金 強,康 迅,榮元帥,田 飛
(1.中國石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,山東青島266580;2.中國石油化工有限公司西北石油地質(zhì)局,新疆烏魯木齊830011)
塔河油田奧陶系古巖溶地表河和地下河沉積和地球化學(xué)特征
金 強1,康 迅1,榮元帥2,田 飛1
(1.中國石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,山東青島266580;2.中國石油化工有限公司西北石油地質(zhì)局,新疆烏魯木齊830011)
塔河油田奧陶系發(fā)育了典型的巖溶儲層,大于70%的縫洞空間在巖溶發(fā)育期及巖溶埋藏期被沉積充填物、垮塌充填物和化學(xué)充填物所充填,造成巖溶儲層極度非均質(zhì)性。通過巖心觀察、測井資料解釋、巖礦和地球化學(xué)分析,建立縫洞充填物識別方法。結(jié)果表明:沉積砂泥巖占總縫洞充填物的60%以上,地表河和地下河沉積特征明顯,其中沉積砂巖是重要的油氣儲層;兩種河流均發(fā)育心灘和河漫灘,前者砂巖顆粒較粗,常為含礫的粗—中砂巖,地化分析表明為氧化環(huán)境產(chǎn)物;后者以細(xì)砂巖為主,石英含量比前者高40%,為弱氧化—弱還原水體沉積;地表河沉積砂泥巖常與坡積物互層,地下河沉積砂巖與垮塌角礫巖或潛流帶細(xì)粒沉積物呈互層;前者受壓實作用明顯,儲集物性差;后者壓實作用很弱,物性好、含油性好;地下河沉積砂巖是徑流巖溶帶重要的儲層,對于深入認(rèn)識塔河油田巖溶儲層地質(zhì)特征具有重要意義。
巖溶型儲層;地表河;地下河;沉積砂巖;儲集物性;塔河油田
塔河油田位于塔里木盆地塔北隆起高部位,奧陶系碳酸鹽巖在加里東晚期—海西早期經(jīng)歷了漫長的巖溶作用,鷹山組發(fā)育了完善的巖溶縫洞系統(tǒng)[1-4],目前已經(jīng)得到表征的有表層巖溶帶、滲流巖溶帶和徑流巖溶帶等[5],還包括比較完整的地表河和地下河系統(tǒng)[4,6-7],這些河流充填了大量的砂泥巖、角礫巖,如何對其儲集性能進行評價,影響到巖溶縫洞油藏原油采收率的提高。巖溶儲層研究難度非常大[8-11],相關(guān)研究單位投入了大量人力和物力資源進行研究[12-18],從地質(zhì)、地球物理、地球化學(xué)相結(jié)合綜合研究巖溶縫洞結(jié)構(gòu)和充填特征入手,評價和預(yù)測巖溶儲層及油氣分布規(guī)律,塔河油田巖溶地質(zhì)不斷取得進展[19-22]。前人意識到充填研究的重要性,并提出了巖相和地球化學(xué)研究方法[23-24],魯新便等[7]利用鉆井標(biāo)定的地震反演資料,刻畫出巖溶期地表河和地下河的形態(tài)和空間展布。在塔河油田主體區(qū)巖溶帶劃分的基礎(chǔ)上(即明確了什么是地表河、什么是地下河)[5],通過巖心描述及采樣分析(巖礦和沉積地球化學(xué))、測井和地震資料解釋,闡述兩種河流砂泥巖沉積相帶和沉積條件的差異性,分析其中砂巖的物性及其成巖特征。
在巖溶環(huán)境中,無論是地表河還是地下河,其河道最后都會被沉積砂泥、垮塌角礫和方解石等化學(xué)充填物所充填[25],因此首先要對其進行識別,才能進一步討論兩種河流的沉積特征。根據(jù)不同充填物在密度、放射性和電阻率上的差別,利用交會圖法實現(xiàn)了兩種河的充填物類型。
經(jīng)過統(tǒng)計,在兩種河道識別出3類充填物:沉積充填物,一般密度小于2.65 g/cm3,但是也有密度為2.65~2.68 g/cm3、泥質(zhì)含量指數(shù)Vsh>15%的沉積砂泥;化學(xué)充填物(以方解石為主),密度DEN>2.71 g/cm3、Vsh<6%;垮塌角礫,DEN>2.71 g/cm3、Vsh<8%,有些垮塌角礫的密度在2.68 g/cm3~2.71 g/ cm3、Vsh>15%(圖1)。徑流巖溶帶常有一些縫洞沒有全部被充填,未充填部分也能夠識別出來,其特征是Vsh<15%、DEN<2.6 g/cm3、深側(cè)向RLLD<50Ω· m。在此基礎(chǔ)上,提出塔河油田兩種河充填物性質(zhì)的判別參數(shù)(表1和表2)。
圖1 DEN-Vsh和RLLD-Vsh縫洞充填物交會圖Fig.1 Plots showing DEN vs Vshand RLLDvs Vshof different fillings in fracture-caves
表1 DEN-Vsh圖版識別地表河和地下河充填物參數(shù)Table 1 Parameters of DEN and Vshidentifying different fillings in surface rivers and subsurface rivers
表2 RLLD-Vsh圖版劃分地表河和地下河充填物參數(shù)Table 2 Parameters of RLLDand Vshidentifying fillings in surface rivers and subsurface rivers
圖2 地表河與地下河平面厚度和剖面相帶組成Fig.2 Isopach maps of sidenments filling in surface rivers and subsurface rivers
塔河油田范圍內(nèi),表層巖溶帶發(fā)育大量地表河[7,22],可以分為地表支流河和地表干流河[5];徑流巖溶帶地下河形成不同規(guī)模的溶洞,分別稱為末梢洞、支流洞和干流洞[5]。這里選擇塔河油田沙48單元東側(cè)表層巖溶帶的一條地表河和沙615單元徑流巖溶帶的一條地下河進行沉積充填對比分析。
通過井-震結(jié)合的綜合解釋,刻畫出奧陶系頂面古地貌形態(tài)和徑流帶地下河通道(包括地表河下切地貌[22]),利用上述縫洞充填物識別方法,查明了充填物性質(zhì),作出地表河和地下河沉積充填物厚度分布圖(圖2(a)、(c))。通過巖心和測井分析,作出了地表支流河-干流河巖性-巖相剖面圖和地下河干流洞-廳堂洞充填物剖面(圖2(b)、(d)),可以看出,地表河充填物主要為河流沉積物、以河道峽谷的坡積物為輔,顆粒比較粗,旋回性非常明顯。一般來說,地表主干河規(guī)模和充填物厚度要大于地表支流河,但S64井只打到地表干流河的邊緣,所以河道充填物包括沉積砂泥巖厚度小于TK426井鉆遇的地表支流河的厚度。地下河充填物也以河流沉積物為主,與洞穴垮塌角礫呈互層分布,沉積物顆粒比較細(xì),也具有明顯的正旋回。由于地表河和地下河均受巖溶峽谷和溶蝕縫洞空間的控制(坡度變化大、空間形態(tài)有限),沉積物相帶不能像一般河流相一樣劃分,本文中在地表河鑒別出心灘和河漫灘兩種相帶,在地下河分出心灘、河漫灘和潛流帶細(xì)粒沉積(圖2(b)、(d))。巖心觀察發(fā)現(xiàn),地下河心灘以細(xì)砂巖和粉砂巖為主,成分成熟度相當(dāng)高(石英顆粒含量為80%~93%),并且接近于石炭系東河塘組石英(東河1井,見圖3),遠遠高于地表河心灘的中砂巖—細(xì)砂巖(石英顆粒含量大于40%,見圖3),說明地下河沉積物搬運距離長、波洗次數(shù)多。地下河沉積砂巖的顆粒分選也比較好,孔隙度大于15%,物性好,因此徑流帶溶洞(廳堂洞-干流洞-支流洞-末梢洞)的地下河沉積物可能是重要的油氣儲層。
表層帶、滲流帶和徑流帶自上而下因與大氣的連通程度和巖溶水性質(zhì)不同,造成地表河和地下河沉積水體的氧化還原性和鹽度具有差異性。
微量元素在沉積物或沉積巖中的富集與否與沉積時的氧化還原狀態(tài)關(guān)系密切,如氧化條件下U、V等元素呈高價態(tài)(U6+、V5+),在水體中穩(wěn)定存在,易遷移;還原條件下則呈低價態(tài)(U4+、V3+),易沉淀[26-27],因此可以通過沉積充填物氧化還原敏感元素含量重建沉積時的沉積環(huán)境。稀土元素也可以解釋沉積環(huán)境的氧化還原條件,在氧化環(huán)境中Ce和Eu均為負(fù)異常[28]。熊國慶等[29]歸納了一些沉積環(huán)境氧化—還原性指標(biāo)(表3)。
沉積物中Sr/Ba比值反映沉積水體鹽度。劉寶珺[30]認(rèn)為,海相Sr/Ba為1~0.8,海陸交互相為0.16~0.8,陸相Sr/Ba<0.16,可選取0.5區(qū)分淡水與半咸水。
為了消除不同粒度樣品對分析結(jié)果的影響,選用了5口井的地表河和地下河典型樣品進行了微量和稀土元素分析,樣品主要為灰質(zhì)泥巖、礫間碎屑等細(xì)粒沉積物。
(1)地表河水介質(zhì)
S64井干流河沉積物兩塊樣品采自同一旋回,分別為心灘相含礫石中砂巖和河漫灘的水平層理灰質(zhì)泥巖,并在T416井坡積物的填隙物中采取一個灰質(zhì)泥樣品,為地表河細(xì)粒碎屑充填物。
三個地表河樣品與附近地下河樣品的微量元素對比(表4)發(fā)現(xiàn),地表河樣品V/Cr和V/(V+Ni)比值均較低(分別為2.93~2.31和0.75~0.70),處于氧化環(huán)境界限附近;坡積物填隙物V/Cr為1.39,V/(V+Ni)為0.58,為氧化環(huán)境產(chǎn)物[26]。地表河和坡積物樣品Sr含量較高,為(113~179)×10-6,Ba含量也較高,為(304~649)×10-6,所以Sr/Ba比值較低,為0.23~0.38。說明地表河水體鹽度低,應(yīng)該為淡水環(huán)境。
圖3 地表河與地下河心灘砂巖顆粒成分組成三角圖Fig.3 Triangular plot showing grain composition in sandstones of diaras filling in surface rivers and subsurface rivers
表3 沉積環(huán)境氧化還原性指標(biāo)Table 3 Oxidation-reduction parameters of trace elements for different sedimentary environments
(2)地下河水介質(zhì)
在T615井徑流帶干流洞取了三塊沉積物、在支流洞垮塌角礫巖的沉積填間物取了一塊樣品,在T403井廳堂洞取了兩塊沉積物樣品。其中,T615井5540.34 m石英粉砂巖和T403井5487.36 m灰質(zhì)泥巖為短期潛水面之下的細(xì)粒沉積物,其他為心灘樣品。
對比地下河樣品微量元素特征發(fā)現(xiàn)(表5),潛水面之下樣品V/Cr和V/(V+Ni)比值均較高,V/Cr為4.39和2.88,V/(V+Ni)為0.82和0.74,處于弱還原—還原環(huán)境;潛水面之上樣品V/Cr和V/(V+ Ni)比值均較低,V/Cr為1.07~2.39,V/(V+Ni)為0.52~0.71,整體處于氧化環(huán)境[26]。前者沉積物粒度細(xì),反映出靜水、弱還原—還原沉積水體。
地下河樣品Sr含量相對地表河整體不高,但變化顯著,為(69~130)×10-6,Ba含量也有此趨勢,為(97~260)×10-6,Sr/Ba比值為0.41~0.96,明顯高于地表河樣品,其中有4個樣品高于0.5。Sr/Ba比值指示地下河水體鹽度較高,為半咸水環(huán)境。
表4 表層帶和滲流帶縫洞沉積物微量元素組成特征Table 4 Trace element compositions in sedimentary fillings in surface karst zone and vadose zone
表5 地下河沉積物特征微量元素組成Table 5 Trace element compositions of sedimentary fillings in subsurface rivers
對地表河、地下河沉積砂泥巖、地表坡積角礫填隙物、地下垮塌角礫巖填隙物進行了稀土元素分析,并對奧陶系灰?guī)r(這里稱為原巖)進行了稀土元素分析(表6)??梢钥闯觯恿魃澳鄮r∑REE為(58.129~193.795)×10-6,顯著高于原巖的∑REE值。
地表河砂泥巖和坡積物稀土含量為(58.129~117.633)×10-6,整體低于地下河砂泥巖∑REE值,稀土元素輕重比(L/H)為9.966~10.116,δCe值為0.876~0.901,δEu值為0.542~0.557。
表6 塔河巖溶地表河與地下河沉積物樣品稀土元素組成特征Table 6 Rare earth element compositions of sedimentary fillings sampled from surface rivers and subsurface rivers in Tahe karsted reservoirs
地下河沉積砂泥巖∑REE值為(95.558~193.795)×10-6,明顯高于地表河砂泥巖沉積物;砂巖L/H比值為9.786~12.772,潛水面之下的細(xì)粒沉積物L(fēng)/H為10.041~12.772,高于潛水面之上的砂巖;δCe值為0.738~0.927,δEu值為0.498~ 0.580,與地表河相似,這兩個參數(shù)變化范圍比較大,反映地下河沉積水介質(zhì)氧化還原性有變化。
總體看,不論地表河還是地下河沉積物樣品的δCe值均小于1(0.738~0.927),表明這些沉積物均不是在還原環(huán)境中形成,而是在弱氧化—弱還原環(huán)境中沉積的;所有樣品的δEu為中等負(fù)異常(0.498~0.580),也說明為弱氧化環(huán)境,與微量元素分析結(jié)果基本一致。
所有地表河和地下河沉積物樣品的稀土元素配分模式非常相似,表現(xiàn)為右傾型,曲線中間Eu含量值略低(圖4),與現(xiàn)代河流沉積物配分模式圖在數(shù)值和趨勢上一致[31],但是地下河沉積物稀土元素含量整體比地表河高一些(圖4),說明地下河沉積物稀土元素相對富集。奧陶系灰?guī)r樣品的稀土元素含量僅約為地表河和地下河的1/10,說明巖溶發(fā)育期沉積的碎屑物質(zhì)與奧陶系原巖無關(guān)。
圖4 塔河巖溶期地表河和地下河沉積物樣品稀土元素配分模式Fig.4 REE distribution plots of sedimentary fillings sampled from surface rivers and subsurface rivers in Tahe karsted reservoirs
地表河沉積之后覆蓋了大量坡積物(圖2),又覆蓋了厚度超過5 000 m的石炭系—第四系沉積物,經(jīng)歷了強烈的壓實作用,孔隙性和滲透性大大降低;而地下河沉積物所受壓實作用很小,但是膠結(jié)作用可能較強,因此考察物性及其變化對于巖溶縫洞儲層油氣開發(fā)具有重要意義。
4.1 地表河沉積物
S64井的地表河系干流河,其內(nèi)有12.6 m地表河沉積物和1.2 m坡積物,前者粒度較細(xì)、分選相對較好,后者顆粒粗、分選極差,幾乎沒有儲集物性,但是地表河沉積物中明顯具有粗碎屑(含礫粗砂巖和礫巖)和細(xì)碎屑(中—細(xì)砂巖)之分,分別對其進行物性評價比較合理。地表河細(xì)碎屑沉積物孔隙度在2%~6%,滲透率小于10×10-3μm2;粗碎屑孔隙度為2%~10%,滲透率小于10×10-3μm2,整體物性均較差(圖5)。
圖5 S64井地表河沉積砂巖物性分布Fig.5 Porosity and permeability of sandstones in surface river fillings sampled from well S64
4.2 地下河沉積物儲集特征
地下河主要發(fā)育在徑流巖溶帶,其河水由末梢洞流向支流洞、干流洞或廳堂洞[5],廳堂洞和干流洞體積大、地下河充填廣泛,形成了巖溶儲層的重要儲集空間,因此本文中對廳堂洞和干流洞的物性特征進行介紹。
首先看塔河油田TK734井5572.0~5 593.0 m的廳堂洞,該洞高21 m,基本上被各類充填物所充填:洞底發(fā)育0.7 m化學(xué)淀積物,5 578.2~5 592.3 m為地下河細(xì)砂巖沉積,中間夾厚度為2.3 m的垮塌角礫巖,洞頂至5578.2 m為6.2 m的地下河中—粗砂巖沉積??赡苁且驗闆]有受到明顯的壓實作用,其地下河沉積充填物物性較好:孔隙度為12%~22%、滲透率主要在(10~1000)×10-3μm2;垮塌角礫巖物性也很好:孔隙度16~22%、滲透率(1~500)×10-3μm2;但是化學(xué)充填物孔隙度小于2%,滲透率小于10×10-3μm2,儲集性能差(圖6)。TK632井5570.75~5 587.75m井段發(fā)育一個干流洞,也是被充填物100%充填。洞底充填了1.25 m化學(xué)淀積物,5587.2~5584.1 m為地下河細(xì)砂巖沉積,中間夾1.5 m厚垮塌角礫巖,洞頂至5 578.2 m為6.2 m的中—細(xì)砂巖沉積。與廳堂洞相似,地下河砂巖儲集物性好:孔隙度主要在8%~22%、滲透率在(1~2 000)×10-3μm2;垮塌角礫巖物性也較好:孔隙度集中于16%~22%,滲透率范圍為(10~100)×10-3μm2;化學(xué)充填物孔隙度和滲透率均很低,可能不是儲層(圖7)。
圖6 TK734井廳堂洞各類充填物物性分布圖直方圖Fig.6 Porosity and permeability of sandstones in hall-cave fillings sampled from well TK734
圖7 TK632井干流洞物性分布Fig.7 Porosity and permeability of sandstones in main-channel cave fillings sampled from well TK632
為了將地表河與地下河不同部位沉積砂巖物性進行比較,本文中將T403井區(qū)的13口井地表河、地下河和滲流帶駐水洞沉積砂巖厚度、孔隙度及原油累計產(chǎn)量進行統(tǒng)計(表7),可見地表河物性差、原油產(chǎn)量低,地下河沉積的砂巖厚度大、物性好,原油產(chǎn)量高,地下溶洞發(fā)育的垮塌角礫巖物性也較好,對原油產(chǎn)量也有較大貢獻。
表7 T403井區(qū)不同縫洞結(jié)構(gòu)充填物分布和物性特征Table 7 Characteristics of sedimentary filling distributions and porosities as well as oil production from different wells in T403 area
(1)塔河油田奧陶系巖溶縫洞系統(tǒng)完整,尤其是地表河和地下河十分發(fā)育,但是河道基本上被沉積砂泥巖、垮塌角礫巖和化學(xué)淀積物充填。沉積砂泥巖占充填物的60%以上,砂巖的厚度、分布及物性控制了巖溶縫洞的含油性。
(2)兩種河流均發(fā)育正旋回的心灘和河漫灘砂巖沉積,前者以含礫的中—粗砂巖為主,與地表坡積物呈互層;后者主要為細(xì)砂巖和粉砂巖,分選好,石英顆粒相對含量比前者高40%,成分和結(jié)構(gòu)成熟度高,而且為弱氧化—弱還原、半咸水沉積。
(3)地下河砂巖壓實作用弱,孔隙度可達20%,是有利的儲層,開發(fā)這些砂巖中的原油可以提高塔河油田縫洞油藏原油采收率。
致謝 本文受到首席科學(xué)家李陽、袁向春的指導(dǎo),得到中國石化西北石油勘探開發(fā)研究院資料支持和魯新便等專家的幫助,在此一并表示感謝。
[1] 肖玉茹,王敦則,沈杉平.新疆塔里木盆地塔河油田奧陶系古洞穴型碳酸鹽巖儲層特征及其受控因素[J].現(xiàn)代地質(zhì),2003,17(1):92-98. XIAO Yuru,WANG Dunze,SHEN Shanping.The characteristics of paleocave carbonate reservoir and its control factors in Ordovician of the Tahe oil field in the Tarim Basin,Xinjiang[J].Geoscience,2003,17(1):92-98.
[2] 黃成毅,鄒勝章,潘文慶,等.古潮濕環(huán)境下碳酸鹽巖縫洞型油氣藏結(jié)構(gòu)模式:以塔里木盆地奧陶系為例[J].中國巖溶,2006,25(3):250-255. HUANG Chengyi,ZOU Shengzhang,PAN Wenqing,et al.Structure pattern of rift-cavity oil-gas pool in carbonate rock under moist paleo-environment:a case study on the Ordovician in Tarim Basin[J].Carsologica Sinica,2006,25(3):250-255.
[3] 蔡春芳,李開開,李斌,等.塔河地區(qū)奧陶系碳酸鹽巖縫洞充填物的地球化學(xué)特征及其形成流體分析[J].巖石學(xué)報,2009,25(10):2399-2404. CAI Chunfang,LI Kaikai,LI Bin,et al.Geochemical characteristics and origins of fracture and vug-fillings of the Ordovician in Tahe Oilfield,Tarim Basin[J].Acta Petrologica Sinica,2009,25(10):2399-2404.
[4] 李陽,范智慧.塔河奧陶系碳酸鹽巖油藏縫洞系統(tǒng)發(fā)育模式與分布規(guī)律[J].石油學(xué)報,2011,32(1):101-106. LI Yang,F(xiàn)AN Zhihui.Developmental pattern and distribution rule of the fracture-cavity system of Ordovician carbonate reservoirs in the Tahe Oilfield[J].Acta Petrolei Sinica,2011,32(1):101-106.
[5] 金強,田飛.塔河油田巖溶型碳酸鹽巖縫洞結(jié)構(gòu)研究[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2013,37(5):15-21. JIN Qiang,TIAN Fei.Investigation of fracture-cave constructions of karsted carbonate reservoirs of Ordovician in Tahe Oilfield,Tarim Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(5):15-21.
[6] 何治亮,彭守濤,張濤.塔里木盆地塔河地區(qū)奧陶系儲層形成的控制因素和復(fù)合-聯(lián)合成因機制[J].石油與天然氣地質(zhì),2010,31(6):743-752. HE Zhiliang,PENG Shoutao,ZHANG Tao.Controlling factors and genetic pattern of the Ordovician reservoirs in the Tahe area,Tafim Basin[J].Oil&Gas Geology,2010,31(6):743-752.
[7] 魯新便,何成江,鄧光校,等.塔河油田奧陶系油藏喀斯特古河道發(fā)育特征描述[J].石油實驗地質(zhì),2014,36(3):268-274. LU Xinbian,HE Chengjiang,DENG Guangxiao,et al. Development features of karst ancient river system in Ordovican reservoirs,Tahe Oil Field[J].Petroleum Geology&Experiment,2014,36(3):268-274.
[8] CRAIG D H.Caves and other features of Permian Karst in sand Andres dolomite,Yates Field reservoir,West Texas[M]//JAMES N P,CHOQUETTE.Paleokarst.Paris:Springer-Verlag,1988:342-363.
[9] 任美鍔,劉振中,王飛燕,等.中國巖溶發(fā)育規(guī)律的若干問題[J].南京大學(xué)學(xué)報(自然科學(xué)版),1979,15(4):95-108.REN Meie,LIU Zhenfei,WANG Feiyan,et al.Karst of China and principles of its development[J].Journal of NanjingUniversity(Natural Sciences),1979,15(4):95-108.
[10] DEREK C Ford.Paleokarst as a target for modern karstification[J].Carbonates and Evaporites,1995,10(2):138-147.
[11] DIXON J W.The role of small caves as bat hibernacula in Iowa[J].Journal of Cave and Karst Studies,2011,73(1):21-27.
[12] 張文博,金強,徐守余,等.塔北奧陶系露頭古溶洞充填特征及其油氣儲層意義[J].特種油氣藏,2012,19(3):50-54. ZHANG Wenbo,JIN Qiang,XU Shouyu,et al.Paleocavern filling characteristics and hydrocarbon reservoir implication in the Ordovician outcrops in the northern Tarim Basin[J].Special Oil and Gas Reservoirs,2012,19(3):50-54.
[13] EDWARD.Reservoir implications of modern Karst Topography[J].AAPG Bulletin,1999,83(11):1774-1794.
[14] FRANCISCO Gutiérrez,GUERRERO Jesús,PEDRO Lucha.A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain[J].Environmental Earth Sciences,2008,53(5):993-1006.
[15] 李定龍.古巖溶和古巖溶地球化學(xué)概念與研究展望[J].高校地質(zhì)學(xué)報,1999,5(2):232-240. LI Dinglong.Paleokarst and paleocarst geochemistry:concepts,current situation and perspectives[J].Geological Journal of China University,1999,5(2):232-240.
[16] BENOIT Vincent,LAURENT Emmanuel,PASCAL Houel. Geodynamic control on carbonate diagenesis:petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin[J].Sedimentary Geology,2007,197(3):267-289.
[17] 夏日元,唐建生,鄒勝章,等.碳酸鹽巖油氣田古巖溶研究及其在油氣勘探開發(fā)中的應(yīng)用[J].地球?qū)W報,2010(5):503-509. XIA Riyuan,TANG Jiansheng,ZOU Shengzhang,et al.Palaeo-karst research of the carbonate oil-gas field and its application to oil-gas exploration and development[J].Acta Geoscientica Sinica,2010(5):503-509.
[18] LOUCKS R G.Paleocave carbonate reservoirs:origins,burial-depth modifications,spatial complexity,and reservoir implications[J].AAPG Bulletin,1999,83(11):1795-1834.
[19] LOUCKS R G.A review of coalesced,collapsed-paleocave systems and associated suprastratal deformation[J].Acta Carsologica,2007,36(1):121-132.
[20] 趙群,曲壽利,薛詩桂,等.碳酸鹽巖溶洞物理模型地震響應(yīng)特征研究[J].石油物探,2010,49(4):351-358. ZHAO Qun,QU Shouli,XUE Shigui,et al.Study on the seismic response characteristics on the physical model of carbonate cave[J].Geophysical Prospecting for Petroleum,2010,49(4):351-358.
[21] 陳冬,魏修成.塔河地區(qū)碳酸鹽巖裂縫性儲層的測井評價技術(shù)[J].石油物探,2010,49(2):147-152. CHEN Dong,WEI Xiucheng.Welllogging evaluate technology for fractured carbonate reservoirs in Tahe area[J].Geophysical Prospecting for Petroleum,2010,49(2):147-152.
[22] 田飛.塔河油田碳酸鹽巖巖溶縫洞結(jié)構(gòu)和充填模式研究[D].青島:中國石油大學(xué),2014. TIAN Fei.Investigation on construction and filling model of carbonate paleokarst fracture-caves in the Tahe Oilfield[D].Qingdao:China University of Petroleum,2014.
[23] 蔡春芳,李開開,李斌,等.塔河地區(qū)奧陶系碳酸鹽巖縫洞充填物的地球化學(xué)特征及其形成流體分析[J].巖石學(xué)報,2009,25(10):2399-2404. CHAI Chunfang,LI Kaikai,LI Bin,et al.Geochemistry of fracture-cave fillings in Ordovician carbonates in Tahe area and their forming fluid[J].Acta Petrologica Sinica,2009,25(10):2399-2404.
[24] 鐘建華,毛毳,李勇,等.塔北硫磺溝奧陶系含油古溶洞的發(fā)現(xiàn)及意義[J].中國科學(xué)(地球科學(xué)),2012,42(11):1660-1680. ZHONG Jianhua,MAO Cui,LI Yang,et al.Discovery of the ancient Ordovician oil-bearing karst cave in Liuhuanggou,North Tarim Basin,and its significance[J].Science China:Earth Sciences,2012,55:1406-1426.
[25] 金強,康遜,田飛.塔河油田奧陶系古巖溶徑流帶縫洞化學(xué)充填物成因和分布[J].石油學(xué)報,2015,36(7):791-798. JIN Qiang,KANG Xun,TIAN Fei.Investigations on chemical fillings in fracture-caves in Paleo-Karst runoff zone in Ordovician in Tahe Oilfield,Tarim Basin[J]. Acta Petrolei Sinica,2015,36(7):791-798.
[26] TRIBOVILLARD N,ALGEO T J,LYONS T,et al. Trace metals as paleoredox and paleoproductivity proxies:an update[J].Chemical Geology,2006,232:12-32.
[27] 常華進,儲雪蕾,馮連君,等.氧化還原敏感微量元素對古海洋沉積環(huán)境的指示意義[J].地質(zhì)論評,2009,55(1):91-99. CHANG Huajin,CHU Xuelei,F(xiàn)ENG Lianjun,et al. Redox sensitive trace elements as paleoenvironments proxies[J].Geological Review,2009,55(1):91-99.
[28] 伊海生,林金輝,趙西西,等.西藏高原沱沱河盆地漸新世—中新世湖相碳酸鹽巖稀土元素地球化學(xué)特征與正銪異常成因初探[J].沉積學(xué)報,2008,26(1):1-10. YI Haisheng,LIN Jinhui,ZHAO Xixi,et al.Geochemistry of rare earth elements and origin of positive Europium anomaly in Miocene-Oligocene lacustrine carbonates from Tuotuohe Basin of Tibetan Plateau[J].Acta Sedimentologica Sinica,2008,26(1):1-10.
[29] 熊國慶,江新勝,蔡習(xí)堯,等.藏南白堊系泥、頁巖微量、稀土元素特征及氧化—還原環(huán)境分析[J].地球科學(xué)進展,2011,25(7):730-744. XIONG Guoqing,JIANG Xinsheng,CAI Xiyao,et al. The characteristics of trace element and REE geochemistry of the Cretaceous mudrocks and shales from Southern Tibet and its analysis of redox condition[J].Advances in Earth Science,2011,25(7):730-744.
[30] 劉寶珺,曾允孚.巖相古地理基礎(chǔ)和工作方法[M].北京:地質(zhì)出版社,1985:133-137.
[31] YANG Shouye,JUNG Hoisoo,CHOI Mansik,et al. The rare earth element compositions of the Changjiang(Yangtze)and Huanghe(Yellow)river sediments[J]. Earth and Planet Science Letters,2002,201:407-419.
(編輯 徐會永)
Sedimentary and geochemical characteristics of sandstones and mudstones deposited in surface rivers and subsurface rivers in Ordovician karsted carbonates,Tahe Oilfield
JIN Qiang1,KANG Xun1,RONG Yuanshuai2,TIAN Fei1
(1.School of Geosciences in China University of Petroleum,Qingdao 266580,China;2.Xibei Bureau of Petroleum Geology,SINOPEC,Urumqi 830011,China)
Ordovician carbonates in Tahe Oilfield were typical karst reservoirs in the world.Fracture-caves were general storage spaces for oil and gas in the karst carbonates,but the spaces more than 70%had been filled with river deposits,collapsed breccias and chemical materials,which resulted in heavy heterogeneity in the karst reservoirs.By investigating drilling cores and well-logging and by using rock-mineral and geochemical measurements on some core samples,the authors found that sedimentary sands and muds were over 60%in the total fracture-cave fillings;the sediments were obviously in sequences of surface rivers and subsurface rivers which were developed in the carbonates during the karst on the Tabei uprise;and the sandstones deposited in the subsurface rivers were important reservoirs in caves of runoff karst zone.Channel bars and river banks are identified from the sediments deposited in either surface rivers or subsurface rivers.The sandstones deposited in surface rivers are usually in coarse-to-medium grain size,but in the subsurface rivers they are characterized as fine-sands or silt-sands.Composition and texture maturities of the subsurface-river sandstones are much higher than those of surface-river sandstones:the quarts contents in the subsurface-river sand-stones is 40%higher than those in surface-river sandstones.The surface-river sandstones were deposited in open oxidative water,and interbedded with slope wash breccias;in comparison the subsurface-river sandstones were deposited in weak-oxidative to weak reductive waters,and interbedded with collapsed breccias,which were in good physical condition for oil and gas.The subsurfaceriver sandstones are good reservoirs in runoff karst zones in Tahe Oilfield.Oil production from the sandstones is expected to increase the oil-recovery in the karst reservoirs.
karsted carbonate reservoir;surface-river;subsurface-river;sedimentary sandstone;physical property;Tahe Oilfield
TE 121.31
A
金強,康迅,榮元帥,等.塔河油田奧陶系古巖溶地表河和地下河沉積和地球化學(xué)特征[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2015,39(6):1-10.
JIN Qiang,KANG Xun,RONG Yuanshuai,et al.Sedimentary and geochemical characteristics of sandstones and mudstones deposited in surface rivers and subsurface rivers in Ordovician karsted carbonates,Tahe Oilfield[J].Journal of China University of Petroleum(Edition of Natural Science),2015,39(6):1-10.
1673-5005(2015)06-0001-10
10.3969/j.issn.1673-5005.2015.06.001
2015-05-20
國家重點基礎(chǔ)研究發(fā)展計劃(2011CB201001)
金強(1956-),男,教授,博士,博士生導(dǎo)師,研究方向為油氣地質(zhì)。E-mail:jinqiang@upc.edu.cn。