周 維, 徐 鋼, 李小英
(1.中船重工電機(jī)科技股份有限公司,山西 太原 030027;2.寶雞航天動(dòng)力泵業(yè)有限公司,陜西 寶雞 721001)
隨著電機(jī)產(chǎn)品在水下領(lǐng)域的應(yīng)用,薄壁零部件除了常規(guī)的應(yīng)力外,還在水下承受外部壓力,因此必須具有足夠的強(qiáng)度、剛度和穩(wěn)定性.使科學(xué)合理的設(shè)計(jì)該類零件尤為重要。以往大多采用經(jīng)驗(yàn)或類比法進(jìn)行設(shè)計(jì),不能準(zhǔn)確計(jì)算出各部分的受力變形情況,具有很大的盲目性,為產(chǎn)品安全埋下了隱患。本文對(duì)某水下電機(jī)的關(guān)鍵零件進(jìn)行了三維建模,利用有限元法進(jìn)行了強(qiáng)度分析、剛度分析,同時(shí)對(duì)穩(wěn)定性進(jìn)行了設(shè)計(jì),根據(jù)分析結(jié)果對(duì)零件進(jìn)行了改進(jìn),收到了滿意的效果,預(yù)防了可能發(fā)生的安全隱患。
根據(jù)資料可知,當(dāng)圓筒的壁厚遠(yuǎn)小于直徑時(shí)(D/δ≥20),稱之為薄壁圓筒,零件就屬于此類零件。外壓薄壁零件的失效形式主要有三種:強(qiáng)度不足引起的失效,將產(chǎn)生壓縮屈服失效;剛度不足而引起的失效,將產(chǎn)生過大的變形;穩(wěn)定不足引起的失效(稱作失穩(wěn)),突然失去零件原有形狀。
基于此,對(duì)零件不但需要進(jìn)行強(qiáng)度分析、剛度分析,同時(shí)還應(yīng)對(duì)穩(wěn)定性進(jìn)行分析設(shè)計(jì)。
某水下電機(jī)零件二維結(jié)構(gòu)圖如圖1所示,由于產(chǎn)品在水下運(yùn)行,設(shè)計(jì)時(shí)材料選為1Cr18Ni9Ti,工作時(shí)承受2MPa外壓,變形后位移圓周方向不大于0.4mm。
圖1 零件二維結(jié)構(gòu)圖(mm)
現(xiàn)利用三維設(shè)計(jì)軟件對(duì)零件進(jìn)行建模,在進(jìn)行有限元分析時(shí),必須對(duì)實(shí)際的結(jié)構(gòu)模型進(jìn)行適當(dāng)?shù)暮?jiǎn)化,該模型的建立是為有限元分析做準(zhǔn)備,因此忽略對(duì)分析結(jié)果影響很小的結(jié)構(gòu),以簡(jiǎn)化分析過程,突出強(qiáng)度和剛度的重要性,簡(jiǎn)化后零件三維模型如下頁(yè)圖2所示。
2.2.1 強(qiáng)度和剛度分析
1)傳統(tǒng)理論計(jì)算。
圖2 零件三維模型
圖3 圓筒應(yīng)力狀態(tài)
從圓筒中截取一部分,應(yīng)力狀態(tài)如下頁(yè)圖3所示,若在筒壁的縱向截面上應(yīng)力為σ,則內(nèi)力為FN=σtL,在這一部分圓筒內(nèi)壁的微分面積上壓力在y方向的投影為,通過積分求出上述投影的總和為
公式中:p為零件承受外壓,MPa;D為零件外直徑,mm;t為零件壁厚,mm。
2)有限元計(jì)算。
現(xiàn)用有限元軟件來(lái)模擬零件承壓過程,驗(yàn)證理論計(jì)算的正確性,同時(shí)為零件改進(jìn)提供數(shù)據(jù)依據(jù)。零件在承壓過程時(shí)壓力是逐步緩慢加載至最大,并保持不變.因此分析類型可以確定為“靜態(tài)”。接著進(jìn)行網(wǎng)格劃分。本文采用的解法是FFEplus算法,并采用p-自適應(yīng)方法調(diào)整,將有限元分析的初始化設(shè)置完成后,運(yùn)行計(jì)算,得到分析結(jié)果。為使變形結(jié)果較為清楚且又不夸張的顯示,將變形比例定為放大100倍。Simulation在管理器里生成應(yīng)力分布云圖,如圖4所示,最大應(yīng)力為144MPa。受載荷后應(yīng)變圖如圖5所示,零件變形后最大位移位為0.33mm。
圖4 應(yīng)力分布云圖
圖5 受載荷后應(yīng)變圖
通過上面的有限元分析,各部位的應(yīng)力都已清楚地表示,由圖4可以看出,最大應(yīng)力為143.8MPa,與理論計(jì)算基本一致,證明模型的建立和約束加載正確。由圖5可以看出,最大位移為0.05mm。滿足設(shè)計(jì)要求的0.4mm。最大應(yīng)力小于材料的屈服極限,安全系數(shù)n=205/143=1.43,可以得出設(shè)計(jì)可以滿足強(qiáng)度的需要。
2.2.2 穩(wěn)定性分析
1)傳統(tǒng)理論計(jì)算。
當(dāng)薄壁零件受外壓時(shí),往往在強(qiáng)度很富裕的情況下,卻突然失去零件原有形狀,把這一現(xiàn)象稱作失穩(wěn)現(xiàn)象。外壓零件的失穩(wěn)是它的固有特性,和其它構(gòu)件(例如:壓桿)失穩(wěn)一樣是獨(dú)立于強(qiáng)度以外的問題,因此需要對(duì)薄壁零件進(jìn)行另外的穩(wěn)定性設(shè)計(jì)。外壓筒體失穩(wěn)時(shí),圓筒由圓形可能躍變成兩個(gè)波,三個(gè)波,四個(gè)波……n=正整數(shù)的波形,如圖6所示。
圖6 外壓圓筒失穩(wěn)時(shí)的
2)判斷零件圓筒類型。
外壓零件穩(wěn)定性分析時(shí),首先需要根據(jù)計(jì)算長(zhǎng)度的大小判定是長(zhǎng)圓筒、短圓筒還是剛性筒。
公式中:Lcr1為長(zhǎng)圓筒與短圓筒臨界長(zhǎng)度,mm;D為零件外直徑,mm;t為零件壁厚,mm。
公式中:Lcr2為短圓筒與剛性筒臨界長(zhǎng)度,mm;σs為材料的屈服強(qiáng)度,MPa;E為材料的彈性模量,MPa。
由Lcr2<L=134mm<Lcr1可以判斷此圓筒為短圓筒。
3)臨界壓力計(jì)算。
短圓筒的臨界壓力可由拉默公式計(jì)算
計(jì)算許用外壓小于外壓,證明在工作中會(huì)出現(xiàn)不可預(yù)知的危險(xiǎn)。
4)有限元計(jì)算。
定義屈曲模式數(shù)為2,并選擇“Direct sparse”為解算器,對(duì)第一階屈曲模式創(chuàng)建位移圖解,如圖7所示,可以看出薄壁圓筒由圓形躍變成六個(gè)波,這樣的變形是屈曲失效剛發(fā)生時(shí)的近似形狀。
圖7 第一階屈曲位移圖解
由圖8可以看出,屈曲的安全系數(shù)為1.12,而理論計(jì)算的安全系數(shù)n=2.28/2=1.14,結(jié)果也較為接近。這里需要說(shuō)明的是屈曲模態(tài)表示屈曲開始時(shí)的形狀,并預(yù)測(cè)屈曲后的形狀,但不表示變形的大小。
圖8 屈曲的安全系數(shù)
屈曲安全系數(shù)為(1.12)小于強(qiáng)度安全系數(shù)(1.43),由此可見屈服是主導(dǎo)失效形式,因此需要增加臨界壓力。由臨界壓力公式可知,增加臨界壓力的途徑主要有:提高E值、增加壁厚t與降低L值。提高E值是指選擇高質(zhì)量的高E值材質(zhì),但是鋼材的E值差別不大;增加壁厚t則增加了零件重量;降低L值受產(chǎn)品軸向尺寸要求制約。優(yōu)化零件設(shè)計(jì)時(shí),可以綜合幾種因素進(jìn)行有限元仿真計(jì)算,得出經(jīng)濟(jì)合理的方案,本文不再贅述。
本文在進(jìn)行承受外壓的薄壁圓筒設(shè)計(jì)過程中,使用了彈塑性力學(xué)理論與有限元分析相結(jié)合的方法,將薄壁圓筒的強(qiáng)度、剛度設(shè)計(jì)校核建立在受力分析的基礎(chǔ)上,同時(shí)考慮了穩(wěn)定性的設(shè)計(jì)校核,可見將有限元法運(yùn)用到零件的設(shè)計(jì),可以有效的改進(jìn)結(jié)構(gòu),降低了零件設(shè)計(jì)風(fēng)險(xiǎn),從而達(dá)到了降低企業(yè)成本,節(jié)省資源的目的??蔀樵O(shè)計(jì)該類產(chǎn)品開發(fā)提供借鑒。
[1]劉鴻文.材料力學(xué)[J].高等教育出版社,2012(2):10-12.
[2]機(jī)械設(shè)計(jì)手冊(cè)[J].機(jī)械工業(yè)出版社,2011,5(8):20.
[3]E·維德曼,W·克倫貝格爾.電機(jī)結(jié)構(gòu)[J].機(jī)械工業(yè)出版社,2012(2):30.
[4]江洪等.Solidworks有限元分析實(shí)例解析[J].機(jī)械工業(yè)出版社,2008(3):40-42.
[5]陳超祥 葉修梓主編.SolidWorks Simulation高級(jí)教程[D].2011版.北京:機(jī)械工業(yè)出版社.
[6]GB150-1998.鋼制壓力容器[J].國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局,2007(6):30.
[7]陳盛秒.薄壁外壓容器設(shè)計(jì)的公式法[J].石油化工設(shè)備技術(shù),2008,29(6):15.