趙薇萍
【現(xiàn)象掃描】
《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)》在總目標(biāo)中提出“增強(qiáng)發(fā)現(xiàn)和提出問題的能力、分析和解決問題的能力”,沒有問題的提出,就談不上問題的解決。
愛因斯坦曾經(jīng)說過:“提出一個(gè)問題比解決一個(gè)問題更重要?!币?yàn)榻鉀Q問題是學(xué)習(xí)或?qū)嶒?yàn)上的技能,而提出新的問題,從新的角度去看舊的問題則需要?jiǎng)?chuàng)造性的想象力。剛?cè)雽W(xué)的孩子不知道什么是數(shù)學(xué)問題,不懂?dāng)?shù)學(xué)問題怎么提。怎么讓一個(gè)對(duì)數(shù)學(xué)懵懂的孩子能夠敏銳地捕捉到數(shù)學(xué)信息,并提出一個(gè)合理的數(shù)學(xué)問題呢?這就是我們要研究的問題。
一年級(jí)孩子剛學(xué)提數(shù)學(xué)問題出現(xiàn)的問題頗多,筆者大致羅列了一下,有以下幾種情況出現(xiàn)。
閱讀理解型——
在一年級(jí)上冊出現(xiàn)較多,不明白什么叫數(shù)學(xué)問題,提的問題和數(shù)學(xué)不沾邊,如“為什么小兔要給小熊蘑菇?”把它列為閱讀理解題差不多。
自說自答型——
在一年級(jí)上冊出現(xiàn)比較明顯。由于不知道什么是問題,入學(xué)不久的孩子往往把結(jié)果當(dāng)作問題直接說出來了,不會(huì)明知故問,特別是結(jié)果直接呈現(xiàn)的那種題。如“左邊有2朵花,右邊有5朵花,一共有7朵花?!彼麄冎苯泳蛿?shù)出結(jié)果來了。為什么還要提問呢?他們不明白一眼可以看到結(jié)果的還要問什么。
明知故問型——
信息已經(jīng)很清晰地顯示了還提問題,這樣的問題顯然沒有思考的價(jià)值。我們要引導(dǎo)學(xué)生學(xué)會(huì)對(duì)信息進(jìn)行篩選,重組再提出有價(jià)值的問題。統(tǒng)計(jì)表中已經(jīng)呈現(xiàn)了100米賽跑的人數(shù),就不必再去問一遍,這樣的問題思維含量不足,有明知故問之嫌。
另辟蹊徑型——
不會(huì)利用已獲取的信息來提出相關(guān)問題,而是再去尋找信息來提問,造成信息的浪費(fèi)。有學(xué)生提問:“男生有幾個(gè)?女生有幾個(gè)?”原來統(tǒng)計(jì)表中已經(jīng)統(tǒng)計(jì)出不同運(yùn)動(dòng)項(xiàng)目參加的人數(shù),完全可以拿來作信息,不必另起爐灶。再說,按男女分,光看圖片也不好區(qū)分。我們要培養(yǎng)學(xué)生對(duì)信息的加工能力,問題提得好,有利于資源的調(diào)配。
類不匹配型——
一年級(jí)的教材中出現(xiàn)了三種類型的問題,求總數(shù),求部分?jǐn)?shù),求相差數(shù)。數(shù)量關(guān)系都在同一類事物中展開,如人數(shù)和人數(shù)比,不能把人數(shù)和動(dòng)物的只數(shù)比。即使不同類,也轉(zhuǎn)換成同類來比較,如101班有38人,礦泉水有30瓶,每人一瓶夠分嗎?這里人數(shù)和瓶數(shù)不同類,可引導(dǎo)學(xué)生這樣思考,38人,每人一瓶水,需要38瓶,38瓶大于30瓶,所以不夠分。如棋類和球類不是同類不可比,即使比了數(shù)的大小,單位名稱也不好寫,寫“副”還是寫“只”??梢砸龑?dǎo)孩子把不同棋類進(jìn)行比較 ,也可以比球類。
指向不明型
會(huì)提問,但在眾多信息中,指向性不夠明確。如在有多條信息時(shí)問“一共有多少本書?”具體是指誰呢?
【教學(xué)措施】
一、喚醒提問意識(shí)
培養(yǎng)學(xué)生提出問題和解決問題的能力,首先培養(yǎng)學(xué)生問題意識(shí)。問題意識(shí)主要指學(xué)生具有自主探索、積極思考、發(fā)現(xiàn)問題、提出問題、闡述問題等自覺的心理活動(dòng)。問題意識(shí)可以激發(fā)學(xué)生的學(xué)習(xí)欲望和勇于探究的科學(xué)精神,發(fā)展學(xué)生的數(shù)學(xué)思維,深化學(xué)生對(duì)事物的認(rèn)識(shí)。學(xué)生問題意識(shí)的形成,需要經(jīng)歷一個(gè)從敢問到愛問再到善問的過程。如果我們能營造一種平等愉快的課堂氣氛,那學(xué)生就能敞開心扉,暢所欲言。這里以我平時(shí)工作中的幾個(gè)案例說明如何在開放的課堂中喚醒學(xué)生的提問意識(shí)。
(一)鼓勵(lì)提問
大多數(shù)的學(xué)生在學(xué)習(xí)過程中喜歡聽,習(xí)慣于理解,有自己想法并敢于提出來的不多,所以課堂上老師應(yīng)有意識(shí)地培養(yǎng)學(xué)生的問題意識(shí),對(duì)大膽表達(dá)自己想法的同學(xué)要多鼓勵(lì)。在上《20以內(nèi)數(shù)的讀法和寫法》時(shí),我給學(xué)生講20這個(gè)數(shù)的個(gè)位雖然表示一個(gè)也沒有,但還是要寫0占位,話音剛落,奕然舉手問:“老師,如果2前面表示一個(gè)也沒有,這個(gè)0要寫嗎?”這個(gè)問題提得實(shí)在太有價(jià)值了,我馬上組織大家討論。然后我告訴大家,會(huì)提問題的孩子聰明,老師喜歡會(huì)提問的孩子,大家想到什么盡管提。于是,又有幾只小手舉起來了……
(二)學(xué)貴質(zhì)疑
“學(xué)貴有疑,小疑則小進(jìn),大疑則大進(jìn)?!闭n堂中,我總是小心地呵護(hù)學(xué)生提問的積極性,保護(hù)他們的好奇心。目的是使學(xué)生提問的膽子越來越大,逐步養(yǎng)成敢想、敢問、敢說的好習(xí)慣。例如,期末模擬試卷中有這樣一道選擇題,沿著梯形的高剪開,得到的兩個(gè)圖形不可能是( )。A.兩個(gè)梯形;B.兩個(gè)三角形;C.三角形和梯形;D.長方形和梯形。改考卷時(shí),我也沒多想,選擇了B,也就是不能得到兩個(gè)三角形??晌以谥v解時(shí),王哲提出來可以得到兩個(gè)三角形。我沒有表態(tài),而是說,你到黑板上來畫一畫吧,王哲果然畫成了。
我很佩服,大大地表揚(yáng)了王哲。因?yàn)榘凑找话闳说乃季S,選擇題中至少有一個(gè)答案,這道題的其他答案容易想到,如果把這個(gè)答案否定,也就意味著這題無項(xiàng)可選,這大概是出題目的老師也沒想到的吧。我說:“王哲很大膽地提出了與眾不同的想法,老師很欣賞,數(shù)學(xué)表現(xiàn)加1分。”有人不服,覺得是題目本身有問題,不然,也許大家也能想到。我說:“別人想不到,王哲想到了,這就是加分的理由,我覺得加1分還不夠,要加3分。今后大家也要敢于質(zhì)疑,即使說錯(cuò)了,老師同學(xué)都會(huì)幫助你糾錯(cuò),同樣,你也會(huì)有一分收獲,不是嗎?”
平時(shí),多給學(xué)生這樣的鼓勵(lì),課堂就能充滿張力與活力,學(xué)生也能帶給你意想不到的驚喜。
(三)挑戰(zhàn)權(quán)威
《數(shù)學(xué)報(bào)》內(nèi)容豐富,印刷精美,深受大家喜愛,而且,很少出現(xiàn)錯(cuò)誤??蛇@次的《數(shù)學(xué)報(bào)》卻出現(xiàn)了這樣的錯(cuò)誤,1-2=(),對(duì)一年級(jí)的孩子來說,這是無法做的。因?yàn)槭侵芪宸艑W(xué)前發(fā)下的,事先我沒看過,所以直到有家長來問,我才知這個(gè)問題,趕緊發(fā)校訊通更正。一位家長打電話給我說:“孩子不聽話時(shí),拿老師的話來壓我們,當(dāng)我告訴他這道題印錯(cuò)時(shí),他說,我們老師說了,1-2=0。老師你幫我教育一下?!奔议L說服不了孩子,只能求助于我。我聽完,啞然失笑,多可愛的孩子。還有家長說一家人正在研究這道題該怎么做。周一孩子們來上學(xué),我覺得有必要與他們討論一下這個(gè)問題。我說1-2不是不能做,能做,結(jié)果是負(fù)1,不過是初中內(nèi)容,小學(xué)生還不需要掌握。今后碰到這種問題,要請(qǐng)教長輩,不能想當(dāng)然。大家不要迷信課本一定是對(duì)的,報(bào)紙一定是對(duì)的,老師一定是對(duì)的,人要有質(zhì)疑精神,不過要實(shí)事求是。孩子還小,我覺得要教給他們挑戰(zhàn)權(quán)威的能力。至于那一位孩子,我也找他個(gè)別談了話,老師沒講過1-2=0,你不能自己編,講話要實(shí)事求是。孩子就像一棵小樹,小樹長歪了,我們有義務(wù)把他扶正。扶正的小樹才可能長成一棵參天大樹。
不打壓孩子提問的積極性,即使提錯(cuò)了,也要小心呵護(hù)這種可貴的精神。我們要努力為孩子們營造一個(gè)提問的自由空間。“有容乃大”,寬松的氣氛能激發(fā)孩子求知的欲望和探索真理的動(dòng)力。
二、指導(dǎo)提問方法
提問能力與生俱來,孩子們會(huì)隨心所欲地提出千奇百怪的問題,但要從數(shù)學(xué)的角度發(fā)現(xiàn)問題、提出問題,還需要引導(dǎo)。教師要依據(jù)低年級(jí)孩子的年齡特點(diǎn)和認(rèn)知特點(diǎn),設(shè)計(jì)一些學(xué)生熟悉的生活情境,指導(dǎo)學(xué)生“問什么”“怎么問”。
(一)模仿起步
數(shù)學(xué)是思維的體操,語言是思維的外衣,培養(yǎng)學(xué)生的語言表達(dá)能力是促進(jìn)學(xué)生思維能力發(fā)展和學(xué)好數(shù)學(xué)的有效途徑。正如數(shù)學(xué)教育家斯托利亞爾所說:“數(shù)學(xué)教學(xué)也就是數(shù)學(xué)語言的教學(xué)?!眲?cè)雽W(xué)的孩子,一般會(huì)有一些模糊的數(shù)的認(rèn)識(shí),數(shù)學(xué)語言的積累幾乎為零,缺乏語言組織能力,提出的數(shù)學(xué)問題缺乏邏輯性。教師要盡快幫助學(xué)生不斷地積累起數(shù)學(xué)語言,學(xué)會(huì)正確地表達(dá),并且要避免啰唆重復(fù)。兒童具有很強(qiáng)的模仿能力,學(xué)習(xí)的第一步就是模仿,即教師說學(xué)生跟。如一年級(jí)上冊學(xué)習(xí)加法的第一課,教師指導(dǎo)看懂圖意后,可以把規(guī)范的三句話板書在黑板上,“馬戲團(tuán)的小丑有紅氣球3個(gè),綠氣球1個(gè),他一共有幾個(gè)氣球?”帶著學(xué)生說幾遍,并告訴學(xué)生,把一件事一個(gè)數(shù)量明確告訴對(duì)方的叫信息,問別人的一句話叫問題。學(xué)生數(shù)學(xué)語言的積累就從模仿起步了。
這第一步要是教師帶著走的,教師的言行對(duì)學(xué)生有著潛移默化的影響,起步階段教師語言一定要規(guī)范,要明確,要言簡意賅。通過看圖說話來豐富學(xué)生的數(shù)學(xué)語言是一種非常有效的練習(xí)方法。每次練習(xí)時(shí),教師不要滿足于學(xué)生會(huì)列式就行了,而應(yīng)該創(chuàng)造機(jī)會(huì)多讓學(xué)生看著圖說三句話,以此來培養(yǎng)學(xué)生用規(guī)范的數(shù)學(xué)語言來表達(dá)的能力。
(二)逐步積累
有些學(xué)生一時(shí)半會(huì)兒不會(huì)提問,我們教師不要操之過急,多帶著學(xué)生練習(xí)幾次,學(xué)生慢慢就能自己領(lǐng)悟了。先要學(xué)會(huì)找問號(hào),問號(hào)在大括號(hào)下,可提求總數(shù)的問題;問號(hào)在其中一部分處,可提求部分?jǐn)?shù)的問題,這就是學(xué)習(xí)積累的過程。像“總數(shù)”“部分?jǐn)?shù)”這些術(shù)語都可以告訴學(xué)生,他們能理解,也便于表達(dá)。就這樣,學(xué)生先是看到問號(hào)就知道該問什么,慢慢過渡到能根據(jù)內(nèi)在的數(shù)量關(guān)系來發(fā)現(xiàn)問題,提出問題。他們逐步能體會(huì)到兩條相關(guān)的信息可以提出一個(gè)相關(guān)的問題,在腦中逐漸建立起這樣的模型。
有些題圖上的結(jié)果一目了然,直接能看到,有些學(xué)生會(huì)搞不懂,為什么結(jié)果知道了還要問。這種練習(xí),可以選擇結(jié)果不明確的,如,右手的棋子遮住了,看不到。這種結(jié)果看不到的題目學(xué)生更能體會(huì)到問題的實(shí)質(zhì)性,不知道,所以問,避免結(jié)果能直觀看到而不會(huì)問的情況。我們還可以從圖畫題過渡到圖文結(jié)合題,如媽媽買了10個(gè)蘋果 ,吃了3個(gè), 抽象的數(shù)擺在那兒,學(xué)生不可能去數(shù),只能依據(jù)內(nèi)在的數(shù)量關(guān)系來推理提問。
(三)搭設(shè)臺(tái)階
小學(xué)低年級(jí)學(xué)生的知識(shí)基礎(chǔ)和生活經(jīng)驗(yàn)相對(duì)比較欠缺,也不具備很強(qiáng)學(xué)習(xí)能力,其思維一般處于以具體形象思維為主的階段。動(dòng)手操作有助于開發(fā)右腦,促進(jìn)左右腦的協(xié)調(diào)發(fā)展。動(dòng)手操作能使抽象的問題具體化,學(xué)生借助操作這一思維的“腳手架”,有助于在大量感性材料的基礎(chǔ)上激活思維,使認(rèn)識(shí)從形象上升到抽象,深化對(duì)知識(shí)的理解。學(xué)習(xí)求總數(shù)和求剩余的基本數(shù)量關(guān)系時(shí),我們可以讓學(xué)生動(dòng)手操作,利用學(xué)具在桌上擺,如有5個(gè)蘋果,拿走3個(gè),可以提出什么問題呢?基于親身實(shí)踐,學(xué)生往往有話可說。條件不具備時(shí),也可以輔助以動(dòng)態(tài)的課件演示或者老師的手勢演示。比如,老師的左手有3支筆,右手有2支筆,然后老師演示把兩只手的筆合起來,這時(shí),學(xué)生自然就能發(fā)現(xiàn)并提問了。
三、提升問題質(zhì)量
學(xué)生的提問能力其實(shí)是一種心理素質(zhì)、生活經(jīng)驗(yàn)、知識(shí)積累和語言技能的綜合能力。要提高學(xué)生提問的質(zhì)量,還需要在一定的情境中進(jìn)行思維訓(xùn)練。
(一)創(chuàng)設(shè)情境
教師只有主動(dòng)為學(xué)生創(chuàng)造提出問題的條件,才能提高學(xué)生從數(shù)學(xué)角度提出問題的能力。每次新學(xué)一個(gè)內(nèi)容,都可以鼓勵(lì)學(xué)生先大膽提出問題。如學(xué)習(xí)認(rèn)識(shí)時(shí)間之前??梢宰寣W(xué)生說說你想了解時(shí)間的什么知識(shí)?根據(jù)學(xué)生們提出的問題,我們可以分成數(shù)學(xué)問題和非數(shù)學(xué)問題,數(shù)學(xué)問題中哪些是這節(jié)課可以解決的,哪些等以后學(xué)了才能解決。
課本里有很多主題圖,雖然沒有提問要求,但我們可以引導(dǎo)學(xué)生們看圖提問。比如一年級(jí)下冊P8第二單元20以內(nèi)退位減法主題圖,畫面呈現(xiàn)的是游樂場的情境,有兩條信息是沒有問題出現(xiàn)的,“小雪說,我套中了7個(gè);小華說,我套中了12個(gè)?!边@是一個(gè)很好的資源,可以引導(dǎo)學(xué)生提出不同問題。這個(gè)有意設(shè)計(jì)的提問環(huán)節(jié),在我班引發(fā)了一場熱烈的討論。生一說,兩人共套中幾個(gè);生二說,小雪比小華少套中幾個(gè);生三說,小雪再套幾個(gè)就和小華同樣多了;生四說,小雪再套幾個(gè)就可以超過小華了;生五說,小華給幾個(gè)小雪,兩人就同樣多了?生五話音剛落,就有心急的生六跳出來說,誰套的就是誰的,不能給對(duì)方,不然比賽就不好玩了??磥?,孩子們的提問潛力是相當(dāng)大的,只要用心開發(fā),就能異彩紛呈。衍生出的題外話是生活中的常識(shí),我們的數(shù)學(xué)是為生活服務(wù)的,生六的話言之有理,教師要給予肯定。但不能否定的是這個(gè)問題還是好問題,在時(shí)間允許的情況下,可以讓學(xué)生展開討論,兩人的個(gè)數(shù)可能同樣多嗎,什么情況下可以一樣多。
(二)多維思考
由于同一類型的題目解多了,學(xué)生的大腦中就會(huì)形成一種固定的思維模式。如河里有48只鴨子,第一次游走了20只,第二次游走了8只,兩次一共游走多少只?很多孩子想都沒想,就列式為48-20-8=,其實(shí)內(nèi)心根本就沒分析過數(shù)量關(guān)系,題目要求什么沒注意,想當(dāng)然就匆忙列式了。為了防止思維定式,我們可以設(shè)計(jì)一題多問的練習(xí),先不出現(xiàn)問題,而是讓學(xué)生來提問。學(xué)生的思維可活躍了,有的問還剩幾只,有的問兩次共游走幾只?還有的問第一次游走后還剩幾只?第一次比第二次多游走幾只?這樣的訓(xùn)練能開拓學(xué)生的思維,把關(guān)注點(diǎn)放在問題上,也能幫學(xué)生厘清內(nèi)在的數(shù)量關(guān)系。這是訓(xùn)練學(xué)生開放式思維的好方法。
(三)反找信息
我們指導(dǎo)學(xué)生發(fā)現(xiàn)問題,提出問題是順向思維,如果能讓學(xué)生從問題想起,就是反向思維。平時(shí)練習(xí)一下有助于培養(yǎng)思維的靈活性,使學(xué)生的思路更通暢。一年級(jí)的教材中已經(jīng)出現(xiàn)了有多條信息,需要根據(jù)問題來選用相應(yīng)信息的題目。如“灰兔拔了8個(gè)蘿卜,白兔拔了9個(gè)蘿卜,灰兔比白兔少拔幾個(gè)蘿卜?”很多孩子往往只看一半就匆忙下筆8+9=17(個(gè)),其實(shí)根本沒有看完題目。解決這一類題,我們可以使用分析法,從問題出發(fā),引導(dǎo)學(xué)生思考問題是什么?要求灰兔比白兔多拔幾個(gè)要知道什么信息?學(xué)生很快就能說出灰兔拔的個(gè)數(shù)和白兔拔的個(gè)數(shù),按圖索驥,找到相應(yīng)的信息,問題就迎刃而解了。像這樣的分析法雖然是為了解決問題,逆向思維,但這樣的練習(xí)能促使學(xué)生重視問題,能按需選擇信息。結(jié)束后,可以問問圖中所列算式“8+9=17”表示什么?這個(gè)算式回答的是什么問題?如此練習(xí),使學(xué)生的思維更縝密。
逆向思維訓(xùn)練還可以采用這種形式,補(bǔ)充條件。如“ ,二班有40人,二班比一班多幾人?”學(xué)生會(huì)自覺地從問題想起,根據(jù)內(nèi)在的數(shù)量關(guān)系來補(bǔ)充相應(yīng)條件。
提問水平的高低與思維水平相輔相成,高水平思維才能提出高質(zhì)量的問題。由于低年級(jí)孩子的思維能力處于“待開發(fā)”階段,教師要精心選擇學(xué)習(xí)素材,設(shè)計(jì)學(xué)生活動(dòng),引導(dǎo)學(xué)生充分經(jīng)歷觀察、操作、思考等活動(dòng),使學(xué)生思維的靈活性、深刻性、發(fā)散性這些特質(zhì)得到進(jìn)一步開發(fā)。思維發(fā)展了,提問的質(zhì)量就高了。
人教版實(shí)驗(yàn)教材六年級(jí)語文課本中有一篇課文是《真理誕生于一百個(gè)問號(hào)之后》,文中講到“那些定理、定律、學(xué)說的發(fā)現(xiàn)者,差不多都善于從細(xì)小的司空見慣的現(xiàn)象中看出問題,不斷解決疑問,追根求源,最后把‘?拉直變成‘!,找到了真理?!蔽覀兊臄?shù)學(xué)也是這樣,我們要培養(yǎng)學(xué)生的問題意識(shí),讓學(xué)生學(xué)會(huì)發(fā)現(xiàn),敢于提問,學(xué)會(huì)提問,善于提問,在提問中不斷地獲取新知,成為一名創(chuàng)新性人才。