李寧 周素貞 李素云
[摘要] 目的 探討肺癌細(xì)胞中SOX1基因是否直接調(diào)控ECT2的表達(dá)。 方法 運(yùn)用甲基化特異PCR法檢測(cè)50例原發(fā)肺癌和癌旁組織中SOX1的甲基化水平。以肺癌細(xì)胞株A-1細(xì)胞為研究對(duì)象,Realtime-PCR檢測(cè)ECT2表達(dá)情況。通過(guò)熒光素酶報(bào)告檢查法以及染色體免疫共沉淀方法檢測(cè)SOX1基因是否直接調(diào)控ECT2的表達(dá)。免疫組化檢測(cè)50例肺癌組織中ECT2與SOX1表達(dá)的關(guān)系。 結(jié)果 原發(fā)性肺癌的甲基化異常檢出率是70%(35/50)。過(guò)表達(dá)SOX1后A-1細(xì)胞中ECT2表達(dá)下降,而siRNA抑制SOX1后ECT2表達(dá)升高,熒光素酶報(bào)告檢查法以及染色體免疫共沉淀方法提示SOX1可直接與ECT2啟動(dòng)子結(jié)合,抑制ECT2的表達(dá)。SOX1與ECT2在肺癌組織中表達(dá)負(fù)相關(guān)(r=-0.433,P=0.001)。 結(jié)論 肺癌細(xì)胞A-1中SOX1基因直接調(diào)控ECT2的表達(dá)。
[關(guān)鍵詞]肺癌;SOX1;甲基化;ECT2
[中圖分類(lèi)號(hào)] R734.2 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 2095-0616(2015)15-23-04
[Abstract] Objective To test whether SOX1 is a novel transcriptional repressor for ECT2 in human lung cancer. Methods 50 primary lung cancer tissues and corresponding normal tissues were detected by Methylation-specific PCR method.The expression of ECT2 in the A-1 cell was detected by Realtime-PCR.We determined whether SOX1 may regulate the expression of ECT2 by using Chromin immunoprecipitation (ChIP) assay and Luciferase activity assay.Immunohistochemical analysis was used to test whether there is an inverse correlation between ECT2 and SOX1. Results Aberrant methylation in primary lung cancer was 70% (35/50).Ectopic expression of SOX1 in the A-1 cell repressed ECT2 expression.Conversely,siRNA silencing of the SOX1 gene increased ECT2 expression.We also show that SOX1 directly interacted with and repressed the ECT2 promoter.Moreover,the analysis of 50 primary lung cancer samples revealed an inverse correlation between ECT2 and SOX1 levels(r=-0.433,P=0.001). Conclusion SOX1 is a novel transcriptional repressor for ECT2 in human lung cancer.
[Key words] Lung cancer;SOX1;Methylation;ECT2
肺癌是嚴(yán)重危害人類(lèi)生命和健康的惡性腫瘤之一,也是世界范圍內(nèi)發(fā)病和死亡率最高的癌癥[1]。SOX1,即SRY (sex determining region Y)-box 1,屬于具有high mobility group (HMG)-box結(jié)構(gòu)的轉(zhuǎn)錄因子家族SOX家族的成員[2]。SOX1可以通過(guò)直接與β-catenin結(jié)合,導(dǎo)致β-catenin降解或直接抑制其功能,從而抑制Wnt/β-catenin信號(hào)通路[3-4]。我們前期結(jié)果發(fā)現(xiàn)SOX1在肺癌組織中低表達(dá),但機(jī)制尚不清楚[5]。最近研究人員發(fā)現(xiàn),在肝癌、鼻咽癌、食管癌細(xì)胞等組織中SOX1啟動(dòng)子存在高甲基化,從而導(dǎo)致其表達(dá)缺[3,6,7],SOX1啟動(dòng)子甲基化在肺癌中尚未有報(bào)道。另外我們前期實(shí)驗(yàn)發(fā)現(xiàn)通過(guò)cDNA微陣列分析發(fā)現(xiàn)過(guò)表達(dá)SOX1后ECT2基因表達(dá)降低,本研究我們將探討肺癌細(xì)胞中SOX1基因啟動(dòng)子甲基化情況以及SOX1是否直接調(diào)控ECT2的表達(dá)。
1 材料與方法
1.1 材料
50例原發(fā)性肺癌和癌旁組織由河南中醫(yī)學(xué)院第一附屬醫(yī)院提供。5-雜氮-2-脫氧胞嘧啶購(gòu)于Sigma公司,EpiTect Bisulfite Kit購(gòu)于Qiagen,Wizard DNA Clean-Up System為Promega產(chǎn)品,胎牛血清和DMEM細(xì)胞培養(yǎng)基均購(gòu)于Gibco公司,T載體購(gòu)于Takara公司。
1.2 細(xì)胞來(lái)源及培養(yǎng)
肺癌細(xì)胞株A-1由本試驗(yàn)室凍存。在含10%胎牛血清的DMEM培養(yǎng)液中,置37℃ 5%CO2的培養(yǎng)箱中培養(yǎng),2~3d換液一次,取對(duì)數(shù)生長(zhǎng)期細(xì)胞進(jìn)行試驗(yàn)。
1.3 DNA亞硫酸氫鈉修飾
肺癌細(xì)胞株A-1由本試驗(yàn)室凍存。在含10%胎牛血清的DMEM培養(yǎng)液中,置37℃ 5% CO2的培養(yǎng)箱中培養(yǎng),2~3d換液一次,取對(duì)數(shù)生長(zhǎng)期細(xì)胞進(jìn)行試驗(yàn)。
1.4 甲基化特異性PCR
用甲基化特異性PCR(MSP)檢測(cè)SOX1在肺癌組織的甲基化狀態(tài)。甲基化特異性引物設(shè)計(jì)參見(jiàn)文獻(xiàn)[8],PCR產(chǎn)物于2%瓊脂糖凝膠上電泳,自動(dòng)電泳凝膠成像分析系統(tǒng)掃描分析。endprint
1.5 Realtime-PCR檢測(cè)ECT2表達(dá)情況
培養(yǎng)A-1細(xì)胞至對(duì)數(shù)生長(zhǎng)期,轉(zhuǎn)染p-CMV-SOX1或SOX1 siRNA,轉(zhuǎn)染24h后Trizol 法提取總RNA,逆轉(zhuǎn)錄獲得cDNA。Realtime-PCR檢測(cè)ECT2表達(dá)情況,以GAPDH為內(nèi)參進(jìn)行結(jié)果校正。引物序列參見(jiàn)表1。
1.6 染色體免疫共沉淀
培養(yǎng)A-1細(xì)胞至對(duì)數(shù)生長(zhǎng)期,轉(zhuǎn)染p-CMV-SOX1,按照ChIP試劑盒抽提DNA,所需抗體分別加入SOX1抗體及IgG抗體為陰性對(duì)照,收集DNA。未加抗體組設(shè)為Input。從NCBI數(shù)據(jù)庫(kù)中查出ECT2基因5端-1000bp至+100bp序列(轉(zhuǎn)錄起始點(diǎn)為0),設(shè)計(jì)5對(duì)引物(圖3A),用上述5對(duì)引物通過(guò)Realtime-PCR檢測(cè)每個(gè)樣本Ct值,靶序列的Ct值=2(Ct of Iped DNA-Ct of input)。
1.7 熒光素酶報(bào)告法
根據(jù)ChIP實(shí)驗(yàn)結(jié)果設(shè)計(jì)引物,擴(kuò)增片段為,包含SOX1結(jié)合位點(diǎn)。擴(kuò)增產(chǎn)物測(cè)序并連接至pGL3熒光質(zhì)粒,構(gòu)建pGL3-ECT質(zhì)粒,培養(yǎng)A-1細(xì)胞至對(duì)數(shù)生長(zhǎng)期,分別轉(zhuǎn)染p-CMV-SOX1和pGL3-ECT質(zhì)粒或p-CMV-vector和pGL3-ECT質(zhì)粒,同時(shí)均轉(zhuǎn)染phRL-TK renilla質(zhì)粒作為內(nèi)參,通過(guò)Dual-Luciferase檢測(cè)試劑盒測(cè)熒光值。
1.8 免疫組化檢測(cè)肺癌組織中SOX1及ECT2表達(dá)情況
50例肺癌組織切片通過(guò)脫蠟、抗原修復(fù)程序后分別加入SOX1抗體及ECT2抗體,通過(guò)免疫組織試劑盒檢測(cè)蛋白表達(dá)情況。免疫組化評(píng)分按照染色強(qiáng)度分為:0,1,2,3分,而染色面積則按<5%(0分),5~25% (1分),25~50%(2分),>50%(3分)。染色強(qiáng)度及染色面積結(jié)合算分,總分0~1分為陰性,>1分為陽(yáng)性[9]。
1.9 統(tǒng)計(jì)學(xué)分析
數(shù)據(jù)用SPSS11.0統(tǒng)計(jì)軟件分析,計(jì)數(shù)資料用x2檢驗(yàn),計(jì)量資料用t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 原發(fā)性肺癌SOX1甲基化率
通過(guò)MSP檢測(cè)50例肺癌和相應(yīng)癌旁正常組織中SOX1的甲基化情況。發(fā)現(xiàn)35例SOX1基因出現(xiàn)甲基化(70%),正常癌旁組織未發(fā)現(xiàn)有甲基化異常(P=0.001)。圖1A為部分MSP結(jié)果。亞硫酸鹽修飾A-1細(xì)胞和一例正常肺組織的基因組DNA,對(duì)處理過(guò)的DNA進(jìn)行BSP分析,檢測(cè)SOX1啟動(dòng)子甲基化狀態(tài)。BSP結(jié)果顯示A-1細(xì)胞中SOX1存在高密度甲基化狀態(tài),而對(duì)照組沒(méi)有檢測(cè)到甲基化異常(圖1B)。
2.2 SOX1調(diào)控ECT2的表達(dá)
培養(yǎng)A-1細(xì)胞至對(duì)數(shù)生長(zhǎng)期,轉(zhuǎn)染p-CMV-SOX1或SOX1 siRNA,Realtime-PCR檢測(cè)ECT2表達(dá)。我們發(fā)現(xiàn)轉(zhuǎn)染p-CMV-SOX1質(zhì)粒后,ECT2 mRNA值降低(P<0.05),而轉(zhuǎn)染SOX1 siRNA后,ECT2 mRNA值升高(P<0.05)。見(jiàn)圖2。
2.3 染色體免疫共沉淀與熒光素酶報(bào)告法
從NCBI數(shù)據(jù)庫(kù)中查出ECT2基因5端-1000bp至+100bp序列(轉(zhuǎn)錄起始點(diǎn)為0),設(shè)計(jì)5對(duì)引物(圖3A),培養(yǎng)A-1細(xì)胞至對(duì)數(shù)生長(zhǎng)期,轉(zhuǎn)染p-CMV-SOX1,按照ChIP試劑盒抽提DNA,所需抗體分別加入SOX1抗體及IgG抗體為陰性對(duì)照,收集DNA。我們發(fā)現(xiàn)相對(duì)其他引物,A4靶序列的Ct值較高(P<0.05),證明SOX1抗體與該段DNA序列可能結(jié)合(圖3B)。為進(jìn)一步驗(yàn)證該結(jié)果,我們?cè)O(shè)計(jì)引物擴(kuò)增A4片段,連接入pGL3熒光質(zhì)粒。分別轉(zhuǎn)染p-CMV-SOX1和pGL3-ECT質(zhì)粒或p-CMV-vector和pGL3-ECT質(zhì)粒,同時(shí)均轉(zhuǎn)染phRL-TK renilla質(zhì)粒作為內(nèi)參,檢測(cè)pGL3-ECT質(zhì)粒熒光值變化。我們發(fā)現(xiàn)轉(zhuǎn)染p-CMV-SOX1質(zhì)粒的細(xì)胞pGL3-ECT熒光值明顯較轉(zhuǎn)染p-CMV-vector質(zhì)粒的細(xì)胞低(圖3C,P<0.05)。
2.4 SOX1與ECT2在肺癌組織中表達(dá)負(fù)相關(guān)
20例肺癌組織表達(dá)SOX1,這20例肺癌組織中有14例ECT2的表達(dá)陰性。36例肺癌組織表達(dá)ECT2,這些組織中30例SOX1表達(dá)陰性(表2)。結(jié)果顯示SOX1與ECT2在肺癌組織中表達(dá)負(fù)相關(guān)(r=-0.433,P=0.001)。圖4為1例肺癌組織SOX1與ECT2的表達(dá)情況。
3 討論
SOX1,即SRY(sex determining region Y)-box 1,屬于具有high mobility group(HMG)-box結(jié)構(gòu)的轉(zhuǎn)錄因子家族SOX家族的成員,在胚胎發(fā)育中發(fā)揮著重要作用[10]。家族中其他成員如SOX9,SOX17可以通過(guò)直接與β-catenin結(jié)合,導(dǎo)致β-catenin降解或直接抑制其功能(β-catenin是參與經(jīng)典Wnt通路的重要因子),從而抑制Wnt/β-catenin信號(hào)通路[3,11]。在肝癌和宮頸癌細(xì)胞中,SOX1發(fā)揮抑癌基因作用,抑制細(xì)胞的增長(zhǎng)及轉(zhuǎn)移能力[12]。
為進(jìn)一步了解SOX1在肺癌中的功能,以及篩選SOX1下游靶基因,我們?cè)贏-1細(xì)胞轉(zhuǎn)染p-CMV-SOX1,通過(guò)藥物篩選建立穩(wěn)定高表達(dá)SOX1的A-1/SOX1細(xì)胞株。我們通過(guò)基因微陣列分析發(fā)現(xiàn),過(guò)表達(dá)SOX1后,A-1細(xì)胞有130個(gè)基因下調(diào),其中包括ECT2(epithelial cell transforming sequence 2)。ECT2是鳥(niǎo)苷酸交換因子(guanine nucleotide exchange factors,GEFs)之一,GEF促進(jìn)RhoA,Racl和Cdc42上的GDP置換為GTP,使RhoA,Racl和Cdc42等Rho GTPases活化[13-14]。目前尚未有關(guān)SOX1基因是否直接調(diào)控ECT2表達(dá)的報(bào)道。endprint
我們首先利用MSP法檢測(cè)了50例原發(fā)性肺癌組織中SOX1的甲基化情況。其中35例SOX1基因出現(xiàn)甲基化異常75%,正常癌旁組織未發(fā)現(xiàn)有甲基化異常(P=0.001),說(shuō)明該事件是腫瘤特異性的。一部分標(biāo)本可同時(shí)檢測(cè)到甲基化和非甲基化的DNA,可能是基因部分發(fā)生甲基化的緣故。DNA甲基化與腫瘤的發(fā)生有著密切關(guān)系,腫瘤可發(fā)生許多種基因的異常甲基化,包括抑癌基因、DNA損傷修復(fù)基因及與腫瘤代謝和浸潤(rùn)相關(guān)的基因[15]。啟動(dòng)子甲基化可能是SOX1在肺癌組織低表達(dá)的重要機(jī)制。
為檢測(cè)SOX1基因是否直接調(diào)控ECT2表達(dá),我們首先在A-1細(xì)胞中過(guò)表達(dá)SOX1。我們發(fā)現(xiàn)過(guò)表達(dá)SOX1后A-1細(xì)胞中ECT2表達(dá)下降,而抑制SOX1后ECT2表達(dá)升高,熒光素酶報(bào)告檢查法以及染色體免疫共沉淀方法提示SOX1可直接與ECT2啟動(dòng)子結(jié)合,抑制ECT2的表達(dá)。免疫組化結(jié)果顯示SOX1與ECT2在肺癌組織中表達(dá)負(fù)相關(guān)。
ECT2在肺癌組織中高表達(dá)并且在轉(zhuǎn)移癌組織中表達(dá)更高,與肺癌細(xì)胞的分化及淋巴結(jié)轉(zhuǎn)移密切相關(guān)[16]。我們推測(cè)可能是因SOX1低表達(dá),失去對(duì)ECT2的抑制,導(dǎo)致ECT2在肺癌組織中高表達(dá)。
[參考文獻(xiàn)]
[1] Boelens MC,Kok K,Van der Vlies P,et al.Genomic aberrations in squamous cell lung carcinoma related to lymph node or distant metastasis[J].Lung cancer(Amsterdam,Netherlands),2009,66(3):372-378.
[2] Vural B,Chen LC,Saip P,et al.Frequency of SOX Group B (SOX1,2,3) and ZIC2 antibodies in Turkish patients with small cell lung carcinoma and their correlation with clinical parameters[J].Cancer,2005,103(12):2575-2583.
[3] Tsao CM,Yan MD,Shih YL,et al.SOX1 functions as a tumor suppressor by antagonizing the WNT/beta-catenin signaling pathway in hepatocellular carcinoma[J].Hepatology(Baltimore,Md),2012,56(6):2277-2287.
[4] Guan Z,Zhang J,Wang J,et al.SOX1 Down-regulates beta-catenin and Reverses Malignant Phenotype in Nasopharyngeal Carcinoma[J].Molecular Cancer,2014,13(1):257.
[5] Li N,Li X,Li S,et al.Cisplatin-induced downregulation of SOX1 increases drug resistance by activating autophagy in non-small cell lung cancer cell[J].Biochemical and Biophysical Research Communications,2013,439(2):187-190.
[6] Shih YL,Hsieh CB,Yan MD,et al.Frequent concomitant epigenetic silencing of SOX1 and secreted frizzled-related proteins (SFRPs) in human hepatocellular carcinoma[J].Journal of Gastroenterology and Hepatology,2013,28(3):551-559.
[7] Guan Z,Zhang J,Wang J,et al.SOX1 down-regulates beta-catenin and reverses malignant phenotype in nasopharyngeal carcinoma[J].Molecular Cancer,2014,13:257.
[8] Wentzensen N,Bakkum-Gamez JN,Killian JK,et al.Discovery and validation of methylation markers for endometrial cancer[J].International Journal of Cancer,2014,135(8):1860-1868.
[9] Ji XD,Li G,F(xiàn)eng YX,et al.EphB3 is overexpressed in non-small-cell lung cancer and promotes tumor metastasis by enhancing cell survival and migration[J].Cancer Research,2011,71(3):1156-1166.
[10] Kan L,Israsena N,Zhang Z,et al.Sox1 acts through multiple independent pathways to promote neurogenesis[J].Developmental Biology,2004,269(2):580-594.endprint
[11] Akiyama H,Lyons JP,Mori-Akiyama Y,et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation[J].Genes & Development,2004,18(9):1072-1087.
[12] Lin YW,Tsao CM,Yu PN,et al.SOX1 suppresses cell growth and invasion in cervical cancer[J].Gynecologic Oncology,2013,131(1):174-181.
[13] Lv Z,Hu M,Zhen J,et al.Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering beta-catenin transcriptional activity under high glucose conditions[J].The International Journal of Biochemistry & Cell Biology,2013,45(2):255-264.
[14] Patel S,Takagi KI,Suzuki J,et al.RhoGTPase activation is a key step in renal epithelial mesenchymal transdifferentiation[J].J Am Soc Nephrol,2005,16(7):1977-1984.
[15] Liang Y,He L,Yuan H,et al.Association between RUNX3 promoter methylation and non-small cell lung cancer:a meta-analysis[J].Journal of Thoracic Disease,2014,6(6):694-705.
[16] Murata Y, Minami Y, Iwakawa R,et al.ECT2 amplification and overexpression as a new prognostic biomarker for early-stage lung adenocarcinoma[J].Cancer Science,2014,105(4):490-497.
(收稿日期:2015-04-26)endprint