国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

有關(guān)7m+j型奇正整數(shù)不是完全數(shù)的一些命題

2015-08-01 02:50張四保
關(guān)鍵詞:取模奇正喀什

張四保

(喀什師范學(xué)院數(shù)學(xué)系,新疆喀什 844008)

有關(guān)7m+j型奇正整數(shù)不是完全數(shù)的一些命題

張四保

(喀什師范學(xué)院數(shù)學(xué)系,新疆喀什 844008)

完全數(shù);奇完全數(shù);命題

0 引言

雖未解決是否存在奇完全數(shù)的問(wèn)題,但有關(guān)奇完全數(shù)存在熱點(diǎn)問(wèn)題:一,奇完全數(shù)的大小估計(jì),其研究成果參考文獻(xiàn)[3-5];二,奇完全數(shù)相異素因子大小估計(jì)與個(gè)數(shù)估計(jì),其研究成果參考文獻(xiàn)[6-10];三,特殊類型奇數(shù)是否是完全數(shù)問(wèn)題,其研究成果參考文獻(xiàn)[11-14].

1 主要結(jié)論

(1)當(dāng)π≡3,5,6(mod 7);

(2)當(dāng)π≡2,4(mod 7)且α=4k+1,k2(mod 3),則n不是完全數(shù).

當(dāng)π≡1(mod 7)時(shí),顯然有πα≡1(mod 7).

當(dāng)π≡2(mod 7)時(shí),有πα≡24k+1(mod 7).當(dāng)k≡0(mod 3),則πα≡2(mod 7);當(dāng)k≡1(mod 3),則πα≡4(mod 7);當(dāng)k≡2(mod 3),則πα≡1(mod 7).

當(dāng)π≡3(mod 7)時(shí),有πα≡34k+1(mod 7).當(dāng)k≡0(mod 3),則πα≡3(mod 7);當(dāng)k≡1(mod 3),則πα≡5(mod 7);當(dāng)k≡2(mod 3),則πα≡6(mod 7).

當(dāng)π≡4(mod 7)時(shí),有πα≡44k+1(mod 7).當(dāng)k≡0(mod 3),則πα≡4(mod 7);當(dāng)k≡1(mod 3),則πα≡2(mod 7);當(dāng)k≡2(mod 3),則πα≡1(mod 7).

當(dāng)π≡5(mod 7)時(shí),有πα≡54k+1(mod 7).當(dāng)k≡0(mod 3),則πα≡5(mod 7);當(dāng)k≡1(mod 3),則πα≡3(mod 7);當(dāng)k≡2(mod 3),則πα≡6(mod 7).

當(dāng)π≡6(mod 7)時(shí),有πα≡64k+1≡6(mod 7).

(1)當(dāng)π≡3(mod 7)時(shí),有πα≡3,5,6(mod 7),這與πα≡1(mod 7)矛盾;當(dāng)π≡5(mod 7)時(shí),有πα≡3,5,6(mod 7),這與πα≡1(mod 7)矛盾;當(dāng)π≡6(mod 7)時(shí),有πα≡6(mod 7),這與πα≡1(mod 7)矛盾,因而n不是完全數(shù).

(2)π≡2(mod 7)且α=4k+1,當(dāng)k≡0(mod 3)時(shí),有πα≡2(mod 7),這與πα≡1(mod 7)矛盾;當(dāng)k≡1(mod 3),則πα≡4(mod 7),這與πα≡1(mod 7)矛盾,因而n不是完全數(shù).

π≡4(mod 7)且α=4k+1,當(dāng)k≡0(mod 3)時(shí),有πα≡4(mod 7),這與πα≡1(mod 7)矛盾;當(dāng)k≡1(mod 3),則πα≡2(mod 7),這與πα≡1(mod 7)矛盾,因而此時(shí)n不是完全數(shù).

證畢.

(1)當(dāng)π≡1,3,5,6(mod 7);

(2)當(dāng)π≡2(mod 7)且α=4k+1,k1(mod 3);

(3)當(dāng)π≡4(mod 7)且α=4k+1,k0(mod 3),則n不是完全數(shù).

(1)當(dāng)π≡1,3,5,6(mod 7);

(2)當(dāng)π≡2(mod 7)且α=4k+1,k0(mod 3);

(3)當(dāng)π≡4(mod 7)且α=4k+1,k1(mod 3),則n不是完全數(shù).

由命題1至命題3,可得到推論1.

(1)當(dāng)π≡1,3,5,6(mod 7);

(2)當(dāng)π≡2(mod 7)且α=4k+1,k0(mod 3);

(3)當(dāng)π≡4(mod 7)且α=4k+1,k1(mod 3),

則n不是完全數(shù).

由命題1的討論可知,當(dāng)π≡1(mod 7)時(shí),有πα≡1(mod 7);當(dāng)π≡3(mod 7)時(shí),有πα≡3,5,6(mod 7);當(dāng)π≡5(mod 7)時(shí),有πα≡3,5,6(mod 7);當(dāng)π≡6(mod 7)時(shí),有πα≡6(mod 7).由此可知,當(dāng)π≡1,3,5,6(mod 7)時(shí),πα取模7的情況與πα≡2(mod 7)矛盾,因而n不是完全數(shù).

π≡2(mod 7)且α=4k+1,當(dāng)k≡1(mod 3)時(shí),有πα≡4(mod 7),這與πα≡2(mod 7)矛盾;當(dāng)k≡2(mod 3),有πα≡1(mod 7),這與πα≡2(mod 7)矛盾,因而n不是完全數(shù).

π≡4(mod 7)且α=4k+1,當(dāng)k≡0(mod 3)時(shí),有πα≡4(mod 7),這與πα≡2(mod 7)矛盾;當(dāng)k≡2(mod 3),有πα≡1(mod 7),這與πα≡2(mod 7)矛盾,因而n不是完全數(shù).

證畢.

(1)當(dāng)π≡3,5,6(mod 7);

(2)當(dāng)π≡2,4(mod 7)且α=4k+1,k2(mod 3),

則n不是完全數(shù).

(1)當(dāng)π≡1,3,5,6(mod 7);

(2)當(dāng)π≡2(mod 7)且α=4k+1,k1(mod 3);

(3)當(dāng)π≡4(mod 7)且α=4k+1,k0(mod 3),

則n不是完全數(shù).

由命題4至命題6,可得到推論2.

(1)當(dāng)π≡1,2,4,6(mod 7);

(2)當(dāng)π≡3(mod 7)且α=4k+1,k0(mod 3);

(3)當(dāng)π≡5(mod 7)且α=4k+1,k1(mod 3),

則n不是完全數(shù).

由命題1的討論可知,當(dāng)π≡1(mod 7)時(shí),有πα≡1(mod 7);當(dāng)π≡2(mod 7)時(shí),有πα≡1,2,4(mod 7);當(dāng)π≡4(mod 7)時(shí),有πα≡1,2,4(mod 7);當(dāng)π≡6(mod 7)時(shí),有πα≡6(mod 7).由此可知,當(dāng)π≡1,2,4,6(mod 7)時(shí),πα取模7的情況與πα≡3(mod 7)矛盾,因而n不是完全數(shù).

π≡3(mod 7)且α=4k+1,當(dāng)k≡1(mod 3)時(shí),有πα≡5(mod 7),這與πα≡3(mod 7)矛盾;當(dāng)k≡2(mod 3),有πα≡6(mod 7),這與πα≡3(mod 7)矛盾,因而n不是完全數(shù).

π≡5(mod 7)且α=4k+1,當(dāng)k≡0(mod 3)時(shí),有πα≡5(mod 7),這與πα≡3(mod 7)矛盾;當(dāng)k≡2(mod 3),有πα≡6(mod 7),這與πα≡3(mod 7)矛盾,因而n不是完全數(shù).

證畢.

(1)當(dāng)π≡1,2,4,6(mod 7);

(2)當(dāng)π≡3(mod 7)且α=4k+1,k1(mod 3);

(3)當(dāng)π≡5(mod 7)且α=4k+1,k0(mod 3),

則n不是完全數(shù).

(1)當(dāng)π≡1,2,4(mod 7);

(2)當(dāng)π≡3,5(mod 7)且α=4k+1,k2(mod 3),

則n不是完全數(shù).

由命題7至命題9,可得到推論3.

(1)當(dāng)π≡1,3,5,6(mod 7);

(2)當(dāng)π≡2(mod 7)且α=4k+1,k1(mod 3);

(3)當(dāng)π≡4(mod 7)且α=4k+1,k0(mod 3),

則n不是完全數(shù).

由命題1的討論可知,當(dāng)π≡1(mod 7)時(shí),有πα≡1(mod 7);當(dāng)π≡3(mod 7)時(shí),有πα≡3,5,6(mod 7);當(dāng)π≡5(mod 7)時(shí),有πα≡3,5,6(mod 7);當(dāng)π≡6(mod 7)時(shí),有πα≡6(mod 7).由此可知,當(dāng)π≡1,3,5,6(mod 7)時(shí),πα取模7的情況與πα≡4(mod 7)矛盾,因而n不是完全數(shù).

π≡2(mod 7)且α=4k+1,當(dāng)k≡0(mod 3)時(shí),有πα≡2(mod 7),這與πα≡4(mod 7)矛盾;當(dāng)k≡2(mod 3)時(shí),有πα≡1(mod 7),這與πα≡4(mod 7)矛盾,因而n不是完全數(shù).

π≡4(mod 7)且α=4k+1,當(dāng)k≡1(mod 3)時(shí),有πα≡2(mod 7),這與πα≡4(mod 7)矛盾;當(dāng)k≡2(mod 3)時(shí),有πα≡1(mod 7),這與πα≡4(mod 7)矛盾,因而n不是完全數(shù).

證畢.

(1)當(dāng)π≡1,3,5,6(mod 7);

(2)當(dāng)π≡2(mod 7)且α=4k+1,k0(mod 3);

(3)當(dāng)π≡4(mod 7)且α=4k+1,k1(mod 3),

則n不是完全數(shù).

(1)當(dāng)π≡3,5,6(mod 7);

(2)當(dāng)π≡2,4(mod 7)且α=4k+1,k2(mod 3),

則n不是完全數(shù).

由命題10至命題12,可得到推論4.

(1)當(dāng)π≡1,2,4,6(mod 7);

(2)當(dāng)π≡3(mod 7)且α=4k+1,k1(mod 3);

(3)當(dāng)π≡5(mod 7)且α=4k+1,k0(mod 3),

則n不是完全數(shù).

,若下列任一條件成立:

(1)當(dāng)π≡1,2,4(mod 7);

(2)當(dāng)π≡3,5(mod 7)且α=4k+1,k2(mod 3),

則n不是完全數(shù).

(1)當(dāng)π≡1,2,4,6(mod 7);

(2)當(dāng)π≡3(mod 7)且α=4k+1,k0(mod 3);

(3)當(dāng)π≡5(mod 7)且α=4k+1,k1(mod 3),則n不是完全數(shù).

由命題1的討論可知,當(dāng)π≡1(mod 7)時(shí),有πα≡1(mod 7);當(dāng)π≡2,4(mod 7)時(shí),有πα≡1,2,4(mod 7);當(dāng)π≡6(mod 7)時(shí),有πα≡6(mod 7).由此可知,當(dāng)π≡1,2,4,6(mod 7)時(shí),πα取模7的情況與πα≡3(mod 7)矛盾,因而n不是完全數(shù).

π≡3(mod 7)且α=4k+1,當(dāng)k≡1(mod 3)時(shí),有πα≡5(mod 7),這與πα≡3(mod 7)矛盾;當(dāng)k≡2(mod 3)時(shí),有πα≡6(mod 7),這與πα≡3(mod 7)矛盾,因而n不是完全數(shù).

π≡5(mod 7)且α=4k+1,當(dāng)k≡0(mod 3)時(shí),有πα≡5(mod 7),這與πα≡3(mod 7)矛盾;當(dāng)k≡2(mod 3)時(shí),有πα≡6(mod 7),這與πα≡3(mod 7)矛盾,因而n不是完全數(shù).

證畢.

由命題13至命題15,可得到推論5.

2 結(jié)束語(yǔ)

(References):

[1] 蓋伊R K.數(shù)論中未解決的問(wèn)題[M].張明堯,譯,北京:科學(xué)出版社,2006:59.

Guy R K.Unsolved problems in number theory[M].Zhang Mingyao,trans,Beijing:Science Press,2006:59.

[2] Dickson L E.History of theory of number[M].Washington:Carnegie Institution of Washington,1919.

[3] Brent R P,Cohen G L,Riele H J J.Improved techniques for lower bounds for odd perfect numbers[J].Math Comp,1991,57(196):857-868.

[4] Karl K N.Remarks on the number of factors of an odd perfect number[J].Acta Arith,1961(6):365-374.

[5] Slowak J.Odd perfect numbers[J].Math Slovaca,1999,49(3):253-254.

[6] Pomerance C.Odd perfect numbers are divisible by at least seven distinct primes[J].Acta.Arith,1974(25):265-300.

[7] Chein E Z.An odd perfect number has a least 8prime factors[J].Notices Math Soc,1979(26):365.

[8] Hagis P,Cohen G L.Every odd perfect number has a prime factor which exceeds 106[J].Math Comp,1998(67):1323-1330.

[9] Goto T,Ohno Y.Odd perfect numbers have a prime factor exceeding108[J].Math Comp,2008(77):1859-1868.

[10] 張四保,鄧勇.Numbersω(n)of distinct primes factors for a kind of odd perfect number[J].中國(guó)科學(xué)院研究生學(xué)院學(xué)報(bào),2011,28(4):548-550.

Zhang Sibao,Deng Yong.Numbersω(n)of distinct primes factors for a kind of odd perfect number[J].Journal of Graduate University of Chinese Academy of Sciences,2011,28(4):548-550.

[11] McDaniel W L.The non-existence of odd perfect of a certain form[J].Arch Math,1970(21):52-53.

[12] Mcdaniel W L,Hagis P.Some results concerning nonexistence of odd perfect numbers of the formpαm2β[J].The J Fibonnacci Quart,1975,13(1):25-28.

[13] Iannucci D E,Sorli R M.On the total number of prime factors of an odd perfect number[J].Math Comp,2003(72):2078-2084.

[14] 朱玉揚(yáng).奇完全數(shù)的幾個(gè)命題[J].數(shù)學(xué)進(jìn)展,2011,40(5):595-598.

Zhu Yuyang.Several results on odd perfect numbers[J].Advances in mathematics,2011,40(5):595-598.

[15] 張四保.7 m-1形的奇正整數(shù)n不是完全數(shù)的條件[J].黑龍江大學(xué)學(xué)報(bào):自然科學(xué)版,2014,31(4):480-483.

Zhang Sibao.Conditions on the positive odd numbers of the form 7 m-1are not perfect number[J].Journal of Heilongjiang Univer-sity:Natural Science Edition,2014,31(4):480-483.

DOI 10.3969/j.issn.2095-4107.2015.01.016

O156

A

2095-4107(2015)01-0118-05

2014-10-03;編輯:關(guān)開(kāi)澄

喀什師范學(xué)院校內(nèi)一般課題((14)2513)

張四保(1978-),男,碩士,副教授,主要從事數(shù)論方面的研究.

book=122,ebook=125

猜你喜歡
取模奇正喀什
關(guān)于不定方程x2-pqy4=16的正整數(shù)解
喀什城是座大巴扎
關(guān)于商高數(shù)的Je?manowicz猜想*
關(guān)于不定方程x2-8y4=M(M=17,41,73,89,97)*
奇正模架
關(guān)于不定方程x2-5y4=236
喀什,鮮艷的名片
HPLC測(cè)定藏藥奇正消痛貼膏中姜黃素的含量
帕米爾高原的精靈
從《孫子兵法》中的“奇正相生”聯(lián)想到雕塑與環(huán)境的適應(yīng)性
长泰县| 鄂州市| 威信县| 上林县| 德化县| 宜良县| 青阳县| 织金县| 乌兰察布市| 吉隆县| 满洲里市| 驻马店市| 古丈县| 乡城县| 德昌县| 黑水县| 东兴市| 潍坊市| 桐庐县| 资溪县| 依安县| 山西省| 鄂尔多斯市| 张北县| 峨眉山市| 开化县| 冕宁县| 友谊县| 西昌市| 巨鹿县| 尼木县| 北川| 瑞安市| 广汉市| 天祝| 昌平区| 嘉定区| 霍山县| 舒兰市| 白水县| 天门市|