蔣欣
(中國(guó)鐵道科學(xué)研究院鐵道建筑研究所,北京 100081)
國(guó)外關(guān)于預(yù)應(yīng)力筋錨固長(zhǎng)度的研究綜述
蔣欣
(中國(guó)鐵道科學(xué)研究院鐵道建筑研究所,北京 100081)
準(zhǔn)確確定預(yù)應(yīng)力筋的錨固長(zhǎng)度對(duì)于計(jì)算預(yù)應(yīng)力構(gòu)件的抗彎和抗剪承載力意義重大。對(duì)國(guó)外有關(guān)預(yù)應(yīng)力筋錨固長(zhǎng)度的研究作一文獻(xiàn)綜述,結(jié)合美國(guó)既有規(guī)范ACI318和AASHTO以及其它研究成果匯總了錨固長(zhǎng)度的計(jì)算公式,探討了預(yù)應(yīng)力筋直徑、混凝土強(qiáng)度等對(duì)錨固長(zhǎng)度的影響。
預(yù)應(yīng)力筋 錨固長(zhǎng)度 粘結(jié)
預(yù)應(yīng)力構(gòu)件中,混凝土與預(yù)應(yīng)力筋之間的粘結(jié)指的是二者之間的相互作用與力的傳遞,它直接決定構(gòu)件的力學(xué)性能。對(duì)于先張梁來說,沒有粘結(jié)就無法實(shí)現(xiàn)預(yù)應(yīng)力[1]。預(yù)應(yīng)力筋的錨固與預(yù)應(yīng)力在構(gòu)件內(nèi)的傳遞和發(fā)展都取決于預(yù)應(yīng)力釋放后的混凝土與預(yù)應(yīng)力筋之間的粘結(jié)性能。粘結(jié)共有三種機(jī)制:膠結(jié)力(Adhesion),Hoyer效應(yīng)(Hoyer's effect)和機(jī)械咬合力(Mechanical Interlock)。按粘結(jié)在構(gòu)件內(nèi)的不同分布區(qū)域又可分為傳遞粘結(jié)(Transfer Bond)與彎曲粘結(jié)(Flexural Bond),如圖1所示。預(yù)應(yīng)力一旦釋放,傳遞粘結(jié)就會(huì)出現(xiàn)在梁端范圍內(nèi)。該長(zhǎng)度稱為預(yù)應(yīng)力筋的傳遞長(zhǎng)度lt(Transfer Length),其長(zhǎng)度為混凝土端部至梁內(nèi)一特定點(diǎn)的距離,在這個(gè)特定點(diǎn)處預(yù)應(yīng)力筋應(yīng)力達(dá)到考慮預(yù)應(yīng)力損失后的有效預(yù)應(yīng)力fse,且位于該點(diǎn)后的梁段內(nèi)的預(yù)應(yīng)力值保持不變。當(dāng)構(gòu)件承受外荷載時(shí),彎曲粘結(jié)開始作用,使得梁內(nèi)預(yù)應(yīng)力筋應(yīng)力由有效預(yù)應(yīng)力fse逐漸增至所能發(fā)展的最終應(yīng)力fps。預(yù)應(yīng)力筋的錨固長(zhǎng)度ld(Development Length)指的就是從混凝土梁端到預(yù)應(yīng)力水平達(dá)到fps的點(diǎn)之間的距離。從本質(zhì)上來說,它指的是達(dá)到截面最終承載力時(shí)不產(chǎn)生滑移的預(yù)應(yīng)力筋最小埋置長(zhǎng)度。在傳遞長(zhǎng)度范圍內(nèi),Hoyer效應(yīng)占主要成分,同時(shí)作用有機(jī)械咬合力。而在錨固長(zhǎng)度范圍內(nèi)彎曲粘結(jié)作用區(qū)段,則是機(jī)械咬合作用形成了混凝土與預(yù)應(yīng)力筋之間的粘結(jié)應(yīng)力。
圖1 預(yù)應(yīng)力沿梁長(zhǎng)的變化
計(jì)算抗彎和抗剪承載力時(shí),準(zhǔn)確確定預(yù)應(yīng)力筋的錨固長(zhǎng)度是十分必要的。對(duì)錨固長(zhǎng)度的低估可能導(dǎo)致在錨固長(zhǎng)度區(qū)段內(nèi)的截面上承載力的不足;反之,過高地估計(jì)錨固長(zhǎng)度可能導(dǎo)致過多的配筋與設(shè)計(jì)的不經(jīng)濟(jì)[2]。構(gòu)件內(nèi)若沒有足夠的粘結(jié)應(yīng)力使得預(yù)應(yīng)力水平充分發(fā)展時(shí),預(yù)應(yīng)力筋與混凝土之間的相對(duì)滑移可能導(dǎo)致錨固的失效。本文對(duì)國(guó)外有關(guān)預(yù)應(yīng)力筋錨固長(zhǎng)度的研究作一簡(jiǎn)要綜述,結(jié)合既有規(guī)范和其它研究成果匯總了錨固長(zhǎng)度的計(jì)算公式,對(duì)影響錨固長(zhǎng)度的因素進(jìn)行探討。
另外,本文總結(jié)了其它研究得出的關(guān)于錨固長(zhǎng)度的計(jì)算公式[5-14],如表1所示。由此可見,錨固長(zhǎng)度主要與預(yù)應(yīng)力筋的直徑、混凝土強(qiáng)度、有效預(yù)應(yīng)力和對(duì)應(yīng)于承載力時(shí)預(yù)應(yīng)力筋內(nèi)的平均應(yīng)力值有關(guān)。
圖2 ACI318關(guān)于預(yù)應(yīng)力發(fā)展的雙線性模型(ACI318-08 Fig.R12.9)
圖3 AASHTO關(guān)于預(yù)應(yīng)力發(fā)展的雙線性模型(AASHTO 2010 Fig.C5.11.4.2-1)
國(guó)外對(duì)于錨固長(zhǎng)度的研究由來已久。通過大量的試驗(yàn)研究,分析了影響錨固長(zhǎng)度的因素,從不同粘結(jié)機(jī)制對(duì)預(yù)應(yīng)力筋的錨固進(jìn)行了深入的剖析。以下是各時(shí)期一些國(guó)外研究的典型案例。
Janney(1954)[15]采用大量不同配筋率的小梁和棱柱混凝土試件研究傳遞長(zhǎng)度與錨固長(zhǎng)度。影響錨固的因素考慮預(yù)應(yīng)力鋼絲直徑、鋼絲表面狀況和混凝土強(qiáng)度。對(duì)光滑鋼絲的粘結(jié)性能研究雖不能直接應(yīng)用于現(xiàn)在普遍使用的鋼絞線的錨固分析,但該研究將預(yù)應(yīng)力鋼絲的Hoyer效應(yīng)與鋼絞線的機(jī)械咬合作用區(qū)分開來,為粘結(jié)機(jī)制的定性研究提供了依據(jù)。
Hanson and Kaar(1959)[16]在PCA研究開發(fā)試驗(yàn)室(Portland Cement Association Research and Development Laboratory)一共澆筑了47片梁用以研究彎曲粘結(jié)性能,并借此提出設(shè)計(jì)依據(jù)。試驗(yàn)中采用了不同直徑和埋置長(zhǎng)度的Grade250預(yù)應(yīng)力鋼絞線,考察了配筋率和混凝土強(qiáng)度的影響。他們提出了fps的計(jì)算公式,為AASHTO和ACI所提出的關(guān)于錨固長(zhǎng)度的計(jì)算公式奠定了基礎(chǔ)。
Martin and Scott(1976)[17]為分析一淺高度板在施工荷載作用下的破壞,他們對(duì)一個(gè)類似的板進(jìn)行了測(cè)試,發(fā)現(xiàn)在85% 的理論承載力時(shí)發(fā)生了錨固失效。他們提出在計(jì)算fps時(shí)應(yīng)按預(yù)應(yīng)力筋埋置長(zhǎng)度與鋼絞線直徑的比值區(qū)別對(duì)待。對(duì)于小跨徑的預(yù)應(yīng)力構(gòu)件來說,可能因不具有足夠的埋置長(zhǎng)度而導(dǎo)致承載力的降低。
Zia and Mostafa(1977)[5]對(duì)既有關(guān)于傳遞長(zhǎng)度與錨固長(zhǎng)度的研究作了全面的文獻(xiàn)綜述,并從當(dāng)時(shí)規(guī)范公式的可靠性出發(fā)作了相應(yīng)的研究。考慮了混凝土強(qiáng)度與預(yù)應(yīng)力釋放方式的影響,他們建議將ACI公式中彎曲粘結(jié)長(zhǎng)度增大25% ,以確保在達(dá)到極限承載力時(shí)發(fā)生受彎破壞而不產(chǎn)生粘結(jié)滑移失效。
Cousins et al.(1990)[18]研究了環(huán)氧涂層對(duì)傳遞長(zhǎng)度和錨固長(zhǎng)度的影響。試驗(yàn)中鋼絞線直徑為10,13 和15 mm鋼絞線。實(shí)測(cè)傳遞長(zhǎng)度和錨固長(zhǎng)度較之ACI 和AASHTO規(guī)范公式計(jì)算結(jié)果更大,認(rèn)為規(guī)范公式若用于計(jì)算環(huán)氧鋼絞線的傳遞長(zhǎng)度和錨固長(zhǎng)度不夠保守。
Russell and Burns(1993)[19]在德州大學(xué)奧斯汀分校(University of Texas at Austin)進(jìn)行了關(guān)于傳遞長(zhǎng)度與錨固長(zhǎng)度的試驗(yàn)研究。二人建議為防止因腹板剪切開裂引起的粘結(jié)失效,應(yīng)適當(dāng)配置水平和豎向剪切鋼筋。因彎曲開裂與腹板開裂會(huì)影響錨固長(zhǎng)度,故可知加載模式與截面形狀對(duì)預(yù)應(yīng)力筋的錨固長(zhǎng)度具有一定的影響。
表1 其它研究給出的錨固長(zhǎng)度計(jì)算公式
Burdette et al.(1994)[8]在田納西大學(xué)諾克斯維爾分校(The University of Tennessee at Knoxville)開展了一個(gè)科研項(xiàng)目,制作了一些小尺寸的棱柱試件和一些全尺寸的AASHTO一類梁(AASHTO Type I girder)。試驗(yàn)中考察了環(huán)氧涂層和鋼絞線直徑、間距、表面狀況、預(yù)應(yīng)力釋放方式的影響,并提出了傳遞長(zhǎng)度與錨固長(zhǎng)度的計(jì)算公式。
Barnes et al.(1999)[11]在德州大學(xué)奧斯汀分校研究了一配置間距50 mm、直徑15 mm鋼絞線的全尺寸橋梁預(yù)應(yīng)力構(gòu)件的錨固性能。混凝土的抗壓強(qiáng)度采用40~100 MPa。研究表明,15 mm鋼絞線采用50 mm的間距是安全可行的。所提出的錨固長(zhǎng)度計(jì)算公式中考慮了不同階段的混凝土強(qiáng)度。
Ramirez and Russell(2008)[14]在奧克拉荷馬州立大學(xué)(Oklahoma State University)和普度大學(xué)(Purdue University)開展了對(duì)高性能混凝土(High Performance Concrete,HPC)中預(yù)應(yīng)力筋的傳遞長(zhǎng)度和錨固長(zhǎng)度的綜合研究。結(jié)果表明,錨固長(zhǎng)度隨混凝土強(qiáng)度的提高而縮短;對(duì)于HPC來說,規(guī)范公式偏于保守。對(duì)比矩形梁,工字梁因其較薄的腹板寬度使得腹板處的剪切開裂更加充分,因而更易產(chǎn)生錨固失效。
Floyd et al.(2011)[20]通過19片矩形梁的試驗(yàn),對(duì)比了自密實(shí)混凝土(Self-Consolidating Concrete,SCC)和傳統(tǒng)的高強(qiáng)混凝土中預(yù)應(yīng)力筋的錨固長(zhǎng)度。結(jié)果表明,ACI與AASHTO規(guī)范公式過高估計(jì)了梁內(nèi)錨固長(zhǎng)度60% 以上。
Jiang,Cabage et al.(2013,2014)[21-22]:因當(dāng)前的規(guī)范公式只適用于普通直徑的鋼絞線,故通過大量的拔出試驗(yàn)與梁受彎試驗(yàn)研究了18 mm鋼絞線在高強(qiáng)混凝土中的錨固性能。拔出試驗(yàn)中考慮了預(yù)應(yīng)力筋埋置長(zhǎng)度和預(yù)應(yīng)力水平的影響,從粘結(jié)機(jī)制上分析了預(yù)應(yīng)力筋的傳遞長(zhǎng)度。通過大量的矩形截面預(yù)應(yīng)力梁受彎試驗(yàn),了解了梁內(nèi)預(yù)應(yīng)力筋在外荷載下沿梁長(zhǎng)的應(yīng)力分布情況,考察了梁端預(yù)應(yīng)力筋的滑移狀況從而分析錨固長(zhǎng)度。
準(zhǔn)確確定預(yù)應(yīng)力筋的錨固長(zhǎng)度意義重大。既有的錨固長(zhǎng)度計(jì)算公式多來自于大量的預(yù)應(yīng)力梁受彎試驗(yàn)結(jié)果。這些簡(jiǎn)化了的計(jì)算公式,主要考慮了預(yù)應(yīng)力筋直徑、混凝土強(qiáng)度與fps三個(gè)變量。隨著更大直徑鋼絞線和更高強(qiáng)度混凝土的應(yīng)用,現(xiàn)有計(jì)算公式往往不能準(zhǔn)確計(jì)算預(yù)應(yīng)力筋的錨固長(zhǎng)度。因而需要進(jìn)行新的試驗(yàn)研究,并與之前關(guān)于預(yù)應(yīng)力筋錨固長(zhǎng)度的研究結(jié)果對(duì)比,為設(shè)計(jì)提供指導(dǎo)或建議。
[1]LEONHARDT F.Prestressed Concrete:Design and Construction[M].Berlin Munich:Wilhelm Ernst&Sohn,1964.
[2]MORCOUS G,HANNA K,TADROS M K.Impact of 0.7 Inch Diameter Strands on NU I-Girders(NDOR Project No.SPR-1 (08)P311)[R].Linkoln:Nebraska Department of Roads,University of Nebraska Linkoln,2011.
[3]American Concrete Institute Committee 318.Building Code Requirements for Structural Concrete(ACI318-08)and Commentary(318R-08)[S].Farmington Hills:American Concrete Institute,2008.
[4]American Association of State Highway and Transportation Officials.AASHTO LRFD Bridge Design Specifications[S]. 4th Edition.Washington D C:AASHTO,2007.
[5]ZIA P,MOSTAFA T.Development Length of Prestressing Strands[J].PCI Journal,1977,22(5):54-65.
[6]ABDALLA O A,RAMIRZE J A,LEE R H.Strand Debonding in Pretensioned Beams-Precast Prestressed Concrete Bridge with Debonded Strands-Simply Supported Tests,Part 2(Final Report FHWA/INDOT/JHRP-92-25)[R].West Lafayette: Purdue University,the Indiana Development of Transportation,1993.
[7]MITCHELL D,COOK W D,KHAN A A,et al.Influence of High Strength Concrete on Transfer and Development Length of Pretensioning Strand[J].PCI Journal,1993,38(3):52-66.
[8]BURDETTE E G,DEATHERAGE J H,CHEW C K.Development Length and Lateral Spacing Requirements of Prestressing Strand for Prestressed Concrete Bridge Girders[J].PCI Journal,1994,39(1):70-83.
[9]BUCKNER C D.A Review of Strand Development Length for Pretensioned Concrete Members[J].PCI Journal,1995,40 (2):84-105.
[10]LANE S N.A New Development Length Equation for Pre-tensioned Strands in Bridge Beams and Piles(Report No.FHWARD-98-116)[R].McLean:Federal Highway Administration,1998.
[11]BARNES R W,BURNS N H,KREGER M E.Development Length of 0.6-Inch Prestressing Strand in Standard I-Shaped Pretensioned Concrete Beams(Report No.FHWA/TX-02/ 1388-1)[R].Austin:Center for Transportation Research,The University of Texas at Austin,1999.
[12]Shahawy M A.A Critical Evaluation of the AASHTO Provisions for Strand Development Length of Prestressed Concrete Members[J].PCI Journal,2001(4):94-117.
[13]KOSE M M,BURKETT W R.Evaluation of Code Requirement for 0.6 in.(15 mm)Prestressing Strand[J].ACI Structural Journal,2005,102(3):422-428.
[14]RAMIRZE J A,RUSSELL B W.Transfer,Development,and Splice Length for Strand/Reinforcement in High-Strength Concrete(NCHRP Report 603)[R].Washington D C:Transportation Research Board,2008.
[15]JANNEY J R.Nature of Bond in Pre-tensioned Prestressed Concrete[J].Journal of the American Concrete Institute,1954 (50):717-736.
[16]HANSON N W,KAAR P H.Flexural Bond Tests of Pretensioned Prestressed Beams[J].ACI Journal,1959:783-802.
[17]MARTIN L D,SCOTT N L.Development of Prestress Strand in Pre-tensioned Member[J].ACI Journal,1976:453-456.
[18]COUSINS T E,JOHNSTON D W,ZIA P.Transfer and Development Length of Epoxy-Coated and Uncoated Prestressing Strands[J].PCI Journal,1990,35(3):92-106.
[19]RUSSELL B W,BURNS N H.Design Guidelines for Transfer,Development and Debonding of Large Diameter Seven Wire Strands in Pretensioned Concrete Girders(Report No.1210-5F)[R].Austin:Center for Transportation Research,University of Texas at Austin,1993.
[20]FLOYD R W,RUIZ E D,DO N H,et al.Development Lengths of High-strength Self-consolidating Concrete Beams[J].PCI Journal,2011,56(4):36-53.
[21]JIANG X,MA Z.Investigation of Bond Tests to Transfer Performance of Prestressing Strand[C]//2013 PCI Conference and National Bridge Convention,2013.
[22]CABAGE J,MA Z,JIANG X,et al.An Assessment of Development Length when Using High-Capacity Strands[C]//2014 PCI Conference and National Bridge Convention,2014.
Review on research of anchoring length of prestressed strand abroad
JIANG Xin
(Railway Engineering Research Institute,China Academy of Railway Sciences,Beijing 100081,China)
An accurate prediction of development length of prestressing strand is significantly meaningful to calculate moment resistance and shear capacity of pre-tensioned members.T his paper presented a literature review of the analysis of development length.The equations for calculating development length were summarized from the existing codes ACI318 and AASHT O,as well as other research results.Also,the effect of the diameter of prestressing strand and the compression strength of concrete on development length was discussed.
Prestressing Strand;Development Length;Bond
TU378.1;TU757.1+3
A
10.3969/j.issn.1003-1995.2015.10.07
(責(zé)任審編 趙其文)
1003-1995(2015)10-0038-05
2015-08-01;
2015-09-01
蔣欣(1981—),男,助理研究員,博士。