shouye, Zhang Dianfa, Yang Bao. A Prelininary Study Archaean Granitic Rocks and Its Origin in the Southern Part of Jilin Province[J].Jilin Geology,1991(3):12-24.
Zircons LA-ICP-MS U-Pb Ages of the Lower Triassic Lujiatun Group and Its Geological Significance in Jilin Province
Nie Lijun, Yu Hongbin, Zhang Jianze, Wang Cong, Li Dong, Li Yang
SurveyofRegionalGeologicalandMineralResourceofJilinProvince,Changchun130022,China
According to the associated lithologic feature, the Lujiatun Formation is divided into Yingbeishan conglomerate section, Loudoushan variegated rock section, and Yangshuhezi black rock section. Based on the fossil assemblages, such asPalaeanodonta-Palaeomutelafauna,Pleuroneia? sp. and the conchostracan, it was formed in Permian. A systematic U-Pb isotopic chronology of the detrital zircon is studied for the Bottom, Middle, and Upper Section of the construction profiles of Lujiatun Formation in Yingbeishan-Shuangdingshan in Jiutai. The results show three minimum zircon age peaks at (283.4±7.9) Ma, (262.4±3.9) Ma, and (255.5±5.8) Ma from the bottom to the top. It can be confirmed that the top section of the formation belonged to the Late Permian. The detrital zircon ages of 1 800 Ma and 2 500 Ma in the Lujiantun Group are typical for the base plate age of North China Plate. In conclusion, the plate closure happened probably during P3-T1between the northern margin of North China Plate and the group of plates to its north.
Lujiatun Formation;Lower Triassic;detrital zircon;zircon LA-ICP-MS U-Pb age; Jilin Province
10.13278/j.cnki.jjuese.201502110.
2014-06-24
中國地質(zhì)調(diào)查局地質(zhì)礦產(chǎn)調(diào)查項目(1212011120726)
聶立軍(1975--),男,高級工程師,主要從事區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究工作,E-mail:545749249@qq.com。
10.13278/j.cnki.jjuese.201502110
P59
A
聶立軍,于宏斌,張建澤,等. 吉林省下三疊統(tǒng)盧家屯組LA-ICP-MS鋯石U-Pb定年及其地質(zhì)意義.吉林大學學報:地球科學版,2015,45(2):453-470.
Nie Lijun, Yu Hongbin, Zhang Jianze, et al. Zircons LA-ICP-MS U-Pb Ages of the Lower Triassic Lujiatun Group and Its Geological Significance in Jilin Province.Journal of Jilin University:Earth Science Edition,2015,45(2):453-470.doi:10.13278/j.cnki.jjuese.201502110.