姜海波(綜述),唐金榮(審校)
(南京醫(yī)科大學(xué)第一附屬醫(yī)院神經(jīng)內(nèi)科,南京 210029)
?
L型電壓門控鈣通道在神經(jīng)病理性疼痛中的研究進(jìn)展
姜海波△(綜述),唐金榮※(審校)
(南京醫(yī)科大學(xué)第一附屬醫(yī)院神經(jīng)內(nèi)科,南京 210029)
摘要:神經(jīng)病理性疼痛是神經(jīng)系統(tǒng)損傷引起的一種慢性疼痛,由于其發(fā)病機(jī)制尚未完全闡明,目前尚缺乏有效的治療手段,因此進(jìn)一步探求維持慢性病理性疼痛狀態(tài)的機(jī)制至關(guān)重要。近年來研究發(fā)現(xiàn),L型電壓門控鈣通道(VGCC)在神經(jīng)病理性疼痛中起關(guān)鍵作用。該文將近年來L型VGCC在神經(jīng)病理性疼痛中的研究進(jìn)展予以綜述,旨在為神經(jīng)病理性疼痛的臨床治療提供參考。
關(guān)鍵詞:神經(jīng)病理性疼痛;L型電壓門控鈣通道;研究進(jìn)展
神經(jīng)病理性疼痛是由于軀體感覺神經(jīng)系統(tǒng)的損傷或疾病而造成的疼痛[1],表現(xiàn)為自發(fā)性燒灼痛、觸誘發(fā)痛和痛覺過敏[2]。神經(jīng)病理性疼痛因發(fā)病原因多樣、機(jī)制復(fù)雜、治療效果不理想而倍受重視。研究表明,鈣離子作為細(xì)胞內(nèi)第二信使不僅在神經(jīng)遞質(zhì)釋放、神經(jīng)元興奮性以及基因轉(zhuǎn)錄等細(xì)胞功能方面發(fā)揮作用,而且還通過電壓門控鈣通道(voltage-gated calcium channels,VGCC)的運(yùn)輸參與慢性疼痛狀態(tài)的維持[3-4]。因此,通過干預(yù)VGCC影響鈣離子功能成為目前研究神經(jīng)病理性疼痛的一大熱點(diǎn)。近年來,VGCC與神經(jīng)病理性疼痛關(guān)系的研究已較為深入[4-5],而L型VGCC在神經(jīng)病理性疼痛進(jìn)程中的作用尚不明確?,F(xiàn)主要探討L型VGCC參與神經(jīng)病理性疼痛的機(jī)制。
1L型VGCC的分類、分布和影響因素
VGCC是電壓門控離子通道超家族的成員,根據(jù)電生理特性,可將VGCC分為高電壓激活鈣通道和低電壓激活鈣通道;前者包括L、N、P/Q及R型鈣通道,后者即T型鈣通道;VGCC由α1、 α2、β、γ、δ 5種亞基構(gòu)成,其中L型VGCC的4個家族成員Cav1.1、Cav1.2、Cav1.3、Cav1.4分別由α11.1(α1S)、α11.2(α1C)、α11.3(α1D)、α11.4(α1F)編碼α1亞單位,Cav1.1主要分布于骨骼肌中[6];Cav1.2在心臟、平滑肌、胰腺、腎上腺和大腦中廣泛表達(dá),被認(rèn)為是心臟中最重要的L型VGCC亞型;Cav1.3主要存在于大腦中,含量較Cav1.2低,胰腺、腎臟、卵巢、耳蝸以及心肌組織包括竇房結(jié)中也有分布[7];Cav1.4被認(rèn)為僅存在于視網(wǎng)膜中[8]。Cav1通道是器官通道阻滯劑的分子靶點(diǎn),是臨床與實(shí)驗(yàn)相結(jié)合的契合點(diǎn),二氫吡啶類鈣離子拮抗劑可作為通道激活劑或抑制劑,別構(gòu)調(diào)節(jié)控制通道的開啟和關(guān)閉。L型VGCC尤其是Cav1.2亞基參與血壓調(diào)節(jié)、血管舒縮、腺體分泌、基因表達(dá),并影響學(xué)習(xí)和記憶等功能。L型VGCC可被絲氨酸/蘇氨酸磷酸酶PP2A、PP2B、PP1、蛋白激酶A、蛋白激酶C、鈣調(diào)蛋白、鈣調(diào)蛋白激酶Ⅱ、Src激酶調(diào)節(jié)[9]。此外,腫瘤壞死因子α可能也參與L型VGCC功能的調(diào)節(jié)[10]。
2L型VGCC與神經(jīng)病理性疼痛
2.1L型VGCC阻斷劑的應(yīng)用與神經(jīng)病理性疼痛在神經(jīng)病理性疼痛中,L型VGCC阻斷劑的應(yīng)用可減輕體內(nèi)病理性疼痛。有學(xué)者發(fā)現(xiàn)L型VGCC阻斷劑維拉帕米、地爾硫艸卓、尼莫地平可緩解L5、L6脊神經(jīng)結(jié)扎神經(jīng)病理性疼痛模型的觸誘發(fā)痛[11-12]。
2.2L型VGCC亞型的剔除與神經(jīng)病理性疼痛Fossat等[13]用肽核酸基礎(chǔ)的抗轉(zhuǎn)錄治療評估脊神經(jīng)結(jié)扎的神經(jīng)病理性疼痛模型中L型VGCC亞型Cav1.2在長程機(jī)械痛覺過敏中的作用,發(fā)現(xiàn)在L5、L6脊神經(jīng)結(jié)扎的Wistar大鼠模型中,Cav1.2的表達(dá)上調(diào)并且介導(dǎo)細(xì)胞核內(nèi)的鈣離子增加,同時伴隨著Cav1.2依賴的環(huán)磷腺苷反應(yīng)原件結(jié)合蛋白磷酸化,進(jìn)而導(dǎo)致環(huán)磷腺苷反應(yīng)原件依賴的環(huán)加氧酶2基因轉(zhuǎn)錄增強(qiáng),已知環(huán)加氧酶2在促炎因子的刺激下在脊髓高表達(dá),加劇神經(jīng)病理性疼痛;研究還發(fā)現(xiàn),脊髓背角Cav1.2的特定剔除以及鞘內(nèi)注射抗Cav1.2 小干擾RNA可逆轉(zhuǎn)神經(jīng)病理性相關(guān)的觸誘發(fā)痛,并降低脊髓背角神經(jīng)元的興奮性和反應(yīng)性。此研究證明,鈣離子通過L型VGCC內(nèi)流以及Cav1.2上調(diào)對神經(jīng)病理性疼痛的維持有至關(guān)重要的作用。這一結(jié)果對于臨床上針對L型VGCC附屬亞基、相關(guān)蛋白、下游信號通路、調(diào)節(jié)基因表達(dá)等治療神經(jīng)病理性疼痛有重要意義。
2.3L型VGCC的調(diào)控基因與神經(jīng)病理性疼痛Favereaux等[14]在Cav1.2鈣通道的翻譯水平上發(fā)現(xiàn),一種單一的微小RNA(microRNAs,miRNA),miR-103在脊神經(jīng)結(jié)扎的神經(jīng)病理性疼痛的動物模型的剔除或過表達(dá)分別上調(diào)和下調(diào)Cav1.2 L型 VGCC的翻譯水平,提示miR-103對Cav1.2 L型VGCC的調(diào)節(jié)是雙向的。該研究發(fā)現(xiàn)在病理性疼痛動物中miR-103下調(diào),新生小鼠miR-103的剔除導(dǎo)致了對疼痛高度敏化,而miR-103的鞘內(nèi)應(yīng)用成功地緩解了動物的疼痛,因此進(jìn)一步證實(shí)miRNA是疼痛敏化維持的一個重要原因;同時表明,脊髓背角神經(jīng)元上的Cav1.2 L型VGCC的上調(diào)可能是慢性病理性疼痛的一個關(guān)鍵機(jī)制。
2.4L型VGCC的內(nèi)部結(jié)構(gòu)與神經(jīng)病理性疼痛
2.4.1α2δ亞基與神經(jīng)病理性疼痛VGCC通道由α1、α2、β、γ、δ 5種亞基構(gòu)成。α2δ由α2、δ亞基聯(lián)接,兩者共同對組成通道孔道的α1亞基進(jìn)行輔助以調(diào)節(jié)鈣內(nèi)流。抗癲癇藥加巴噴丁可模擬神經(jīng)遞質(zhì)γ-氨基丁酸的作用,與α2δ亞基結(jié)合,減少鈣離子內(nèi)流,進(jìn)而減少谷氨酸鹽、去甲腎上腺素、P物質(zhì)等興奮性神經(jīng)遞質(zhì)的釋放,從而有效控制神經(jīng)病理性疼痛[15]。研究表明,加巴噴丁主要與L型VGCC的α2δ亞基結(jié)合發(fā)揮作用,表明L型VGCC的α2δ亞基參與神經(jīng)病理性疼痛的調(diào)節(jié)[16]。
2.4.2L型VGCC相關(guān)肽與神經(jīng)病理性疼痛大量研究表明,N型VGCC與神經(jīng)病理性疼痛密切相關(guān),N型VGCC的剔除以及阻斷劑的應(yīng)用有效地緩解了神經(jīng)病理性疼痛[17-18]。N型VGCC的亞基Cav2.2參與神經(jīng)病理性疼痛的發(fā)展,腦衰反應(yīng)調(diào)節(jié)蛋白2(CRMP2)廣泛分布于神經(jīng)系統(tǒng),可促進(jìn)神經(jīng)元極性形成,增強(qiáng)Cav2.2活性[19-20]。研究表明,在背根神經(jīng)節(jié)神經(jīng)元,Cav2.2與腦衰反應(yīng)調(diào)節(jié)蛋白2結(jié)合促進(jìn)鈣離子內(nèi)流,促進(jìn)降鈣素基因肽等神經(jīng)遞質(zhì)的釋放,從而促進(jìn)神經(jīng)病理性疼痛的發(fā)展,阻斷兩者的結(jié)合以及剔除腦衰反應(yīng)調(diào)節(jié)蛋白2可有效緩解神經(jīng)病理性疼痛[20-21]。Wilson等[20]發(fā)現(xiàn),來源于Cav1.2的肽Ct-dis與腦衰反應(yīng)調(diào)節(jié)蛋白2結(jié)合干擾腦衰反應(yīng)調(diào)節(jié)蛋白2與Cav2.2的相互作用,抑制去極化誘導(dǎo)的鈣離子內(nèi)流以及降鈣素基因相關(guān)肽等神經(jīng)遞質(zhì)的釋放,從而減弱在嚙齒類動物模型中藥物誘發(fā)的慢性疼痛的觸誘發(fā)痛。因此,L型VGCC通道肽通過與腦衰反應(yīng)調(diào)節(jié)蛋白2的結(jié)合參與神經(jīng)病理性疼痛的調(diào)節(jié)。
2.5瞬態(tài)受體電位香草酸亞型1(transient receptor potential vanilloid 1,TRPV-1)參與神經(jīng)病理性疼痛TRPV-1是瞬時受體電位離子通道家族的成員,可被化學(xué)和熱刺激以及辣椒素所激活,也稱辣椒素受體,在傷害性熱刺激和辣椒素誘導(dǎo)的痛覺過敏等傷害性感受中發(fā)揮至關(guān)重要的作用[22-23]。TRPV-1是陽離子選擇性通道,存在于疼痛神經(jīng)元的細(xì)胞膜和內(nèi)質(zhì)網(wǎng)上,被激活后導(dǎo)致細(xì)胞內(nèi)鈣離子濃度增加[24]。細(xì)胞內(nèi)鈣離子濃度的增加以及TRPV-1的激活使通過VGCC的電流減少,同時細(xì)胞內(nèi)鈣離子濃度的增加也可使VGCC失活[25-26]。正常生理情況下,鈣離子通過TRPV-1和VGCC進(jìn)入細(xì)胞,細(xì)胞內(nèi)鈣離子減少了TRPV-1對VGCC的影響,從而使TRPV-1誘導(dǎo)的通過VGCC的電流減少得不明顯;然而病理情況尤其是細(xì)胞去極化情況下,細(xì)胞內(nèi)鈣離子增加TRPV-1對VGCC的影響,TRPV-1對VGCC主要起抑制作用[24,27-28]。神經(jīng)病理性疼痛時在辣椒素敏感神經(jīng)元,辣椒素通過激活TRPV-1,導(dǎo)致細(xì)胞內(nèi)鈣離子濃度增加,繼而使通過VGCC的電流減少,表明辣椒素對VGCC電流的抑制依賴于辣椒素與其受體TRPV-1的相互作用[24]。此外,研究表明,L型VGCC拮抗劑可抑制辣椒素誘導(dǎo)的原發(fā)及繼發(fā)性觸誘發(fā)痛及痛覺過敏[29],因此,L型VGCC參與神經(jīng)病理性疼痛的調(diào)節(jié)。
2.6神經(jīng)肽Y(neuropeptide Y,NPY)參與神經(jīng)病理性疼痛NPY廣泛分布在中樞和周圍神經(jīng)系統(tǒng),是由36個氨基酸殘基組成的活性肽,通過作用于G蛋白偶聯(lián)Y受體調(diào)節(jié)不同的生理進(jìn)程。研究表明,NPY參與神經(jīng)病理性疼痛的調(diào)節(jié)[30-31]。NPY受體是神經(jīng)遞質(zhì)受體家族的一員,研究發(fā)現(xiàn)參與疼痛信息傳遞的正常背根神經(jīng)節(jié)神經(jīng)元通常表達(dá)NPY受體Y1、Y2而不表達(dá)NPY[32],NPY通過激活Y1受體增加L型鈣通道電流且不改變神經(jīng)元的興奮性[33]。在坐骨神經(jīng)橫斷誘發(fā)的神經(jīng)病理性疼痛中,背根神經(jīng)節(jié)神經(jīng)元開始表達(dá)NPY,并且Y1受體表達(dá)水平下降,Y2受體表達(dá)水平增加,NPY通過與Y2受體作用降低N型鈣通道電流繼而引發(fā)鈣依賴性鉀電流的降低,從而增加神經(jīng)元的興奮性,同時Y1受體機(jī)制受抑制[32-33]。因此,周圍神經(jīng)損傷誘發(fā)的NPY表達(dá)增加可能直接抑制L型鈣電流。此外,NPY受體激活后,通過抑制電壓依賴性鈣離子流入神經(jīng)終端而抑制P物質(zhì)的釋放[34]。P物質(zhì)廣泛分布于神經(jīng)系統(tǒng),在神經(jīng)病理性疼痛中的發(fā)生、發(fā)展中有重要作用,不僅傳遞傷害性信息并產(chǎn)生疼痛,還有鎮(zhèn)痛作用[35-36]。P物質(zhì)從背根神經(jīng)節(jié)細(xì)胞釋放的誘發(fā)主要依賴于L型VGCC的激活,因此亦認(rèn)為NPY可能通過抑制L型鈣通道電流參與疼痛的調(diào)節(jié)。
2.7非赫布長程增強(qiáng)參與神經(jīng)病理性疼痛長程增強(qiáng)是突觸可塑性的一種表現(xiàn)形式,被認(rèn)為是學(xué)習(xí)和記憶的細(xì)胞學(xué)基礎(chǔ)。脊髓背角C纖維誘發(fā)電位的長程增強(qiáng)被認(rèn)為可誘導(dǎo)病理性疼痛的產(chǎn)生[37]。長程增強(qiáng)可分為赫布機(jī)制、非赫布機(jī)制。Naka等[38]認(rèn)為,神經(jīng)病理性疼痛與繼發(fā)性痛覺過敏及脊髓表淺背角神經(jīng)元內(nèi)升高的細(xì)胞內(nèi)鈣離子濃度升高有關(guān);在初級傳入C纖維和脊髓板Ⅰ神經(jīng)元中的非赫布長程增強(qiáng)是繼發(fā)性痛覺過敏的潛在機(jī)制,在沒有突觸前刺激的情況下突觸后去極化導(dǎo)致細(xì)胞內(nèi)鈣離子濃度升高,進(jìn)而誘發(fā)長程增強(qiáng)。長程增強(qiáng)可被突觸后應(yīng)用硝苯地平所阻斷,這提示細(xì)胞內(nèi)鈣離子濃度通過L型VGCC誘導(dǎo)突觸強(qiáng)化,同時也表明L型VGCC可能與神經(jīng)病理性疼痛密切相關(guān)。與神經(jīng)病理性疼痛時L型VGCC激活引起鈣離子內(nèi)流,L型VGCC阻斷劑可緩解疼痛的結(jié)論相反,一些研究發(fā)現(xiàn),在慢性病理性疼痛模型中通過感覺神經(jīng)元質(zhì)膜的鈣離子內(nèi)流下降,同時應(yīng)用L型VGCC拮抗劑不能減輕神經(jīng)病理性疼痛[39-40]。
3小結(jié)
近年越來越多的研究顯示,L型VGCC與神經(jīng)病理性疼痛密切相關(guān)。然而,對于L型VGCC是否在神經(jīng)病理性疼痛中發(fā)揮作用以及L型VGCC阻斷劑能否緩解神經(jīng)病理性疼痛還存在著爭議。因此,今后應(yīng)加強(qiáng)在神經(jīng)病理性疼痛情況下L型VGCC蛋白基因表達(dá)的改變、電生理特性變化及與細(xì)胞因子間相互作用的研究,為臨床治療神經(jīng)病理性疼痛提供研究依據(jù)。
參考文獻(xiàn)
[1]Bennett MI,Smith BH,Torrance N,etal.Can pain can be more or less neuropathic? Comparison of symptom assessment tools with ratings of certainty by clinicians[J].Pain,2006,122(3):289-294.
[2]Clark AK,Old EA,Malcangio M.Neuropathic pain and cytokines: current perspectives[J].J Pain Res,2013,6:803-814.
[3]Miller RJ.Multiple calcium channels and neuronal function[J].Science,1987,235(4784):46-52.
[4]Shao PP,Ye F,Chakravarty PK,etal.Aminopiperidine sulfonamide Cav2.2 channel inhibitors for the treatment of chronic pain[J].J Med Chem,2012,55(22):9847-9855.
[5]Bladen C,Gadotti VM,Gunduz MG,etal.1,4-Dihydropyridine derivatives with T-type calcium channel blocking activity attenuate inflammatory and neuropathic pain[J].Pflugers Arch,2014.
[6]Tuluc P,Molenda N,Schlick B,etal.A CaV1.1 Ca2+channel splice variant with high conductance and voltage-sensitivity alters EC coupling in developing skeletal muscle[J].Biophys J,2009,96(1):35-44.
[7]Bohn G,Moosmang S,Conrad H,etal.Expression of T-and L-type calcium channel mRNA in murine sinoatrial node[J].FEBS Lett,2000,481(1):73-76.
[8]Baumann L,Gerstner A,Zong X,etal.Functional characterization of the L-type Ca2+channel Cav1.4alpha1 from mouse retina[J].Invest Ophthalmol Vis Sci,2004,45(2):708-713.
[9]Dai S,Hall DD,Hell JW.Supramolecular assemblies and localized regulation of voltage-gated ion channels[J].Physiol Rev,2009,89(2):411-452.
[10]Hagenacker T,Czeschik JC,Schafers M,etal.Sensitization of voltage activated calcium channel currents for capsaicin in nociceptive neurons by tumor-necrosis-factor-alpha[J].Brain Res Bull,2010,81(1):157-163.
[11]Vanegas H,Schaible H.Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia[J].Pain,2000,85(1/2):9-18.
[12]Gupta M,Singh J,Sood S,etal.Mechanism of antinociceptive effect of nimodipine in experimental diabetic neuropathic pain[J].Methods Find Exp Clin Pharmacol,2003,25(1):49-52.
[13]Fossat P,Dobremez E,Bouali-Benazzouz R,etal.Knockdown of L calcium channel subtypes:differential effects in neuropathic pain[J].J Neurosci,2010,30(3):1073-1085.
[14]Favereaux A,Thoumine O,Bouali-Benazzouz R,etal.Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103:role in pain[J].EMBO J,2011,30(18):3830-3841.
[15]Quintero JE,Dooley DJ,Pomerleau F,etal.Amperometric measurement of glutamate release modulation by gabapentin and pregabalin in rat neocortical slices: role of voltage-sensitive Ca2+alpha2delta-1 subunit[J].J Pharmacol Exp Ther,2011,338(1):240-245.
[16]Striano P,Striano S.Gabapentin:a Ca2+channel alpha 2-delta ligand far beyond epilepsy therapy[J].Drugs Today (Barc),2008,44(5):353-368.
[17]Beuckmann CT,Sinton CM,Miyamoto N,etal.N-type calcium channel alpha1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance state differences[J].J Neurosci,2003,23(17):6793-6797.
[18]Saegusa H,Kurihara T,Zong S,etal.Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+channel[J].EMBO J,2001,20(10):2349-2356.
[19]Arimura N,Hattori A,Kimura T,etal.CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity[J].J Neurochem,2009,111(2):380-390.
[20]Wilson SM,Schmutzler BS,Brittain JM,etal.Inhibition of transmitter release and attenuation of anti-retroviral-associated and tibial nerve injury-related painful peripheral neuropathy by novel synthetic Ca2+channel peptides[J].J Biol Chem,2012,287(42):35065-35077.
[21]Brittain JM,Duarte DB,Wilson SM,etal.Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+channel complex[J].Nat Med,2011,17(7):822-829.
[22]White JP,Cibelli M,Fidalgo AR,etalExtracellular signal-regulated kinases in pain of peripheral origin[J].Eur J Pharmacol,2011,650(1):8-17.
[23]Sousa-Valente J,Andreou AP,Urban L,etal.Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics[J].Br J Pharmacol,2014,171(10):2508-2527.
[24]Hagenacker T,Busselberg D.Modulation of intracellular calcium influences capsaicin-induced currents of TRPV-1 and voltage-activated channel currents in nociceptive neurones[J].J Peripher Nerv Syst,2007,12(4):277-284.
[25]Hagenacker T,Splettstoesser F,Greffrath W,etal.Capsaicin differentially modulates voltage-activated calcium channel currents in dorsal root ganglion neurones of rats[J].Brain Res,2005,1062(1-2):74-85.
[26]Rodriguez-Contreras A,Yamoah EN.Effects of permeant ion concentrations on the gating of L-type Ca2+channels in hair cells[J].Biophys J,2003,84(5):3457-3469.
[27]Jackson JG,Thayer SA.Mitochondrial modulation of Ca2+-induced Ca2+-release in rat sensory neurons[J].J Neurophysiol,2006,96(3):1093-1104.
[28]Vargas R,Cifuentes F,Morales MA.Differential contribution of extracellular and intracellular calcium sources to basal transmission and long-term potentiation in the sympathetic ganglion of the rat[J].Dev Neurobiol,2007,67(5):589-602.
[29]Sluka KA.Blockade of calcium channels can prevent the onset of secondary hyperalgesia and allodynia induced by intradermal injection of capsaicin in rats[J].Pain,1997,71(2):157-164.
[30]Boateng EK,Novejarque A,Pheby T,etal.Heterogeneous responses of dorsal root ganglion neurons in neuropathies induced by peripheral nerve trauma and the antiretroviral drug stavudine[J].Eur J Pain,2015,19(2):236-245.
[31]Wang D,Chen T,Gao Y,etal.Inhibition of SNL-induced upregulation of CGRP and NPY in the spinal cord and dorsal root ganglia by the 5-HT(2A) receptor antagonist ketanserin in rats[J].Pharmacol Biochem Behav,2012,101(3):379-386.
[32]Wakisaka S,Kajander KC,Bennett GJ.Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy[J].Neurosci Lett,1991,124(2):200-203.
[33]Abdulla FA,Smith PA.Nerve injury increases an excitatory action of neuropeptide Y and Y2-agonists on dorsal root ganglion neu-rons[J].Neuroscience,1999,89(1):43-60.
[34]Walker MW,Ewald DA,Perney TM,etal.Neuropeptide Y modulates neuro transmitter release and Ca2+currents in rat sensory neurons[J].J Neurosci,1988,8(7):2438-2446.
[35]Chen W,McRoberts JA,Marvizon JC.μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain[J].Neuroscience,2014,267:67-82.
[36]Muto Y,Sakai A,Sakamoto A,etal.Activation of NK(1) receptors in the locus coeruleus induces analgesia through noradrenergic-mediated descending inhibition in a rat model of neuropathic pain[J].Br J Pharmacol,2012,166(3):1047-1057.
[37]Liu XG,Sandkuhler J.Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockage[J].Neurosci Lett,1995,191(1/2):43-46.
[38]Naka A,Gruber-Schoffnegger D,Sandkuhler J.Non-Hebbian plasticity at C-fiber synapses in rat spinal cord lamina I neurons[J].Pain,2013,154(8):1333-1342.
[39]McCallum JB,Wu HE,Tang Q,etal.Subtype-specific reduction of voltage-gated calcium current in medium-sized dorsal root ganglion neurons after painful peripheral nerve injury[J].Neuroscience,2011,179:244-255.
[40]Cui JG,Zhang X,Zhao YH,etal.Allodynia and hyperalgesia suppression by a novel analgesic in experimental neuropathic pain[J].Biochem Biophys Res Commun,2006,350(2):358-363.
The Research Progress of the L-type Calcium Channels in Neuropathic Pain
JIANGHai-bo,TANGJin-rong.
(DepartmentofNeurology,theFirstAffiliatedHospitalofNanjingMedicalUniversity,Nanjing210029,China)
Abstract:Neuropathic pain is defined as a chronic pain initiated or caused by the lesion of the nervous system.Its pathogenesis is still not totally clear.Most treatments have been empirically established,and their efficacy sometimes remains unsatisfactory.It is therefore necessary to pursue a deeper understanding of the mechanisms maintaining chronic neuropathic pain states.Recently,it is found that L-type voltage-guted calcium channels VGCC play an important role in neuropathic pain.Here is to make a review focusing on the research progress of the L-type VGCC in neuropathic pain so as to provide information for its clinical therapy.
Key words:Neuropathic pain; L-type voltage gated calcium channels; Research progress
收稿日期:2014-10-17修回日期:2014-11-30編輯:鄭雪
doi:10.3969/j.issn.1006-2084.2015.07.002
中圖分類號:R741
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-2084(2015)07-1155-04