崔樹(shù)娜,錢(qián)靜,卜平
(揚(yáng)州大學(xué)醫(yī)學(xué)院中西醫(yī)結(jié)合學(xué)系,江蘇揚(yáng)州225001)
線粒體復(fù)合體Ⅲ抑制劑抗霉素A對(duì)巨噬細(xì)胞免疫功能的影響
崔樹(shù)娜,錢(qián)靜,卜平
(揚(yáng)州大學(xué)醫(yī)學(xué)院中西醫(yī)結(jié)合學(xué)系,江蘇揚(yáng)州225001)
目的研究線粒體復(fù)合體Ⅲ抑制劑抗霉素A(AMA)對(duì)巨噬細(xì)胞免疫功能的影響,并探討其可能的作用機(jī)制。方法AMA 0.0005,0.05,0.5,5和10 mg·L-1與RAW264.7巨噬細(xì)胞分別作用2,24和48 h后,WST-1法檢測(cè)巨噬細(xì)胞增殖;AMA 0.0005,0.05和0.5 mg·L-1與RAW264.7作用2 h后,定量熒光法檢測(cè)巨噬細(xì)胞產(chǎn)生活性氧水平、線粒體膜電位和對(duì)白色念珠菌的吞噬作用;Western蛋白印跡法檢測(cè)絲裂原活化蛋白激酶(MAPK)P38蛋白磷酸化水平;Griess法檢測(cè)細(xì)胞培養(yǎng)上清一氧化氮含量。結(jié)果AMA作用2 h對(duì)RAW264.7巨噬細(xì)胞增殖無(wú)明顯影響,當(dāng)作用時(shí)間延長(zhǎng)到24和48 h后,可顯著抑制RAW264.7巨噬細(xì)胞增殖(P<0.01)。AMA作用2 h可顯著誘導(dǎo)RAW264.7巨噬細(xì)胞產(chǎn)生活性氧(P<0.01),降低線粒體膜電位(P<0.01)。AMA可增強(qiáng)RAW264.7巨噬細(xì)胞對(duì)白色念珠菌的吞噬功能,顯著降低脂多糖誘導(dǎo)的巨噬細(xì)胞炎癥介質(zhì)一氧化氮的產(chǎn)生(P<0.01)。AMA顯著誘導(dǎo)MAPK P38磷酸化(P<0.01)。結(jié)論AMA能夠誘導(dǎo)RAW264.7巨噬細(xì)胞線粒體損傷,增強(qiáng)巨噬細(xì)胞對(duì)白色念珠菌的吞噬功用,降低脂多糖誘導(dǎo)的炎癥反應(yīng),可能與激活MAPK P38磷酸化,進(jìn)而激活MAPK信號(hào)轉(zhuǎn)導(dǎo)通路有關(guān)。
巨噬細(xì)胞;線粒體復(fù)合體Ⅲ;抗霉素A
DOl:10.3867/j.issn.1000-3002.2015.04.007
線粒體復(fù)合體Ⅲ抑制劑抗霉素A(antimycin A,AMA)是一種具有殺菌作用的抗生素[1],其作用機(jī)制包括抑制琥珀酸和煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NADH)氧化酶,及線粒體細(xì)胞色素bc1之間的電子傳輸[2]。線粒體內(nèi)電子傳遞的抑制會(huì)導(dǎo)致線粒體內(nèi)膜跨膜質(zhì)子梯度崩潰,從而破壞線粒體膜電位;這種抑制也導(dǎo)致活性氧(reactive oxygen species,ROS)的生成。研究發(fā)現(xiàn),AMA能夠誘導(dǎo)腫瘤細(xì)胞凋亡,抑制自噬,有望成為潛在的抗肺癌干細(xì)胞藥物[3-4]。然而,其對(duì)巨噬細(xì)胞的線粒體損傷及巨噬細(xì)胞功能的影響尚未見(jiàn)報(bào)道。因此,本研究觀察AMA對(duì)巨噬細(xì)胞增殖、ROS生成、膜電位的變化、吞噬以及分泌功能的影響,并觀察AMA對(duì)絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)P38蛋白磷酸化的影響,進(jìn)一步探討其可能的作用機(jī)制。
1.1 細(xì)胞、試劑和儀器
RAW264.7巨噬細(xì)胞購(gòu)于美國(guó)菌種保藏中心,細(xì)胞培養(yǎng)嚴(yán)格按照說(shuō)明書(shū)操作。白色念珠菌SC5314,德國(guó)菌種保藏中心;DMEM培養(yǎng)液和胎牛血清,瑞士Lonza公司;2′,7′二氯氫化熒光素二乙酸酯(H2DCFDA),美國(guó)Invitrogen公司;AMA、鏈霉素、青霉素、NaHCO3、脂多糖(lipopolysaccharides,LPS)、羅丹明123、YPD培養(yǎng)基和FITC購(gòu)于德國(guó)Sigma公司;抗MAPK P38抗體和抗磷酸化P38(p-P38)抗體購(gòu)于美國(guó)Cell Signaling公司;用于測(cè)定一氧化氮(nitric oxide,NO)的格里斯(Griess)試劑:1%對(duì)氨基苯磺酸和0.1%萘胺分別溶于50 mL 5%的H3PO4中,4℃儲(chǔ)存,臨用前在室溫下1∶1(V/V)混合。96孔細(xì)胞培養(yǎng)板,美BD Falcon公司;細(xì)胞培養(yǎng)瓶,美國(guó)Corning公司;分光光度計(jì)μQuant和熒光儀Synergy 4,美國(guó)BioTek公司;SDS-PAGE和WB系統(tǒng),美國(guó)Bio-Rad公司;低溫超速離心機(jī),德國(guó)Eppendorf公司。
1.2 細(xì)胞培養(yǎng)
巨噬細(xì)胞RAW264.7采用完全DMEM培養(yǎng)液培養(yǎng),培養(yǎng)條件為37℃,10%CO2,相對(duì)飽和濕度。AMA終濃度分別為0.0005,0.005,0.05,0.5,5和50 mg·L-1,同時(shí)設(shè)溶劑(MeOH)對(duì)照組。溶劑對(duì)照組的MeOH體積含量比低于0.1%。
1.3 WST-1法[5]檢測(cè)巨噬細(xì)胞增殖
RAW264.7巨噬細(xì)胞經(jīng)DMEM培養(yǎng)液培養(yǎng)后,選取對(duì)數(shù)生長(zhǎng)期細(xì)胞,用細(xì)胞刮刮下,計(jì)數(shù)后按5×108,1×109和2×109L-1接種在96孔板中,每孔培養(yǎng)液總體積為90 μL。并在每孔中分別加入AMA,終濃度分別為0.0005,0.005,0.05,0.5,5和50 mg·L-1。每濃度設(shè)8復(fù)孔,分別在培養(yǎng)2,24和48 h后加入10 μL的WST-1,孵育1 h,用分光光度計(jì)于450 nm檢測(cè)吸光度值(A)值。細(xì)胞增殖率(%)=(給藥組A450nm/正常對(duì)照組A450nm)×100%。
1.4 H2DCFDA熒光染色測(cè)定細(xì)胞內(nèi)ROS含量
將1×109L-1巨噬細(xì)胞RAW264.7接種在96孔板中2 h后,加入AMA預(yù)處理2 h,用PBS清洗1次后,用20 μmol·L-1H2DCFDA在37℃染色30 min,用熒光儀讀取熒光值(FI),檢測(cè)熒光波長(zhǎng)為發(fā)射光480 nm,激發(fā)光為520 nm。計(jì)算平均值。
1.5 羅丹明123熒光法測(cè)定巨噬細(xì)胞線粒體膜電位
將1×109L-1巨噬細(xì)胞RAW264.7接種在96孔板2 h后,加入AMA預(yù)處理2 h,用PBS清洗1次后,用0.1 mg·L-1的羅丹明123在37℃染色30 min,用熒光儀讀取FI,檢測(cè)熒光的波長(zhǎng)為發(fā)射光480 nm,激發(fā)光為520 nm。計(jì)算平均值。
1.6 定量熒光法檢測(cè)巨噬細(xì)胞對(duì)白色念珠菌的吞噬作用[6]
先用FITC對(duì)白色念珠菌進(jìn)行熒光標(biāo)記。將在YPD培養(yǎng)基中過(guò)夜培養(yǎng)的白色念珠菌計(jì)數(shù)后,按1×1011L-1密度轉(zhuǎn)移到1.5 mL試管中,離心收集(15 100×g,5 min,24℃)。棄上清,PBS清洗2次后加入1 mL用0.1 mmol·L-1NaHCO3(pH=9.0)稀釋的終濃度為500 mg·L-1的FITC染色,4℃過(guò)夜。第2天,用PBS沖洗3次立即使用,或放置在-20°C保存。
將100 μL(2×109L-1)RAW264.7巨噬細(xì)胞接種96孔板,加入AMA預(yù)處理2 h后,終濃度為0.0005,0.005,0.05和0.5 mg·L-1,加入FITC標(biāo)記的白色念珠菌感染巨噬細(xì)胞,巨噬細(xì)胞與白色念珠菌的比例為1∶2。感染后,將96孔板置于細(xì)胞培養(yǎng)箱(37℃,10%CO2),感染時(shí)間為60 min,用熒光儀讀取熒光強(qiáng)度后,用100 μL臺(tái)盼藍(lán)(250 mg·L-1)淬滅未被巨噬細(xì)胞吞噬的白色念珠菌熒光。在室溫下孵化1 min,棄去臺(tái)盼藍(lán)溶液,繼續(xù)用熒光儀從底部讀取數(shù)值,發(fā)射光波長(zhǎng)為480 nm,激發(fā)光波長(zhǎng)為520 nm。巨噬細(xì)胞的吞噬作用用感染組淬滅后相對(duì)熒光單位(relative fluorescence unit)-真菌對(duì)照組淬滅后RFU之差表示。
1.7 Griess法測(cè)定NO含量
取對(duì)數(shù)生長(zhǎng)期的RAW264.7巨噬細(xì)胞,按1×109L-1接種在96孔板中并加入AMA預(yù)處理1 h后,加入LPS(終濃度為0.1 mg·L-1)繼續(xù)刺激20 h,取50 μL上清液置于96孔酶標(biāo)板中,加等體積的Griess試劑,室溫下靜置10 min后,于酶標(biāo)儀上測(cè)定A540nm,以標(biāo)準(zhǔn)曲線計(jì)算各組培養(yǎng)液中NO的含量。
1.8 Western蛋白印跡法檢測(cè)MAPK P38的磷酸化
方法見(jiàn)參考文獻(xiàn)[5],巨噬細(xì)胞以5×108L-1密度接種于6孔板,不同濃度AMA刺激30 min后;PBS洗滌2次,每孔加入100 μL含蛋白酶和磷酸酶抑制劑的SDS蛋白裂解液,冰上裂解30 min;用細(xì)胞刮刮下細(xì)胞,15 100×g,離心15 min,取上清。用BCA法進(jìn)行蛋白定量,取30 μg等量蛋白,稀釋到上樣緩沖液中;將樣品在沸水中煮5 min,冰上冷卻后,15 100×g,離心10 min;75 g·L-1SDS-PAGE分離后,蛋白轉(zhuǎn)至PVDF膜上;用含50 g·L-1脫脂牛奶的TBST封閉膜2 h,小鼠抗P38和p-P38抗體(1∶1000)4℃孵育過(guò)夜;TBST充分洗滌膜,用HRP標(biāo)記的山羊抗小鼠二抗(1∶3000)室溫孵育1 h;TBS洗3次,每次10 min,ECL顯色,化學(xué)凝膠成像系統(tǒng)成像,檢測(cè)p-P38和P38表達(dá)情況。以p-P38的積分吸光度值與p38的積分吸光度值比值表示蛋白表達(dá)相對(duì)水平。
1.9 統(tǒng)計(jì)學(xué)分析
2.1 AMA對(duì)巨噬細(xì)胞細(xì)胞增殖的影響
圖1結(jié)果顯示,AMA 0.0005~50 mg·L-1的作用于RAW264.7細(xì)胞2 h對(duì)細(xì)胞增殖無(wú)影響。24 h后,AMA 50 mg·L-1對(duì)RAW264.7細(xì)胞增殖抑制作用明顯,細(xì)胞增殖率為41%(P<0.01),而其他濃度組巨噬細(xì)胞增殖率均>80%(P<0.01)。48 h后,AMA 0.0005~50 mg·L-1對(duì)巨噬細(xì)胞增殖均有顯著抑制作用(P<0.01)。因此,本研究采用AMA的濃度范圍為0.0005~0.5 mg·L-1,作用時(shí)間是2~24 h。
Fig.1 .Effect of antimycin A(AMA)on cell proliferation of RAW264.7 cells.Macrophages were cultured with 0.0005-50·L-1AMA for 2,24 and 48 h,respectively.Cell proliferation was detected by WST-1 assay.Cell proliferation rate(%)=(A450nmof treated group/A450nmof solvent(control group)×100%.,compared with solvent control(MeOH)group.
2.2 AMA誘導(dǎo)巨噬細(xì)胞生成ROS
AMA作用RAW264.7巨噬細(xì)胞2h,AMA0.0005~0.5mg·L-1可誘導(dǎo)巨噬細(xì)胞產(chǎn)生ROS(P<0.01),分別為溶濟(jì)對(duì)照組的1.18,1.39,1.68和1.89倍(圖2)。
Fig.2 Effect of AMA on reactive oxygen species(ROS)production of RAW264.7 cells.Macrophages were cultured with or without AMA for 2 h and stained with H2DCFDA.ROS production was detected by fluorescence intensity,which was detected by fluorometer.FI:fluorescence intensity.0.01,compared with solvent control(MeOH)group.
2.3 AMA對(duì)巨噬細(xì)胞線粒體膜電位的影響
圖3結(jié)果顯示,AMA 0.0005~0.5 mg·L-1組RAW264.7巨噬細(xì)胞線粒體膜電位分別為溶劑對(duì)照組的88%,76%,62%和53%(P<0.01)。
Fig.3 EffectofAMAonmembranepotentialof RAW264.7 cells.Macrophages were cultured with AMA for 2h,andstainedwithRodamine123.Thechangein mitochondial membrane potential of RAW264.7 cell was detected by fluorometer.,compared with solvent control(MeOH)group.
2.4 AMA對(duì)巨噬細(xì)胞吞噬功能的影響
圖4結(jié)果顯示,與溶劑對(duì)照組比,隨著AMA濃度的增加,RAW264.7巨噬細(xì)胞對(duì)白色念珠菌的吞噬作用增強(qiáng)(P<0.01);在AMA 0.005 mg·L-1時(shí),對(duì)白色念珠菌的吞噬作用最強(qiáng),AMA 0.05和0.5 mg·L-1作用減弱。
Fig.4 Effect of AMA on phagocytosis of C.albicans by RAW264.7 cells.Macrophages were pretreated with AMA for 2 h,and then were infected with FITC labeled C.albicans. The amount of internalized yeasts was determined 60 min post infection by a fluorescence microtiter plate reader.RFU:relative fluorescence unit.compared with solvent control(MeOH)group.
2.5 AMA對(duì)LPS誘導(dǎo)的巨噬細(xì)胞產(chǎn)生NO的影響
圖5所示,溶劑對(duì)照組分泌NO含量較低,LPS 0.1 mg·L-1能明顯刺激巨噬細(xì)胞生成NO(P<0.01),AMA 0.005,0.05和0.5 mg·L-1可抑制NO的生成(P<0.01),分別為L(zhǎng)PS+MeOH對(duì)照組的73%,62%和63%。
Fig.5 Effect of AMA on nitric oxide(NO)production of RAW264.7 cells induced by lipopolysaccharides(LPS). Macrophages were cultured with LPS alone or withAMA for 20 h. NO production was measured by Griess reagent. 0.01,compared with solvent control(MeOH)group;##P<0.01,compared with LPS+MeOH group.
2.6 AMA對(duì)巨噬細(xì)胞MAPK P38磷酸化的影響
如圖6所示,溶劑對(duì)照組巨噬細(xì)胞僅有少量磷酸化MAPK P38蛋白表達(dá),AMA 0.005~0.5 mg·L-1作用30min后,磷酸化MAPKP38蛋白表達(dá)明顯增強(qiáng)(P<0.01),提示AMA可以顯著誘導(dǎo)MAPK P38磷酸化。
Fig.6 Effect of AMA on phosphorylation of mitogenactivated protein kinases((MAPK)P38 in RAW264.7 cells by Western blotting.Macrophages were cultured with or without AMA for 30 min.A,lane 1:solvent control;lane 2:AMA 0.005 mg·L-1;lane 3:AMA 0.05 mg·L-1;lane 4:AMA 0.5 mg·L-1. B was the semiquantitative result of A.compared with solvent control(MeOH)group.
本研究結(jié)果表明,AMA能夠誘導(dǎo)RAW264.7巨噬細(xì)胞線粒體損傷,同時(shí)增強(qiáng)巨噬細(xì)胞對(duì)白色念珠菌的吞噬作用,并降低LPS誘導(dǎo)的炎癥反應(yīng),可能與激活MAPK P38磷酸化,進(jìn)而激活MAPK信號(hào)傳導(dǎo)通路有關(guān)。AMA在0.005~0.5 mg·L-1濃度范圍內(nèi)能夠誘導(dǎo)RAW264.7巨噬細(xì)胞產(chǎn)生ROS,并降低線粒體膜電位,而在此濃度范圍內(nèi),RAW264.7巨噬細(xì)胞對(duì)白色念珠菌的吞噬作用增強(qiáng),降低LPS誘導(dǎo)的炎癥反應(yīng),說(shuō)明巨噬細(xì)胞線粒體復(fù)合體Ⅲ損傷與免疫功能相關(guān)。
AMA為特異性線粒體復(fù)合體Ⅲ抑制劑,AMA作用白色念珠菌能顯著誘導(dǎo)ROS生成[7]。在細(xì)胞模型中也發(fā)現(xiàn),AMA作用于不同PC12細(xì)胞系后能誘導(dǎo)ROS產(chǎn)生,誘導(dǎo)細(xì)胞凋亡[8]。本研究結(jié)果表明,AMA 0.005~0.5 mg·L-1作用于巨噬細(xì)胞后,能夠誘導(dǎo)RAW264.7巨噬細(xì)胞ROS生成及線粒體損傷。由于MAPK P38的激活與氧化應(yīng)激相關(guān)[9],AMA能誘導(dǎo)氧化應(yīng)激[10],為進(jìn)一步明確其作用機(jī)制,本研究重點(diǎn)觀察了AMA對(duì)MAPK P38蛋白磷酸化的影響。發(fā)現(xiàn)AMA能夠誘導(dǎo)RAW264.7巨噬細(xì)胞MAPK P38磷酸化,表明AMA能夠激活MAPK信號(hào)通路。在白色念珠菌感染中,白色念珠菌細(xì)胞壁表面成分β-葡聚糖能夠與巨噬細(xì)胞細(xì)胞表面受體Dectin-1結(jié)合,從而激活轉(zhuǎn)錄因子AP-1和NF-κB[11]。AMA預(yù)處理RAW264.7巨噬細(xì)胞后能夠激活MAPK P38磷酸化,白色念珠菌感染巨噬細(xì)胞也能激活MAPK。因此,其吞噬作用增強(qiáng)可能與雙重激活MAPK信號(hào)通路有關(guān)。
綜上所述,本研究通過(guò)觀察AMA對(duì)RAW264.7巨噬細(xì)胞生成ROS、線粒體膜電位改變、巨噬細(xì)胞吞噬功能和分泌功能的變化,發(fā)現(xiàn)AMA可通過(guò)誘導(dǎo)線粒體損傷并增強(qiáng)磷酸化MAPK P38表達(dá),而增強(qiáng)巨噬細(xì)胞對(duì)白色念珠菌的吞噬功能。本研究為更深入研究線粒體損傷與巨噬細(xì)胞免疫功能之間的關(guān)系提供實(shí)驗(yàn)依據(jù)。
[1]Kido GS,Spyhalski E.Antimycin A,an antibiotic with insecticidal and miticidal properties[J].Science,1950,112(2902):172-173.
[2]Ransac S,Mazat JP.How does antimycin inhibit the bc1 complex?A part-time twin[J].Biochim Biophys Acta,2010,1797(12):1849-1857.
[3]Yeh CT,Su CL,Huang CY,Lin JK,Lee WH,Chang PM,et al.A preclinical evaluation of antimycin a as a potential antilung cancer stem cell agent[J].Evid Based Complement Alternat Med,2013,2013:910451.
[4]Ma X,Jin M,Cai Y,Xia H,Long K,Liu J,et al. Mitochondrial electron transport chain complexⅢisrequired for antimycin A to inhibit autophagy[J].Chem Biol,2011,18(11):1474-1481.
[5]Cui SN,Bilitewski U.Anti-inflammatory effect of Syk inhibitor in LPS stimulated macrophages[J].Chin J Cell Mol Immunol(細(xì)胞與分子免疫學(xué)),2013,29(10):1024-1027.
[6]Klippel N,Cui S,Groebe L,Bilitewski U.Deletion of theCandida albicanshistidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall beta-1,3-glucans[J].Microbiology,2010,156(Pt 11):3432-3444.
[7]Ruy F,Vercesi AE,Kowaltowski AJ.Inhibition of
specificelectrontransportpathwaysleadsto oxidative stress and decreasedCandida albicansproliferation[J].J Bioenerg Biomembr,2006,38(2):129-135.
[8]Lanju X,Jing X,Shichang L,Zhuo Y.Induction of apoptosis by antimycin A in differentiated PC12 cell line[J].J Appl Toxicol,2014,34(6):651-657.
[9]Tormos AM,Taléns-Visconti R,Nebreda AR,Sastre J. p38 MAPK:a dual role in hepatocyte proliferation through reactive oxygen species[J].Free Radic Res,2013,47(11):905-916.
[10]Choi EM,Jung WW,Suh KS.Pinacidil protects osteoblastic cells against antimycin A-induced oxidative damage[J].Mol Med Rep,2015,11(1):746-752.
[11]Mayer FL,Wilson D,Hube B.Candida albicanspathogenicity mechanisms[J].Virulence,2013,4(2):119-128.
Effect of mitochondrial complexⅢinhibitor antimycin A on immune function of macrophages
CUI Shu-na,QIAN Jing,BO Ping
(Department of Integrated Traditional Chinese Medicine and Western Medicine,Medical College of Yangzhou University,Yangzhou 225001,China)
OBJECTlVETo investigate the role of macrophage mitochondrial complexⅢinhibitor antimycin A(AMA)on the immune function of macrophages and to explore its possible mechanism.METHODSAMA of different concentrations(0.0005-0.5 mg·L-1)was used for incubation with macrophages RAW264.7 for 2,24 and 48 h.Cell proliferation was detected by WST-1 assay.Reactive oxygen species(ROS)production,mitochondrial membrane potential and phagocytosis ofC.albicanswere detected by fluorometric assay.Phosphorylation of mitogen-activated protein kinases(MAPK)P38 was detected by Western blotting.Griess reagent was used to determine nitric oxide(NO)production.RESULTSAMA 0.0005-50 mg·L-1treatment for 2 h had no obvious effect on macrophages RAW264.7 proliferation,but for 24 and 48 h,the cell proliferation was significantly inhibited(P<0.01).AMA 0.005-0.5 mg·L-1for 2 h significantly induced ROS production(P<0.01)and reduced the mitochondrial membrane potential of RAW264.7(P<0.01),suggesting that the macrophage mitochondrial were damaged.When macrophages′mitochondrial complexⅢwas impaired,phagocytosis ofC.albicansby macrophage was significantly increased(P<0.01).Moreover,AMA significantly reduced NO production after the macrophages were stimulated by LPS.AMA 0.05-0.5 mg·L-1strongly activated the phosphorylation of MAPK P38(P<0.01).CONCLUSlONAMA can impair the mitochondrial function of macrophages,enhance the phagocytic efficiency ofC.albicans,and show anti-inflammatory effect.The possible mechanism is to activate the MAPK signal cascade by stimulating the phosphorylation of MAPK P38.
macrophage;mitochondrial complexⅢ;antimyicin A
The project supported by Administration of Traditional Chinese Medicine of Jiangsu Province(LZ13248);Natural Science Foundation of Jiangsu Higher Education Institutions of China(13KJB310022);China Postdoctoral Science Foundation(2013M541741);Yangzhou University Innovative Research Fund(2014CXJ057);and Scientific Research Fund of Yangzhou UIniversity
CUI Shu-na,E-mail:sncui@yzu.edu.cn,Tel:(0514)87992215
R285.5
A
1000-3002(2015)04-0573-05
2015-01-22接受日期:2015-07-21)
(本文編輯:齊春會(huì))
江蘇省中醫(yī)藥局科技項(xiàng)目資助(LZ13248);江蘇省高校自然科學(xué)研究項(xiàng)目資助(13KJB310022);中國(guó)博士后基金(2013M541741);揚(yáng)州大學(xué)創(chuàng)新培育基金(2014CXJ057);揚(yáng)州大學(xué)高層次人才科研啟動(dòng)基金(2012)
崔樹(shù)娜,女,醫(yī)學(xué)博士,副教授,主要從事感染免疫學(xué)相關(guān)研究。
崔樹(shù)娜,E-mail:sncui@yzu.edu.cn,Tel:(0514) 87977689,(0514)87992215
中國(guó)藥理學(xué)與毒理學(xué)雜志2015年4期