王紅英,姜國(guó)平
(浙江迪耳化工有限公司,浙江金華321016)
幾種由雙丙酮葡萄糖合成的具有抗癌活性的化合物
王紅英,姜國(guó)平
(浙江迪耳化工有限公司,浙江金華321016)
綜述了幾種具有抗癌活性的化合物D-阿洛糖、氨烷基支鏈糖衍生物、多糖衍生物、脲氟嘧啶、鉑-葡萄糖復(fù)合物、糖基烷化劑和光動(dòng)力治療劑等,以及利用雙丙酮葡萄糖合成這些抗癌活性物的研究。
雙丙酮葡萄糖;D-阿洛糖;氟尿嘧啶;順鉑;氮芥;光動(dòng)力療法
雙丙酮葡萄糖,化學(xué)名1,2:5,6-二-O-亞異丙基-D-呋喃葡萄糖,是D-葡萄糖與丙酮一步縮合得到的二亞異丙基衍生物,是重要的醫(yī)藥中間體,已用于氯芐苷[1]、氯法拉濱[2]等藥物的合成。此外,以其為起始物合成抗凝血?jiǎng)3-4]、抗生素[5-13]、抗癌藥物[2]、綠色殺蟲劑[14]、手性合成子[15]、可降解生物相容性聚合物[16]的研究也十分活躍。本文闡述了幾種具有抗癌活性的化合物,以及利用雙丙酮葡萄糖合成D-阿洛糖、氨烷基支鏈糖衍生物、多糖衍生物、脲氟嘧啶、鉑-葡萄糖復(fù)合物、糖基烷化劑和光動(dòng)力療法藥劑的研究。
1.1 D-阿洛糖
日本香川大學(xué)的德田雅明教授用人體癌細(xì)胞進(jìn)行試驗(yàn),給在玻璃皿中的約1萬個(gè)肝癌細(xì)胞施以各種各樣的稀有糖類,并觀察癌細(xì)胞的變化。結(jié)果發(fā)現(xiàn):給癌細(xì)胞施以“D-阿洛糖”之后,肝癌細(xì)胞增殖速度放緩。研究認(rèn)為,由于D-阿洛糖的結(jié)構(gòu)與葡萄糖相似,因此可能具有阻礙癌細(xì)胞的葡萄糖代謝的作用。
D-阿洛在自然界中僅微量存在。雙丙酮葡萄糖3位氧化、還原,轉(zhuǎn)變成雙丙酮阿洛糖,脫除縮丙酮保護(hù)得到D-阿洛糖[17]。
1.2 氨烷基支鏈糖衍生物
研究表明,5-位含氧取代或脫氧取代的氨烷基支鏈呋喃木糖衍生物對(duì)人體NCI-H460肺癌細(xì)胞、MCF7乳腺癌細(xì)胞和SF-268中樞神經(jīng)癌細(xì)胞具有一定的抑制活性[18]。
3-氯-1-丙醇烷基化雙丙酮葡萄糖的3-位,溴代癸烷繼續(xù)烷基化烷氧基的C-3位,選擇性脫除5,6-位保護(hù)、并氧化裂解為醛。還原醛基并與1-(ω-鹵烷基)-胺類化合物縮合,或還原后羥基苯甲磺?;⒂貌泛椭侔啡〈妆交酋;謩e得到5-位含氧取代或脫氧取代的3-O-{3'-(癸氧烷)丙基}-α-D-呋喃木糖衍生物。
1.3 多糖衍生物
香菇、靈芝和白參多糖或通過非特異性地激發(fā)和增強(qiáng)機(jī)體的免疫功能,激活宿主產(chǎn)生抗腫瘤免疫應(yīng)答,或直接損傷腫瘤細(xì)胞DNA、阻滯細(xì)胞分裂周期、影響腫瘤基因表達(dá)、誘導(dǎo)腫瘤細(xì)胞分化以及提高體內(nèi)激素水平等誘導(dǎo)腫瘤細(xì)胞凋亡和癌細(xì)胞分化逆轉(zhuǎn)。香菇、靈芝和白參多糖均是β-D-(1→3)葡聚糖主鏈以及β-D-(1→3)和β-D-(1→6鏈連接的D-葡萄糖兩個(gè)支鏈所組成的多聚糖。研究發(fā)現(xiàn),若以上多糖結(jié)構(gòu)中插入α-(1→3)連接的苷鍵可抑制U14腫瘤。例如,以雙丙酮葡萄糖為糖基供體合成的含有α-(1→3)連接的六聚葡萄糖衍生物[19]對(duì)腫瘤的生物測(cè)定結(jié)果顯示,該寡糖衍生物不僅抑制U14腫瘤的生長(zhǎng),而且與環(huán)磷酰胺聯(lián)用,可增加環(huán)磷酰胺對(duì)S180的抑制活性,并降低環(huán)磷酰胺的毒性[20]。
1.4 氟尿嘧啶
氟尿嘧啶是抗代謝類腫瘤抑制劑。單磷酸胸腺嘧啶核甙(TMP)是細(xì)胞增殖所必需的,細(xì)胞質(zhì)胸苷激酶(C-TK)在TMP的生物合成中充當(dāng)著重要角色,被認(rèn)為是人體腫瘤細(xì)胞的重要的前體,因此阻斷TMP的生物合成或選擇性抑制C-TK的活性可有效減少腫瘤細(xì)胞,研究發(fā)現(xiàn)5-烷硫基-5-脫氧胸腺嘧啶核苷衍生物是C-TK的非競(jìng)爭(zhēng)性抑制劑[21-23]。
雙丙酮葡萄糖3位苯甲磺?;⒂梅尤〈x擇性脫除5,6位保護(hù),高碘酸鹽氧化、硼氫化鈉還原成醛,醛的5位苯甲磺?;笈c硫代乙酸鉀反應(yīng),脫除1,2位保護(hù),乙酰化產(chǎn)物與適當(dāng)?shù)募淄楣杌暮怂峥s合得到5-氟尿嘧啶、尿嘧啶和胸腺嘧啶的1-(5-硫乙酰-3-脫氧-3-氟-β-D-木糖基)-核苷[24]。
1.5 糖基烷化劑
氮芥是雙氯乙胺類烷化劑。左旋苯丙氨酸氮芥、苯丁酸氮芥、環(huán)磷酰胺等是最早用于臨床并取得突出療效的抗腫瘤藥物。多羥基化合物通常被認(rèn)為是細(xì)胞毒素的載體,研究表明糖與氮芥形成的化合物可以提高氮芥對(duì)腫瘤細(xì)胞的特異性,并降低氮芥的毒副作用。
雙丙酮葡萄糖脫除5,6位保護(hù),3,5位苯亞甲基保護(hù)、6位苯甲磺?;笠来闻c氨基醇、亞硫酰氯反應(yīng),脫除1,2位和3,5位保護(hù)得到“單臂”或“雙臂”類氨基糖氮芥[25]。雙丙酮葡萄糖脫除5,6位保護(hù)后與氮芥磷酰二氯反應(yīng),可得到糖基環(huán)磷酰胺類化合物[26]。
1.6 鉑-葡萄糖復(fù)合物
自B.Rosenberg等發(fā)現(xiàn)順鉑(順式-[PtCl2(NH3)2])的抗癌效應(yīng)后,它就成為癌癥的化療藥物,但由于使用順鉑會(huì)導(dǎo)致嘔吐并毒害腎臟和神經(jīng)系統(tǒng),加上其水溶性差,限制了鉑(Ⅳ)腫瘤細(xì)胞毒素劑的使用。雙丙酮葡萄糖與鉑(Ⅳ)化合物[PtMe3(Me2CO)3]BF4反應(yīng)生成的三甲基鉑-葡萄糖復(fù)合物不僅可以降低鉑(Ⅳ)化合物的毒副作用,而且可增加其水溶性[27]。
1.7 光動(dòng)力治療劑
光動(dòng)力療法是治療局部和淺表性癌癥的一種方便、安全和有效的方法,酞菁硅(Ⅳ)是光動(dòng)力療法所使用的典型的光敏劑之一,糖基綴合的酞菁硅(Ⅳ)具有更好的水溶性和更高的光激發(fā)細(xì)胞毒性[28]。
化療藥物在殺滅癌細(xì)胞的同時(shí)也殺死正常細(xì)胞,而且部分腫瘤對(duì)藥物不敏感,同時(shí)化療不可能徹底殺死體內(nèi)所有癌細(xì)胞,在一定的時(shí)間內(nèi)癌細(xì)胞還會(huì)復(fù)發(fā)或轉(zhuǎn)移,因此探索和研究具有毒副作用小、靶向性好、活性高及生物利用度高的抗癌藥物顯得尤為重要。本文所述的烷化劑、氟尿嘧啶和順鉑等均具有一定的毒副作用,但經(jīng)糖基修飾后其毒性降低,水溶性增加有利于藥物的吸收,此外,糖類本身作為參與生命細(xì)胞活動(dòng)的物質(zhì),不僅是組成細(xì)胞的基本單元之一,而且在細(xì)胞識(shí)別和生物反應(yīng)中起著重要作用,因此用糖修飾的藥物的活性和靶向性也會(huì)提高[29]。而本文所述的D-阿洛糖、氨烷基支鏈糖衍生物、多糖衍生物均是糖類物質(zhì),糖類物質(zhì)本身能作用于細(xì)胞的受體且與細(xì)胞表面結(jié)合的受體多,毒副作用小,水溶性好。因此糖基修飾的抗癌活性物質(zhì)和具有抗癌活性的糖類衍生物均具有很好的藥用開發(fā)價(jià)值。
[1]Rossi A,Walter A,Kessler W,et al.Antiinflammatory glucose derivatives:US,3655884[P].1972-4-11.
[2]Bauta W E,Burke B D,Schulmeier,B E,et al.Process for preparing purine nucleosides:US,7528247[P].2009-5-5.
[3]Gavard O,Hersant Y,Alais J,et al.Efficient preparation of three building blocks for the synthesis of heparan sulfate fragments:towards the combinatorial synthesis of oligosaccharides from hypervariable regions[J].Eur.J.Org.Chem.,2003:3603-3620.
[4]Eva K B,Janos K,Sandor B,et al.Novel anticoagulant glycosides and pharmaceutical compositions thereof:WO,9749716[P].1997-12-31.
[5]Roy B G.,Jana P K.,Achari B,et al.A short and efficient synthesis of 5-hydroxymethylcyclopent-2-enol from D-glucose and its elaboration to the carbanucleoside(-)-carbovir[J].Tetrahedron Letters,2007(48):1563-1566.
[6]Zhao H Q,Zong G H,Zhang J J,et al.Synthesis and antifungal activity of seven oleanolic acid glycosides[J].Molecules,2011,(16):1113-1128.
[7]Udawant S P,Chakraborty T K.Total synthesis of(+)-mupirocin H from D-glucose[J].J.Org.Chem.,2011,(76):6331-6337.
[8]Krohn K,Terstiege I,F(xiàn)lorke U.Studies on the synthesis of the c-glycosidic part of nogalamycin,part 3[J].J.Carbohydr.Chem.,1998,(17):197-215.
[9]Dwivedi N,Tewari N,Tiwari V K,et al.An efficient synthesis of aryloxyphenyl cyclopropyl methanone:A new class of antimycobacterial agents[J].Bioorg Med Chem Lett.,2005,(15):4526-4530.
[10]Verheyden J P H,Richardson A C,Bhatt R S,et al.Chiral syntheses of the antibiotics anisomycin and pentenomycin from carbohydrates[J].Pure&Appi.Chem.,1978,(50): 1363-1383.
[11]Ohrui H and Emoto S.Stereoselective syntheses of(+)-and(+)-tetrahydrocerulenin from D-glucose The correctabsolute configuration of natural cerulenin[J].Tetrahedron Letters,1978,(24):2095-2098.
[12]Yoshikawa M,Okaichi Y,Cha B C,et al.Synthesis of(-)-aristeromycin from d-glucose[J].Tetrahedron,1990,(46): 7459-7470.
[13]Anderson R C,Fraser-Rei B.A synthesis of naturally occurring(-)isoavenaciolid[J].Tetrahedron Letters,1977,(33):2865-2868.
[14]Ning J,Kong F Z,Lin B M,et al.Large-scale preparation of the phytoalexin elicitor glucohexatose and Its application as a green pesticide[J].J.Agric.Food Chem.,2003,(51): 987-991.
[15]Hasdemir B and Yusufoglu A.Asymmetric synthesis of monohydroxy tetradecanoic acids and their methyl esters[J].Tetrahedron:Asymmetry,2004,(15):65-68.
[16]Ye Weijun,Wells S,Desimone J M.Well-defined glycopolymer amphiphiles for liquid and supercritical carbon dioxide applications[J].J.Polym.Sci.Part A-Polym.Chem.,2001,(39):3841-3849.
[17]Baker D C,Horton D and Tindal C G.Large-scale preparation of D-allose:observations on the stereoselectivity of the reduction of 1,2:5,6-di-O-isopropylidene-a-D-ribohexofuranos-3-uIose hydrate.Carbohydrate Research, 1972,(24):192-197.
[18]Kishore N,Sinha N,Jain S,et al.Synthesis of disubstituted-and deoxydisubstituted-derivatives of α-D-xylofuranose as anticancer agents[J].ARKIVOC,2005,(i):65-74.
[19]Ning J,Zhang W H,Yi Y T,et al.Synthesis of β-(1→6)-branched β-(1→3)glucohexaose and its analogues containing an α-(1→3)linked bond with antitumor activity [J].Bioorganic&Medicinal Chemistry,2003,(11):2193-2203.
[20]Wu Z C,Kong F Z.Synthesis of mannose-containing analogues of(16)-branched(13)-glucohexaose(I)[J].Carbohydrate Research,2003,(338):1727-1735.
[21]Hampton A,Chawla R R,and Kappler F.Species-or isozyme-specific enzyme inhibitors.5.Differential effects of thymidine substituents on affinity for rat thymidine kinase isozymes[J].J.Med.Chem.,1982,(25):644-649.
[22]Hampton A,Kappler F and Chawla,R R.Design of species-or isozyme-specific enzyme inhibitors.I.Effect of thymidine substituents on affinity for the thymidine site of hamster cytoplasmic thymidine kinase[J].J.Med.Chem., 1979,(22):621-631.
[23]Al-Masoudi N A.Synthesis of 3′-deoxy-5′-S-ethyl-5′-thio-β-d-erythro-pentofuranosylthymine as potential antitumor agent[J].Tetrahedron Lett.,1999,(40):4795-4796.
[24]Tsoukala E,Agelis G,Dolinsek J,et al.An efficient synthesis of 3-fluoro-5-thio-xylofuranosyl nucleosides of thymine,uracil,and 5-fluorouracil as potential antitumor or/and antiviral agents[J].Bioorganic&Medicinal Chemistry,2007,(15):3241-3247.
[25]Reist E J,Spencer R R and Baker B R.Potential anticancer agents.XXVII.Synthesis of alkylating agents derived from 6-amino-6-deoxy-D-glucose[J].J.Am.Chem.Soc.,1960,(82):2025-2029.
[26]Kuszmann J and Vargha L.Synthesis of new sugar derivatives having potential antitumour activity:Part IX.Cyclic phosphoric acid derivatives[J].Carbohydrate Research,1966,(3):38-46.
[27]Junicke H,Steinborn D.Synthesis and characterization of trimethylplatinum(IV)complexes with sugar alcohol and amino sugar alcohol ligands-platinumassisted formation of O-isopropylidene protecting groups and Schiff bases[J].Inorganica Chimica Acta,2003,(346):129-136.
[28]Pui-Chi Lo,Crystal M.H.Chan,Jian-Yong Liu,et al..Highly photocytotoxic glucosylated silicon(IV)phthalocyanines.Effects of peripheral chloro substitution on the photophysical and photodynamic properties[J].J.Med.Chem.,2007,(50):2100-2107.
[29]王志光,馬維勇,張椿年.2-氨基-2-脫氧-D-葡萄糖及3-氨基-3-脫氧-D-阿洛糖衍生物的合成[J].中國(guó)醫(yī)藥工業(yè)雜志,1990,(21):366-370.
Several Compound with Anti-tumor Activity Synthesized from Diacetone-D-glucose
WANG Hong-ying
(Zhejiang Deyer Chemicals Co.,Ltd.,Jinhua,Zhejiang 321016,China)
This paper summarised the several compound with anti-tumor activity,such as D-allose, branched-chain sugar derivatives with aminoalkyl appendages,polysaccharide derivatives,fluorouracil,complexes of platinum-glucose,alkylating agents derived from carbohydrates and medicament of photodynamics therapy,as well as research for their synthesis from diacetone-D-glucose.
diacetone-D-glucose;D-allose;fluorouracil;cis-platinum;nitrogen mustard;photodynamics therapy
1006-4184(2015)4-0026-05
2015-01-26
王紅英(1969-),女,陜西西安市人,工程師,碩士,研究方向:藥物中間體、塑料助劑等。E-mail:why@deyerchem.com。