潘 勇, 魏俊潮
(1.揚(yáng)州職業(yè)大學(xué)數(shù)學(xué)科學(xué)學(xué)院,江蘇揚(yáng)州225009; 2.揚(yáng)州大學(xué)數(shù)學(xué)科學(xué)學(xué)院,江蘇揚(yáng)州225002)
CN環(huán)的若干等價(jià)刻劃
潘勇1,魏俊潮2
(1.揚(yáng)州職業(yè)大學(xué)數(shù)學(xué)科學(xué)學(xué)院,江蘇揚(yáng)州225009;2.揚(yáng)州大學(xué)數(shù)學(xué)科學(xué)學(xué)院,江蘇揚(yáng)州225002)
[摘要]引入環(huán)的補(bǔ)左零化子集的概念,給出了CN環(huán)幾個(gè)新的等價(jià)刻劃.
[關(guān)鍵詞]CN環(huán); 冪零元; 補(bǔ)左零化子集
1引言
如果環(huán)R的每個(gè)冪零元素均為中心元,則稱(chēng)R為CN環(huán)[1].顯然,交換環(huán)和約化環(huán)(即R沒(méi)有非零的冪零元素)都是CN環(huán).文獻(xiàn)[2]中給出了CN環(huán)幾個(gè)等價(jià)刻劃:
(i)R為CN環(huán)當(dāng)且僅當(dāng)對(duì)任意a∈N(R),存在整數(shù)n=n(a)≥2使得a-an∈Z(R);
(ii)R為CN環(huán)當(dāng)且僅當(dāng)對(duì)任意的x∈N(R),y∈R,有
((1+x)y)n+k=(1+x)n+kyn+k,k=0,1,2;
(iii)R為CN環(huán)當(dāng)且僅當(dāng)對(duì)任意的x∈N(R),y∈R,有
((1+x)y)n+k=yn+k(1+x)n+k,k=0,1,2.
本文引入補(bǔ)左零化子集的概念,對(duì)文獻(xiàn)[2]給出的CN環(huán)幾個(gè)等價(jià)刻劃作了改進(jìn),給出了條件更一般的等價(jià)刻劃.
2基礎(chǔ)知識(shí)
本文中R表示有單位元的結(jié)合環(huán).N(R),Z(R),J(R),Zr(R),Zl(R)分別表示環(huán)R的冪零元集合、中心、Jacobson根和左、右奇異理想;Z[x]表示整系數(shù)多項(xiàng)式環(huán);l(a),r(a)分別表示a在環(huán)R中的左、右零化子;相關(guān)概念參見(jiàn)[3].
首先給出幾個(gè)引理:
引理2.1設(shè)R是一個(gè)環(huán),f(x)∈Z[x],且f(x)常數(shù)項(xiàng)為零,則對(duì)任意的a∈N(R),有
f(a)∈N(R),且af(a)=f(a)a.
引理2.2[4]設(shè)R是一個(gè)環(huán),對(duì)任意的x∈R,若l(x)=0,則
l(x2)=l(x3)=…=l(xn),
其中n為正整數(shù).
引理2.3[5]設(shè)R是一個(gè)環(huán),n為正整數(shù),x,y∈R, 若xyn=0=x(1+y)n,則x=0.
3主要結(jié)論
先給出[2,定理2.1]一個(gè)推廣:
定理3.1R為CN環(huán)當(dāng)且僅當(dāng)對(duì)任意a∈N(R),存在整數(shù)n=n(a)≥2,使得
a-(f(a))n∈Z(R),
其中f(x)∈Z[x],且f(x)常數(shù)項(xiàng)為零.
證顯然.
?設(shè)f(x)∈Z[x],且f(x)常數(shù)項(xiàng)為零.不妨設(shè)f(x)=xf0(x),且f0(x)∈Z[x].
任取a∈N(R),存在m>0,使得am=0.由題設(shè)可知:存在n1=n(a)≥2,使得
a-(f(a))n1∈Z(R),
由引理2.1可知
(f(a))n1=an1(f0(a))n1∈N(R),
則有
(f(a))n1=an1a1∈N(R),
其中a1=(f0(a))n1,且an1a1=a1an1.
同樣由題設(shè)可知:存在n2=n(an1a1)≥2,使得
an1a1-(f(an1a1))n2∈Z(R),
由引理2.1可知
則有
(f(an1a1))n2=an1n2a2∈N(R),
以此類(lèi)推,存在ns=n(an1n2…ns-1as-1)≥2,使得
an1n2…ns-1as-1-(f(an1n2…ns-1a1))ns∈Z(R),
且
n1n2…ns>m,(f(an1n2…ns-1a1))ns=an1n2…nsas=0,
利用補(bǔ)左零化子集,下面給出[2,定理2.4]的推廣:
定理3.2設(shè)R是一個(gè)環(huán),I是R的補(bǔ)左零化子集,則下列條件等價(jià):
(i)R為CN環(huán).
(ii) 對(duì)任意的x∈N(R),y∈RI,有
((1+x)y)n+k=(1+x)n+kyn+k,k=0,1,2,n為某一確定的正整數(shù).
(iii) 對(duì)任意的x∈N(R),y∈RI,有
((1+x)y)n+k=yn+k(1+x)n+k,k=0,1,2,n為某一確定的正整數(shù).
(iv) 對(duì)任意的x∈N(R),y∈RI,有
((1+x)y)n+k=yk(1+x)n+kyn,k=0,1,n為某一確定的正整數(shù).
證(i)(ii),(iii),(iv)顯然.
((1+x)(1-y))n+k=(1+x)n+k(1-y)n+k,k=0,1,2,
則有
((1+x)(1-y))n+1=(1+x)n+1(1-y)n+1,
((1+x)(1-y))n+1=(1+x)(1-y)(1+x)n(1-y)n,
所以
(1+x)n+1(1-y)n+1=(1+x)(1-y)(1+x)n(1-y)n.
即有
(1+x)(y(1+x)n-(1+x)ny)(1-y)n=0.
由x∈N(R),可知1+x可逆;l(1-y)=0,由引理2.2可知
l((1-y)n)=0,
所以,有
y(1+x)n=(1+x)ny.
(1)
同理有
y(1+x)n+1=(1+x)n+1y.
(2)
(1)右乘1+x,減(2)得
(1+x)n(yx-xy)=0,
從而
yx-xy=0.
若y?I即y∈RI,由已知條件有
((1+x)y)n+k=(1+x)n+kyn+k,k=0,1,2,
則有
((1+x)y)n+1=(1+x)n+1yn+1,
((1+x)y)n+1=(1+x)nyn(1+x)y,
所以
(1+x)n+1yn+1=(1+x)nyn(1+x)y.
即有
(1+x)n(xyn+1-ynxy)=0.
由x∈N(R),可知1+x可逆,可得
xyn+1-ynxy=0.
即
xyn+1=ynxy.
(3)
同理有
xyn+2=yn+1xy.
(4)
(3)左乘y,減(4)得
(yx-xy)yn+1=0,
(5)
若1+y?I,即1+y∈RI,用1+y替代(5)的y可得
(yx-xy)(1+y)n+1=0.
(6)
由引理2.3及(5),(6)可得
yx-xy=0,
若1+y∈I,則1-(1+y)=-y?I且l(-y)=0,從而l(y)=0,由引理2.2可知l(yn+1)=0.由(5)可得
yx-xy=0.
綜上所述,對(duì)任意的x∈N(R),y∈R,都有
yx-xy=0
成立,所以R為CN環(huán).
由已知條件有
((1+x)(1-y))n+k=(1-y)n+k(1+x)n+k,k=0,1,2,
則有
((1+x)(1-y))n+1=(1-y)n+1(1+x)n+1,
((1+x)(1-y))n+1=(1+x)(1-y)n+1(1+x)n,
所以
(1-y)n+1(1+x)n+1=(1+x)(1+y)n+1(1+x)n.
即有
((1-y)n+1x-x(1-y)n+1)(1+x)n=0.
由x∈N(R),可知1+x可逆,可得
(1-y)n+1x-x(1-y)n+1=0.
即
(1-y)n+1x=x(1-y)n+1.
(7)
同理有
(1-y)n+2x=x(1-y)n+2.
(8)
(7)左乘1-y,減(8)得
(xy-yx)(1-y)n+1=0.
因?yàn)閘(1-y)=0,由引理2.2可知l(1-y)n+1=0.從而,有
xy-yx=0.
若y?I即y∈RI,由已知條件有
((1+x)y)n+k=yn+k(1+x)n+k,k=0,1,2,
則有
((1+x)y)n+1=yn+1(1+x)n+1,
((1+x)y)n+1=(1+x)yn+1(1+x)n,
所以
yn+1(1+x)n+1=(1+x)yn+1(1+x)n.
即有
(yn+1x-xyn+1)(1+x)n=0.
由x∈N(R),可知1+x可逆,可得
yn+1x-xyn+1=0.
即
yn+1x=xyn+1.
(9)
同理有
yn+2x=xyn+2.
(10)
(9)左乘y,減(10)可得
(yx-xy)yn+1=0,
(11)
若1+y?I,即1+y∈RI,用1+y替代(11)的y可得
(yx-xy)(1+y)n+1=0.
(12)
由引理2.3及(11),(12)可得
yx-xy=0.
若1+y∈I,則1-(1+y)=-y?I且l(-y)=0,從而l(y)=0,由引理2.2可知l(yn+1)=0,由(11)可得
yx-xy=0.
綜上所述,對(duì)任意的x∈N(R),y∈R,都有yx-xy=0成立,所以R為CN環(huán).
((1+x)(1-y))n+k=(1-y)k(1+x)n+k(1-y)n,k=0,1,
則有
((1+x)(1-y))n+1=(1-y)(1+x)n+1(1-y)n,
((1+x)(1-y))n+1=(1+x)(1-y)(1+x)n(1-y)n,
所以
(1-y)(1+x)n+1(1-y)n=(1+x)(1-y)(1+x)n(1-y)n.
即
(xy-yx)(1+x)n(1-y)n=0.
因?yàn)閘(1-y)=0,由引理2.2可知l(1-y)n=0.可得
(xy-yx)(1+x)n=0.
由x∈N(R),可知1+x可逆,可得
xy-yx=0.
若y?I即y∈RI,由已知條件有
((1+x)y)n+k=yk(1+x)n+kyn,k=0,1,
則
((1+x)y)n+1=y(1+x)n+1yn,
((1+x)y)n+1=(1+x)y(1+x)nyn,
所以
y(1+x)n+1yn=(1+x)y(1+x)nyn.
即
(yx-xy)(1+x)nyn=0.
(13)
若1+y?I,即1+y∈RI,用1+y替代(13)的y可得
(yx-xy)(1+x)n(1+y)n=0.
(14)
由引理2.3及(13),(14)可得
(yx-xy)(1+x)n=0.
若1+y∈I,則1-(1+y)=-y?I且l(-y)=0,從而l(y)=0,由引理2.2可知l(yn)=0,由(13)得
(yx-xy)(1+x)n=0.
無(wú)論1+y?I,或1+y∈I,總有
(yx-xy)(1+x)n=0.
由x∈N(R),可知1+x可逆,可得
yx-xy=0.
綜上所述,對(duì)任意的x∈N(R),y∈R,都有
yx-xy=0
成立,所以R為CN環(huán).
[參考文獻(xiàn)]
[1]Drazin M P. Rings with central idempotent or nilpotent elements [J] . Proc Edinburgh Math Soc, 1958, 9(2) : 157-165.
[2]Wei Junchao.Some notes onCNrings [J].bull Malays Math Sci Sco,2014,37(3): 25-37.
[3]Anderson F W,Fuller K R.Rings and categories of modules[M].2nded.New York:Springer-Verlag, 1992.
[4]杜巧利,孫建華.環(huán)的右奇異理想與交換性定理[J].揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,17(4):5—7.
[5]Nicholson W K and Yaqub A. A commutativity theorem[J]. Algebra Universalis, 1980,10:260-263;113-116.
Several Equivalent Characterizations of CN Rings
PANYong1,WEIJun-chao2
(1. School of Mathematical Sciences,Yangzhou Polytechnic College ,Yang zhou Jiangsu 225009 ,China;
2. School of Mathematical Sciences, Yangzhou University ,Yangzhou Jiangsu 225002,China)
Abstract:The complementary left annihilator of rings is introduced, and some new equivalent characterizations ofCNrings are given.
Key words:CNring;nilpotent element;complementary left annihilator
[中圖分類(lèi)號(hào)]O153.3;O154
[文獻(xiàn)標(biāo)識(shí)碼]A
[文章編號(hào)]1672-1454(2015)04-0099-06