張文博,劉振華,袁雪艷,高啟禹,*
(1.新鄉(xiāng)醫(yī)學(xué)院生命科學(xué)技術(shù)學(xué)院,河南 新鄉(xiāng) 453003;2.新鄉(xiāng)醫(yī)學(xué)院公共衛(wèi)生學(xué)院,河南 新鄉(xiāng) 453003)
改性果膠抗腫瘤機制研究進展
張文博1,劉振華1,袁雪艷2,高啟禹1,*
(1.新鄉(xiāng)醫(yī)學(xué)院生命科學(xué)技術(shù)學(xué)院,河南 新鄉(xiāng) 453003;2.新鄉(xiāng)醫(yī)學(xué)院公共衛(wèi)生學(xué)院,河南 新鄉(xiāng) 453003)
果膠是一種以聚半乳糖醛酸為骨架、富含中性糖分支結(jié)構(gòu)的植物雜多糖。通過理化手段對果膠進行改性,可降低其分子質(zhì)量和酯化度、修飾其微觀結(jié)構(gòu)、提高其生物利用度,經(jīng)改性后的果膠能抑制腫瘤生長、誘導(dǎo)細胞凋亡、增強腫瘤細胞對化療藥物的敏感性、抑制腫瘤血管新生和轉(zhuǎn)移并增強機體的免疫響應(yīng)。本文重點綜述改性果膠的抗腫瘤機制、吸收機制和抗腫瘤構(gòu)效關(guān)系,并對其開發(fā)為功能食品的前景進行展望。
半乳糖凝集素-3;改性果膠;改性柑橘果膠;果膠;抗腫瘤活性
果膠是一種存在于植物細胞壁中的復(fù)雜多糖,可用作食品添加劑和藥物輔料[1]。通過化學(xué)試劑處理[2-3]、熱處理[4-5]、射線輻照[6]或酶處理[7]等能降低果膠的分子質(zhì)量和酯化度,并修飾其微觀結(jié)構(gòu),可獲得具有抗腫瘤活性的改性果膠(modified pectins,MPs)。由于改性柑橘果膠(modified citrus pectin,MCP)在抑制腫瘤生長、抑制腫瘤血管新生、抗腫瘤轉(zhuǎn)移等方面均具有活性,因此,本文以MCP為代表,總結(jié)MPs的結(jié)構(gòu)、抗腫瘤活性機制和構(gòu)效關(guān)系。
天然果膠一般含有同聚半乳糖醛酸(homogalacturonan,HG)、鼠李糖半乳糖醛酸聚糖Ⅰ(rhamnogalacturonan-Ⅰ,RG-Ⅰ)和取代半乳糖醛酸聚糖(substituted galacturonans,GS)[8-10]。果膠結(jié)構(gòu)隨來源、提取工藝等因素變化較大,通常HG約占65%,RG-Ⅰ占20%~35%,其他為GS。柑橘果膠(citrus pectin,CP)中的RG-Ⅰ含量遠高于RG-Ⅱ[11]。HG是由D-半乳糖醛酸(D-galacturonic acid,GalpA)經(jīng)α-1,4糖苷鍵連接的直鏈分子。商業(yè)來源的CP其HG部分的長度大約為20 kD[12]。按照GalpA的C6位羧基甲酯化程度(degree of methylation,DM),果膠亦可分為高酯果膠和低酯果膠,它們的性質(zhì)差別很大。RG-Ⅰ含有由鼠李糖和半乳糖醛酸組成的核心重復(fù)片段:[(→4)-α-D-GalpA-(1→2)-α-L-Rhap-(1→)]n。RG-Ⅰ的GalpA一般不連接其他支鏈。約20%~80%鼠李糖的C4羥基連接有多種結(jié)構(gòu)各異的支鏈,根據(jù)植物來源的差異主要存在3 種類型的片段:由β-(1,4)鍵連接的寡聚半乳糖、Ⅰ型阿拉伯半乳聚糖(typeⅠ arabinogalactan,AG-Ⅰ)和Ⅱ型阿拉伯半乳聚糖(typeⅡ arabinogalactan,AG-Ⅱ)。CP的RG-Ⅰ主要由寡聚半乳糖AG-Ⅰ組成,AG-Ⅰ由β-(1,4)鍵和β-(1,3)鍵連接的兩種半乳寡聚糖組成。L-阿拉伯糖常常以(1,5)鍵連接到由β-(1,4)鍵組成的半乳寡聚糖的中間或末端[13-14]。RG-Ⅱ是主要的GS,但其結(jié)構(gòu)特征與RG-Ⅰ差異較大,其主鏈為HG結(jié)構(gòu),含有A、B兩個側(cè)鏈。MPs的結(jié)構(gòu)特征與果膠一致,主要含有HG主鏈和RG-Ⅰ支鏈,但其分子質(zhì)量和酯化度更低、分支更少(圖1)[10]。
圖1 改性果膠結(jié)構(gòu)示意圖Fig.1 Schematic structure of modified pectin
已有的研究表明,MCP在抑制腫瘤生長、血管新生和轉(zhuǎn)移等多環(huán)節(jié)起重要作用,MCP能抑制前列腺癌的肺轉(zhuǎn)移[4]、黑色素瘤的肺轉(zhuǎn)移[3]、結(jié)腸癌的肝轉(zhuǎn)移[15]、乳腺癌[16]和血管肉瘤等[17],其抗腫瘤機制涉及對腫瘤生長的抑制、對化療藥物的增敏、對轉(zhuǎn)移的抑制和對免疫細胞的調(diào)控等(圖2)。
圖2 改性果膠作用機制示意圖Fig.2 Schematic diagram of antitumor mechanisms for MPs
2.1改性果膠對腫瘤生長的抑制作用
MCP等改性果膠能抑制多種類型實體瘤[3,16,18-19]。抑制作用可能涉及癌基因的啟動[20-21]、腫瘤細胞增殖、凋亡途徑等。MCP可能通過抑制其體內(nèi)靶點半乳糖凝集素-3(galectin-3,Gal-3)與黏蛋白MUC2的相關(guān)作用而抑制結(jié)腸癌的發(fā)生和轉(zhuǎn)移;或者通過影響腫瘤細胞周期而抑制其增殖[22-23]。MCP對腫瘤生長的抑制可能與Gal-3調(diào)控的腫瘤生存信號途徑(例如MAPK途徑、Wnt途徑)[24-26]和凋亡途徑有關(guān)[27]。蘋果果膠寡乳糖有可能作用于LPS/ TLR4/NF-κB途徑,抑制結(jié)腸炎和結(jié)腸癌的發(fā)生[20]。不過,不同類型MPs對腫瘤細胞的抑制作用并不一致,可能與改性方法、結(jié)構(gòu)特征有關(guān)[4]。腫瘤細胞的異質(zhì)性也是造成MPs抗腫瘤活性不一致的原因之一。
2.2改性果膠對化療藥物的增敏作用
化療增敏劑能夠使某些對化療藥物存在抗性的腫瘤細胞發(fā)生凋亡[28-31]。Chauhan等[32]發(fā)現(xiàn)改性柑橘果膠GCS-100能誘導(dǎo)對地塞米松、美法侖或阿霉素有抗性的人類多發(fā)性骨髓瘤細胞系的凋亡,在臨床上化療時使用改性果膠有助于減少有毒化療藥物的劑量,延緩腫瘤耐藥性的發(fā)生。果膠的化療增敏活性可能是通過抑制Gal-3而逆轉(zhuǎn)腫瘤耐藥性實現(xiàn)的[33],或者與抑制Gal-3對TRAIL與DR4/DR5的相互作用有關(guān)[34],使腫瘤細胞對化療藥物由不敏感變?yōu)槊舾小?/p>
2.3改性果膠對腫瘤轉(zhuǎn)移的抑制作用
MPs能通過抑制Gal-3而抑制腫瘤血管新生、細胞失巢凋亡逃逸、血管內(nèi)皮細胞黏附等轉(zhuǎn)移過程[16,35-37]。血液循環(huán)中游離的Gal-3與腫瘤轉(zhuǎn)移有關(guān),果膠進入血液后可能通過抑制游離的Gal-3而抑制轉(zhuǎn)移相關(guān)過程[36]。此外,Gal-3能下調(diào)G1/S期細胞周期素水平(cyclin E和cyclin A),上調(diào)相關(guān)抑制蛋白(p21WAF1和p27KIP1)水平,使線粒體達到自穩(wěn)平衡[38-40]。
2.4改性果膠對免疫細胞的激活作用
MPs能作為免疫調(diào)節(jié)劑(biological response modifiers,BRMs)激活免疫細胞[41]。MCP活化多種類型的細胞毒性T細胞(T cell,Tc)、B細胞、自然殺傷(natural killer,NK)細胞等免疫細胞或者刺激這些細胞釋放干擾素-γ(interferon-γ,INF-γ)等細胞因子[42-43]。游離Gal-3能抑制Jurkat T細胞的生長,導(dǎo)致其發(fā)生凋亡[44-45]。此外,如果MPs能抑制Gal-3誘導(dǎo)的T細胞凋亡,則有可能增強機體的免疫監(jiān)視作用。
MPs可作為益生元、BRMs和半乳糖凝集素-3抑制劑(galectin-3 inhibitor,Gal3I)而抑制腫瘤啟動、生長和轉(zhuǎn)移過程。MPs可能通過抑制胃腸道中有害微生物(如Helicobacter pylori)對消化道的黏附,同時被腸道菌群發(fā)酵為短鏈脂肪酸(short-chain fatty acid,SCFA),或阻止脂多糖(lipopolysaccharides,LPS)對TLR4/NF-κB途徑的激活等機制而抑制腫瘤啟動。進入血液的MPs能夠直接激活B細胞和NK細胞等免疫細胞,或者阻止腫瘤細胞釋放的游離Gal-3對T細胞的抑制而起到BRMs的作用。當(dāng)作為Gal3I時,MPs通過干擾Gal-3參與的細胞周期、細胞生存和凋亡途徑而降低某些腫瘤細胞的生長速率或增強其對化療藥物的敏感性。綜上所述,MPs通過阻止腫瘤細胞表面Gal-3對配體的識別,減弱腫瘤細胞-細胞間或細胞-基質(zhì)間的黏附、減少細胞運動性、增強對失巢凋亡和免疫監(jiān)視的敏感性、抑制腫瘤血管新生,從而發(fā)揮抗腫瘤轉(zhuǎn)移的活性。
以MCP為代表的MPs能在體內(nèi)發(fā)揮抗腫瘤活性的前提是可進入血液循環(huán),即MCP具有生物利用度[10,16]。為什么CP沒有抑制腫瘤轉(zhuǎn)移的活性,而MCP具有這一活性?首先,改性使果膠分子的物理性質(zhì)發(fā)生變化,其溶解度增加。如堿處理使CP骨架HG通過β-消除作用而縮短,酯化度從大約80%降低至10%以下,果膠溶解度增加。其次,分子的“藥效基團”含量與分布狀態(tài)在改性過程中發(fā)生改變。由于呋喃糖的糖苷鍵比吡喃糖的糖苷鍵對酸更敏感,因而果膠RG-Ⅰ的木寡聚糖、阿拉伯寡聚糖等片段的酸解速率大于半乳寡聚糖片段,酸使得果膠的骨架和毛發(fā)區(qū)鏈長縮短,部分阿拉伯半乳寡聚糖中的阿拉伯糖被水解,半乳寡聚糖被富集,從而增強了所謂“藥效基團”末端β-半乳糖苷與其靶點Gal-3的糖識別結(jié)構(gòu)域間的作用[46-47]。高酯果膠在水中呈疏水團聚物或凝膠狀態(tài),而MCP分子是可溶的,其末端β-半乳糖殘基易于“呈現(xiàn)”給靶分子Gal-3。另一個影響MCP藥代動力學(xué)性質(zhì)的參數(shù)是果膠分子質(zhì)量。MCP的相對分子質(zhì)量在3 000~60 000范圍之間[10,13,42]。分子大小可能從吸收和消除兩方面決定血藥濃度。
MPs生物利用度的高低與其理化性質(zhì)和吸收機制有關(guān)。電荷可能是決定其生物吸收的重要因素,采用Caco-2雙室細胞模型對MCP的跨膜吸收進行研究,結(jié)果表明僅有果膠的中性寡糖片段穿越了膜,而富有半乳糖醛酸的果膠片段則沒有透過膜[48]。MPs或許可通過被動吸收或主動捕獲(如通過小腸上皮細胞、腸相關(guān)淋巴組織、M細胞吸收等)兩種方式而被修飾、轉(zhuǎn)運和釋放[25,49]。
構(gòu)效關(guān)系研究能指導(dǎo)分子結(jié)構(gòu)優(yōu)化,以提高物質(zhì)的活性。由于果膠結(jié)構(gòu)非常復(fù)雜,MPs雖然經(jīng)過了初步純化和分組,但是在微觀上其結(jié)構(gòu)仍是不均一的。例如,MPs酸性片段和中性片段具有不同的性質(zhì),而Gao Xiaoge等[13]曾經(jīng)采用DEAE纖維素層析柱將MCP的中性片段MCP-N純化出來。因此,多糖的構(gòu)效關(guān)系稱為“組效關(guān)系”或許更為確切,想要闡明MPs的構(gòu)效關(guān)系,需要制備出結(jié)構(gòu)更加一致的果膠片段。
存在于RG-Ⅰ的半乳糖末端殘基是MPs抗腫瘤活性的關(guān)鍵因素[13,50]。熒光顯微鏡、流式細胞儀和原子力電鏡技術(shù)均證實,果膠的半乳寡聚糖末端能夠與Gal-3相結(jié)合[50],β-D-二聚半乳糖與Gal-3間的解離常數(shù)為0.33 s-1[51]。含有較高比例RG-Ⅰ片段的黃秋葵果膠[35]和馬鈴薯果膠[52]均具有抗腫瘤活性。Gao Xiaoge等[13]制備的MCP-N屬于果膠的AG-Ⅰ型片段,他們將MCP-N用α-L-阿拉伯呋喃糖苷酶處理,得到中性果膠片段M-MCP。M-MCP是一種分子質(zhì)量約為18 kD的含有β-(1,4)糖苷鍵的半乳寡聚糖片段,用酸降解M-MCP得到的半乳寡聚糖比AG-Ⅰ類型的果膠片段具有更強的Gal-3抑制活性。
同聚半乳糖醛酸(HG)對抗腫瘤活性也存在貢獻。首先,HG可能與抑制細胞遷移活性有關(guān)。Fan Yuying等[40]發(fā)現(xiàn),人參果膠對L-929細胞遷移的抑制作用與HG相關(guān),可能與RG-Ⅰ無關(guān)。其次,HG可能與細胞凋亡誘導(dǎo)活性有關(guān)。通過對CP熱處理獲得HTCP,使HG產(chǎn)生細胞凋亡誘導(dǎo)活性,出現(xiàn)天然果膠中不存在的結(jié)構(gòu)[4];而MCP不具備誘導(dǎo)細胞凋亡的活性。HG經(jīng)過β-消除改性會產(chǎn)生不飽和糖殘基,這種糖殘基或許與MCP誘導(dǎo)NK細胞的活性有關(guān)[42]。經(jīng)過熱處理,果膠會經(jīng)β-消除產(chǎn)生帶有還原性的不飽和糖殘基,或發(fā)生重排,或產(chǎn)生帶有糖酸類結(jié)構(gòu)特征的片段。MPs或許可使腫瘤細胞產(chǎn)生失巢凋亡[53],該活性與果膠的RG-Ⅰ還是HG相關(guān)尚無定論[4,52]。此外,HG可能參與了Gal-3的非特異性識別。盡管Gal-3通過糖識別結(jié)構(gòu)域(carbohydrate recognition domain,CRD)主要與MPs的半乳寡聚糖發(fā)生專一的相互作用,但是,HG骨架對抑制Gal-3活性并非毫無貢獻[54]。現(xiàn)有文獻尚不足以支持僅RG-Ⅰ的結(jié)構(gòu)與抑制腫瘤有關(guān)[6,52,55]。Gao Xiaoge等[13]按照是否含有GalpA,用色譜法將MCP分離為兩組:含有GalpA的組稱為MCP-A,不含GalpA的組稱為MCP-N,前者對Gal-3的親和力遠遠高于后者。果膠片段含有GalpA的骨架對于維持半乳寡聚糖末端片段的構(gòu)象有重要貢獻,分布于HG骨架上的多個半乳寡聚糖能夠與Gal-3發(fā)生協(xié)同相互作用[54]。糖配體與凝集素間如果發(fā)生多價效應(yīng),則其相互作用強度將增加。改性果膠上的HG骨架對于這些半乳寡聚糖配基而言,起到“橋”的作用。Gao Xiaoge等[54]觀察到了幾乎不含半乳糖的果膠骨架與Gal-3間的相互作用,而這種相互作用不受乳糖的抑制。因此,MPs的骨架有可能與CRD之間發(fā)生非專一相互作用,Gal-3可通過不同聚集方式來調(diào)控與配體相互作用的強度。CRD存在與Type-C自聚集有關(guān)的位點,MPs的HG骨架或許可以通過電荷相互作用或空間位阻等因素調(diào)節(jié)Type-C自聚集而影響CRD的功能。另外,HG能抑制幽門螺旋桿菌(Helicobacter pylori)對機體的侵染[56],有助于預(yù)防胃癌。硫酸化果膠能抑制幽門螺旋桿菌的黏附作用[57],引入硫酸根因帶負電荷而增強了其對細菌黏附的抑制作用,因此HG也可能因羧基負電荷而具有抗黏附作用。由于半乳糖含量增加與其抗黏附作用有關(guān),因此,硫酸化果膠的抗黏附活性可能與HG和RG結(jié)構(gòu)域都有關(guān)。
MPs上其他糖殘基,如阿拉伯糖會對其活性產(chǎn)生影響。Gao Xiaoge等[54]觀察到阿拉伯糖既可以增加,也可以減少半乳寡聚糖片段與Gal-3間的相互作用。動物凝集素配基的倒數(shù)第二個糖殘基會影響其識別專一性[58]。由于體內(nèi)有十幾種半乳糖凝集素,因此對配體末端糖殘基結(jié)構(gòu)的研究是十分必要的。研究MPs的抗腫瘤構(gòu)效關(guān)系、代謝動力學(xué)等有助于推動篩選方案的建立,以獲得性能更優(yōu)的Gal3抑制劑(Gal3I)。Gal-3作為腫瘤靶點越來越引人關(guān)注,目前已經(jīng)開發(fā)了許多Gal3I[59-60],Gal3I在腫瘤檢測和治療方面有著巨大應(yīng)用潛力。對于靶Gal-3而言,開發(fā)其抑制劑并非只有以MPs為先導(dǎo)分子這一條路徑。在研究化學(xué)合成的Gal3I過程中,獲得了許多Gal-3的CRD與配體間相互作用的規(guī)律。這些規(guī)律對于優(yōu)化以MPs為先導(dǎo)分子的Gal3I的結(jié)構(gòu)或許有幫助。由于化學(xué)合成的Gal3I尚無毒理學(xué)研究成果,因而從植物尤其是食源性植物資源中篩選Gal3I的研究已經(jīng)廣泛開展[59,61-62]。目前,尚缺少一套廣泛認可的、高通量的Gal3I篩選方法,能在MPs及其他類型Gal3I文庫中篩選出活性更高、毒性更小的片段。
MPs的靶點并非只有Gal-3。體內(nèi)存在至少有15 種活性各異的半乳糖凝集素,因而不能排除MPs與Gal-3之外的其他半乳糖凝集素發(fā)生相互作用的可能性。MPs體內(nèi)的靶點除Gal-3外,是否還能夠與其他家族的半乳糖凝集素(例如脫唾液酸糖蛋白受體ASGP-R)、細胞因子[63-64]、死亡受體[32]等相互作用,還有待進一步研究。此外,MPs的靶細胞也可以是免疫細胞,如RG-Ⅱ能活化CD8+T細胞而抑制腫瘤生長[65]。不過,鑒于RG-Ⅱ含量往往遠低于RG-Ⅰ,因此,RG-Ⅰ或其衍生片段在改性果膠活性(包括免疫活性)中應(yīng)起主要作用。
由于MPs具有抑制腫瘤轉(zhuǎn)移、改善化療效果及增強免疫響應(yīng)的活性,因而開發(fā)MPs為抗腫瘤功能食品具有巨大潛力。MPs的活性可能主要與其RG-Ⅰ片段有關(guān),同時其生物利用度也能影響其活性。了解MPs的構(gòu)效關(guān)系可指導(dǎo)對其結(jié)構(gòu)的優(yōu)化,有助于篩選出高活性組分。
為了將MPs開發(fā)為功能食品,應(yīng)重點深入研究果膠與靶點的藥靶關(guān)系、獲得更多的藥效學(xué)、藥代學(xué)以及臨床研究數(shù)據(jù)。此外,一些與其作用機制和生物利用度有關(guān)的基礎(chǔ)性問題也應(yīng)得到闡明。例如,研究發(fā)現(xiàn)某些低分子質(zhì)量的果膠具有抗氧化能力[66],但果膠的抗氧化能力與抗腫瘤活性之間是否具有因果關(guān)系[6]?果膠能夠與細胞因子發(fā)生相互作用,但MPs是否通過與相關(guān)細胞因子發(fā)生作用,進而影響腫瘤的治療[67]?由于低酯化度的果膠能夠螯合一些金屬離子,那么改性果膠在體內(nèi)是否會對抗腫瘤的鉑類化療藥物產(chǎn)生影響?MPs如何與腸道菌群互動?劑型和果膠的凝膠化如何影響其生物利用度?吸收促進劑能否增加MPs的生物利用度?MPs與其他功能食品(如富含多不飽和脂肪酸的魚油)是否具有預(yù)防腫瘤的協(xié)同作用?闡明以上這些問題,將有助于改良MPs的活性并促進其市場應(yīng)用。
[1] WICKER L, KIM Y, KIM M J, et al. Pectin as a bioactive polysaccharide: extracting tailored function from less[J]. Food Hydrocolloids, 2014, 42(2): 251-259.
[2] ALMEIDA E A, FACCHI S P, MARTINS A F, et al. Synthesis and characterization of pectin derivative with antitumor property against Caco-2 colon cancer cells[J]. Carbohydrate Polymers, 2015, 115: 139-145.
[3] PLATT D, RAZ A. Modulation of the lung colonization of B16-F1 melanoma cells by citrus pectin[J]. Journal of the National Cancer Institute, 1992, 84(6): 438-442.
[4] JACKSON C L, DREADEN T M, THEOBALD L K, et al. Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure[J]. Glycobiology, 2007, 17(8):805-819.
[5] HAO Miao, YUAN Xiaowen, CHENG Hairong, et al. Comparative studies on the anti-tumor activities of high temperature- and pH-modified citrus pectins[J]. Food and Function, 2013, 4(6): 960-971.
[6] KANG H J, JO C, KWON J H, et al. Antioxidant and cancer cell proliferation inhibition effect of citrus pectin-oligosaccharide prepared by irradiation[J]. Journal of Medicinal Food, 2006, 9(3): 313-320.
[7] OLANO-MARTIN E, GIBSON G R, RASTALL R A. Comparison of the in vitro bifidogenic properties of pectins and pecticoligosaccharides[J]. Journal of Applied Microbiology, 2002, 93(3):505-511.
[8] CAFFALL K H, MOHNEN D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides[J]. Carbohydrate Research, 2009, 344(14): 1879-1900.
[9] LECLERE L, CUTSEM P V, MICHIELS C. Anti-cancer activities of pH- or heat-modified pectin[J]. Frontiers in Pharmacology, 2013, 4:1-8. doi: 10.3389/fphar.2013.00128.
[10] 張文博, 劉長忠, 高林. 改性柑橘果膠的制備, 表征及抗癌活性[J].高等學(xué)?;瘜W(xué)學(xué)報, 2010, 31(5): 964-969.
[11] MOHNEN D. Pectin structure and biosynthesis[J]. Current Opinion in Plant Biology, 2008, 11(3): 266-277.
[12] YAPO B M, LEROUGE P, THIBAULT J F, et al. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II[J]. Carbohydrate Polymers, 2007, 69(3): 426-435.
[13] GAO Xiaoge, ZHI Yuan, ZHANG Tao, et al. Analysis of the neutral polysaccharide fraction of MCP and its inhibitory activity on galectin-3[J]. Glycoconjugate Journal, 2012, 29(4): 159-165.
[14] HINZ S W, VERHOEF R, SCHOLS H A, et al. Type I arabinogalactan contains β-D-Galp-(1→3)-β-D-Galp structural elements[J]. Carbohydrate Research, 2005, 340(13): 2135-2143.
[15] LIU Haiying, HUANG Zhiliang, YANG Guohua, et al. Inhibitory effect of modified citrus pectin on liver metastases in a mouse colon cancer model[J]. World Journal of Gastroenterology, 2008, 14(48):7386-7391.
[16] NANGIA-MAKKER P, HOGAN V, HONJO Y, et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin[J]. Journal of the National Cancer Institute,2002, 94(24): 1854-1862.
[17] PIENTA K J, NAIK H, AKHTAR A, et al. Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin[J]. Journal of the National Cancer Institute,1995, 87(5): 348-353.
[18] HAYASHI A, GILLEN A C, LOTT J R. Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice[J]. Alternative Medicine Review, 2000, 5(6): 546-552.
[19] COBS-ROSAS M, CONCHA-OLMOS J, WEINSTEINOPPENHEIMER C, et al. Assessment of antiproliferative activity of pectic substances obtained by different extraction methods from rapeseed cake on cancer cell lines[J]. Carbohydrate Polymers, 2015, 117: 923-932.
[20] LIU L, LI Y H, NIU Y B, et al. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer[J]. Carcinogenesis,2010, 31(10): 1822-1832.
[21] SHAH M S, SCHWARTZ S L, ZHAO C, et al. Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model:effect of a chemo-protective diet[J]. Physiological Genomics, 2011,43(10): 640-654.
[22] HSIEH T, WU J M. Changes in cell growth, cyclin/kinase, endogenous phosphoproteins and nm23 gene expression in human prostatic JCA-1 cells treated with modified citrus pectin[J]. Biochemistry and Molecular Biology International, 1995, 37(5): 833-841.
[23] WANG Y, BALAN V, KHO D, et al. Galectin-3 regulates p21 stability in human prostate cancer cells[J]. Oncogene, 2013, 32(42):5058-5065.
[24] LEE Y K, LIN T H, CHANG C F, et al. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma[J]. PLoS ONE, 2013, 8(11): e82478. doi:10.1371/journal.pone.0082478.
[25] MAXWELL E G, BELSHAW N J, WALDRON K W, et al. Pectin:an emerging new bioactive food polysaccharide[J]. Trends in Food Science and Technology, 2012, 24(2): 64-73.
[26] SONG S, JI B, RAMACHANDRAN V, et al. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling[J]. PLoS ONE, 2012,7(8): e42699. doi: 10.1371/journal.pone.0042699.
[27] HARAZONO Y, NAKAJIMA K, RAZ A. Why anti-Bcl-2 clinical trials fail: a solution[J]. Cancer and Metastasis Reviews, 2014, 33(1):285-294.
[28] 魯偉群, 汪峰, 劉海鷹. 奧沙利鉑聯(lián)合低分子柑橘果膠對結(jié)腸癌細胞增殖與凋亡的影響[J]. 中華胃腸外科雜志, 2013, 16(1): 84-89.
[29] 汪峰, 劉海鷹. 奧沙利鉑聯(lián)合低分子柑橘果膠對hct116細胞增殖的抑制作用及機制[J]. 中國普通外科雜志, 2011, 20(10): 1053-1057.
[30] HOSSEIN G, KESHAVARZ M, AHMADI S, et al. Synergistic effects of PectaSol-C modified citrus pectin an inhibitor of galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells[J]. Asian Pacific Journal of Cancer Prevention, 2013, 14(12): 7561-7568.
[31] JIANG J, ELIAZ I, SLIVA D. Synergistic and additive effects of modified citrus pectin with two polybotanical compounds, in the suppression of invasive behavior of human breast and prostate cancer cells[J]. Integrative Cancer Therapies, 2013, 12(2): 145-152.
[32] CHAUHAN D, LI G, PODAR K, et al. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells[J]. Cancer Research, 2005, 65(18): 8350-8358.
[33] FUKUMORI T, KANAYAMA H O, RAZ Z. The role of galectin-3 in cancer drug resistance[J]. Drug Resistance Updates, 2007, 10(3): 101-108.
[34] MAZUREK N, BYRD J C, SUN Y, et al. Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells[J]. Cell Death and Differentiation, 2012, 19(3): 523-533.
[35] VAYSSADE M, SENGKHAMPARN N, VERHOEF R, et al. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells[J]. Phytotherapy Research, 2010, 24(7): 982-989.
[36] ZHAO Q, BARCLAY M, HILKENS J, et al. Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis[J]. Molecular Cancer,2010, 9: 154-166.
[37] DANGE M C, SRINIVASAN N, MORE S K, et al. Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells[J]. Clinical and Experimental Metastasis, 2014, 31(6): 661-673.
[38] KIM H R, LIN H M, BILIRAN H, et al. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells[J]. Cancer Research, 1999, 59(16): 4148-4154.
[39] MATARRESE P, TINARI N, SEMERARO M L, et al. Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis[J]. FEBS Letter, 2000, 473(3): 311-315.
[40] FAN Yuying, CHENG Hairong, LIU Dan, et al. The inhibitory effectof ginseng pectin on L-929 cell migration[J]. Archives of Pharmacal Research, 2010, 33(5): 681-689.
[41] RADOSAVlJEVIC G, VOLAREVIC V, JOVANOVIC I, et al. The roles of galectin-3 in autoimmunity and tumor progression[J]. Immunologic Research, 2012, 52(1/2): 100-110.
[42] RAMACHANDRAN C, WILK B J, HOTCHKISS A, et al. Activation of human T-helper/inducer cell, T-cytotoxic cell, B-cell, and natural killer (NK)-cells and induction of natural killer cell activity against K562 chronic myeloid leukemia cells with modified citrus pectin[J]. BMC Complementary and Alternative Medicine, 2011, 11: 59-68.
[43] DEMOTTE N, WIE?RS G, van der SMISSEN, et al. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumorinfiltrating lymphocytes and favors tumor rejection in mice[J]. Cancer Research, 2010, 70(19): 7476-7488.
[44] PENG W, WANG H Y, MIYAHARA Y, et al. Tumor-associated galectin-3 modulates the function of tumor-reactive T cells[J]. Cancer Research, 2008, 68(17): 7228-7236.
[45] XUE Jing, GAO Xiqiang, FU Chunyan, et al. Regulation of galectin-3-induced apoptosis of Jurkat cells by both O-glycans and N-glycans on CD45[J]. FEBS Letter, 2013, 587(24): 3986-3994.
[46] KRALL S M, MCFEETERS R F. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates[J]. Journal of Agricultural and Food Chemistry, 1998, 46(4):1311-1315.
[47] MORRIS V J, GROMER A, KIRBY A R, et al. Using AFM and force spectroscopy to determine pectin structure and (bio) functionality[J]. Food Hydrocolloids, 2011, 25(2): 230-237.
[48] COURTS F L. Profiling of modified citrus pectin oligosaccharide transport across Caco-2 cell monolayers[J]. PharmaNutrition, 2013,1(1): 22-31.
[49] MORRIS V J, BELSHAW N J, WALDRON K W, et al. The bioactivity of modified pectin fragments[J]. Bioactive Carbohydrates and Dietary Fibre, 2013, 1(1): 21-37.
[50] GUNNING A P, BONGAERTS R J, MORRIS V J. Recognition of galactan components of pectin by galectin-3[J]. FASEB Journal, 2009,23(2): 415-424.
[51] GUNNING A P, PIN C, MORRIS V J. Galectin 3-β-galactobiose interactions[J]. Carbohydrate Polymers, 2013, 92(1): 529-533.
[52] CHENG Hairong, ZHANG Zhongyu, LENG Jiayi, et al. The inhibitory effects and mechanisms of rhamnogalacturonan I pectin from potato on HT-29 colon cancer cell proliferation and cell cycle progression[J]. International Journal of Food Science and Nutrition, 2013, 64(1): 36-43.
[53] NEWLACZYL A U, YU L G. Galectin-3- A jack-of-all-trades in cancer[J]. Cancer Letters, 2011, 313(2): 123-128.
[54] GAO Xiaoge, ZHI Yuan, SUN Lin, et al. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship[J]. Journal of Biological Chemistry, 2013, 288(47): 33953-33965.
[55] BERGMAN M, DJALDETTI D, SALMAN H, et al. Effect of citrus pectin on malignant cell proliferation[J]. Biomedicine and Pharmacotherapy, 2010, 64(1): 44-47.
[56] INNGJERDINGEN K T, TH?LE C, DIALLO D, et al. Inhibition of Helicobacter pylori adhesion to human gastric adenocarcinoma epithelial cells by aqueous extracts and pectic polysaccharides from the roots of Cochlospermum tinctorium A. Rich. and Vernonia kotschyana Sch. Bip. ex Walp[J]. Fitoterapia, 2014, 95: 127-132.
[57] SONG Weijuan, WANG Yalong, ZHANG Liyan, et al. Preparation and evaluation of polysaccharide sulfates for inhibiting Helicobacter pylori adhesion[J]. Carbohydrate Polymers, 2014, 103: 398-404.
[58] NAKAHARA S, RAZ A. Biological modulation by lectins and their ligands in tumor progression and metastasis[J]. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8(1): 22-36.
[59] KLYOSOV A A, WITCZAK Z J, PLATT D. Food-related carbohydrate ligands for galectins[M]//MOSSINE V V, GLINSKY V V,MAWHINNEY T P. Galectin. New Jersey: John Wiley & Sons Inc.,2008: 235-270.
[60] 張文博. 半乳糖凝集素-3及其抑制劑的研究進展[J]. 中國藥學(xué)雜志,2009, 44(3): 165-169.
[61] SATHISHA U V, JAYARAM S, NAYAKA M A H, et al. Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources[J]. Glycoconjugate Journal, 2007, 24(8): 497-507.
[62] JAYARAM S, KAPOOR S, DHARMESH S M. Pectic polysaccharide from corn (Zea mays L.) effectively inhibited multi-step mediated cancer cell growth and metastasis[J]. Chemico-Biological Interactions,2015, 235: 63-75.
[63] LIU Yan, AHMAD H, LUO Yongde, et al. Citrus pectin:characterization and inhibitory effect on fibroblast growth factorreceptor interaction[J]. Journal of Agricultural and Food Chemistry,2001, 49(6): 3051-3057.
[64] SALMAN H, BERGMAN M, DJALDETTI M, et al. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells[J]. Biomedicine Pharmacotherapy, 2008, 62(9): 579-582.
[65] PARK S N, NOH K T, JEONG Y I, et al. Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+T cells[J]. Experimental and Molecular Medicine, 2013, 45(2): e8. doi: 10.1038/emm.2013.14.
[66] 杜麗娟, 李拖平, 王娜, 等. 山楂果膠分解物抗氧化作用研究[J]. 食品研究與開發(fā), 2009, 30(6): 18-22.
[67] DENNIS J W, LAU K S, DEMETRIOU M, et al. Adaptive regulation at the cell surface by N-glycosylation[J]. Traffic, 2009, 10(11): 1569-1578.
Progress in Antitumor Mechanisms of Modified Pectin
ZHANG Wenbo1, LIU Zhenhua1, YUAN Xueyan2, GAO Qiyu1,*
(1. School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China;2. School of Public Health, Xinxiang Medical University, Xinxiang 453003, China)
Pectin is a complex class of plant polysaccharides, composed of a galacturonan backbone and neutral sugar side chains. Antitumor modified pectin fragments (MPs) can be prepared by physical and/or chemical modification of pectin to decrease its molecular mass, reduce its degree of esterification, modify its fine structure and improve its bioavailability. MPs can reportedly inhibit tumor growth, induce apoptosis, sensitize tumor cells to chemotherapeutic drugs, interfere with angiogenesis, suppress metastasis and modulate immunological responses. This review summarizes the antitumor mechanisms, bioabsorption mechanisms and structure-activity relationship of MPs. We also analyze the prospects for developing MPs-based functional foods.
galectin-3 (Gal-3); modified pectins (MPs); modified citrus pectin (MCP); pectin; antitumor activity
TS201.2
A
1002-6630(2015)15-0293-06
10.7506/spkx1002-6630-201515054
2015-03-30
河南省教育廳科學(xué)技術(shù)研究重點項目(12B350006;14A180018)
張文博(1974—),男,講師,博士,研究方向為多糖生化藥物。E-mail:zhangwenbo@xxmu.edu.cn
高啟禹(1979—),男,講師,博士研究生,研究方向為酶工程、寡糖工程。E-mail:gaog345@163.com