王琪 王滿(mǎn)俠 鄭婷 張帥杰 張新燕
?
內(nèi)皮祖細(xì)胞在缺血性腦血管病中的研究進(jìn)展
王琪王滿(mǎn)俠鄭婷張帥杰張新燕
腦血管病是全球第二大常見(jiàn)死因,也是成年人最主要的致殘?jiān)騕1]。隨著老齡化社會(huì)的發(fā)展,腦血管病的發(fā)病率逐漸增高[2]。其中,ICVD( Ischemic cerebrovascular disease)占腦血管病的87%[3]。目前,藥物溶栓和血管內(nèi)介入治療是公認(rèn)的治療ICVD的有效方法[4]。但溶栓治療時(shí)間窗短暫,僅為3~4.5 h[5],因此只有約5%的ICVD患者成功接受溶栓治療[6]。血管內(nèi)介入治療后2年內(nèi)腦卒中再發(fā)率明顯高于藥物溶栓[7]。所以,對(duì)于無(wú)溶栓適應(yīng)癥和血管內(nèi)介入指征的ICVD患者需要尋求其他方法。近年來(lái),新提出的生物療法為ICVD的治療提供了一個(gè)新的方向。研究表明EPCs( endothelial progenitor cells)可以促進(jìn)血管再生及神經(jīng)修復(fù),且EPCs的水平與ICVD的嚴(yán)重程度呈負(fù)相關(guān)[8]。因此,基于EPCs為ICVD的治療提供了一個(gè)新的思路。
EPCs主要來(lái)源于骨髓、脾、外周血和臍帶血,其中骨髓中EPCs含量豐富[9]。將外周血中EPCs在體外培養(yǎng),根據(jù)生長(zhǎng)周期將其分為早期EPCs和晚期EPCs。早期EPCs呈梭形,3~5 d出現(xiàn),約第4周死亡,增殖能力低,能分泌血管內(nèi)皮生長(zhǎng)因子和白介素-8等細(xì)胞因子促進(jìn)血管新生。晚期EPCs呈鵝卵石樣,培養(yǎng)2~3周出現(xiàn),4~8周生長(zhǎng)達(dá)頂峰,能在培養(yǎng)基中存活長(zhǎng)達(dá)12周,主要通過(guò)增殖分化形成成熟血管內(nèi)皮細(xì)胞,參與血管新生[10]。EPCs表面標(biāo)志目前尚不十分明確,主要包括造血干細(xì)胞標(biāo)志CD34和CD133,內(nèi)皮細(xì)胞表面標(biāo)志如CD31、KDR、vWF、CD144、Tie2,c-kit/CD117和E-選擇素等[10-13]。由于EPCs處于干細(xì)胞向內(nèi)皮細(xì)胞的分化階段,其表面標(biāo)志處于動(dòng)態(tài)變化中,所以研究?jī)A向于使用CD34/VEGF R2 /CD133 三陽(yáng)性細(xì)胞表面標(biāo)記鑒定EPCs[14]。
ICVD主要是由于腦組織局部血液循環(huán)受阻及神經(jīng)元壞死而造成難以逆轉(zhuǎn)的功能破壞。EPCs主要通過(guò)參與血管再生和神經(jīng)修復(fù)來(lái)促進(jìn)ICVD恢復(fù)。Zhang等[15]首次提出內(nèi)源性EPCs在ICVD中參與新血管形成。在ICVD急性期EPCs分泌多種細(xì)胞因子促進(jìn)更多的EPCs向缺血灶遷移;進(jìn)入ICVD亞急性期EPCs主要以血管發(fā)生和血管生成兩種方式來(lái)促進(jìn)血管新生。一方面,骨髓中的EPCs在細(xì)胞因子的作用下動(dòng)員到外周血中,遷移、增殖、分化形成內(nèi)皮細(xì)胞,再?gòu)念^形成血管網(wǎng)的過(guò)程即為血管發(fā)生;另一方面,EPCs通過(guò)分泌多種細(xì)胞因子激活靜止的內(nèi)皮細(xì)胞,使內(nèi)皮細(xì)胞以出芽或非出芽方式形成新的毛細(xì)血管,此過(guò)程即為血管生成。研究表明,新生血管內(nèi)皮細(xì)胞中約26%來(lái)源于EPCs[16]。ICVD中血管新生常常伴隨著神經(jīng)再生,目前對(duì)于EPCs促進(jìn)血管和神經(jīng)修復(fù)的機(jī)制尚不完全清楚,可能有以下幾個(gè)方面:①EPCs促進(jìn)血管新生,為神經(jīng)再生提供營(yíng)養(yǎng)物質(zhì);②腦缺血發(fā)生后EPCs能動(dòng)員腦組織現(xiàn)存的神經(jīng)祖細(xì)胞沿新生血管遷移,代替受損的神經(jīng)細(xì)胞[17];③EPCs可通過(guò)抑制細(xì)胞凋亡和氧化應(yīng)激反應(yīng),減輕神經(jīng)元損傷[18];④EPCs通過(guò)旁分泌作用生成的血管內(nèi)皮生長(zhǎng)因子不僅能促進(jìn)血管新生,還能將星形膠質(zhì)細(xì)胞轉(zhuǎn)化為神經(jīng)細(xì)胞,形成新的血管神經(jīng)網(wǎng)[19];⑤Mao等[20]用CXCR4拮抗劑AMD3100處理大腦中動(dòng)脈阻塞的動(dòng)物模型后發(fā)現(xiàn)缺血區(qū)EPCs數(shù)量下降,毛細(xì)血管密度和腦血流量均不同程度的減少,據(jù)此推測(cè)EPCs通過(guò)CXCR4/SDF-1軸來(lái)參與新血管形成。
以EPCs為基礎(chǔ)的治療策略分為內(nèi)源性EPCs的動(dòng)員和外源性EPCs的移植,現(xiàn)從這兩方面展開(kāi)闡述。
4.1內(nèi)源性EPCs的動(dòng)員
ICVD發(fā)生后內(nèi)源性EPCs主要從骨髓動(dòng)員至外周血[21]。由于內(nèi)源性EPCs在體內(nèi)的數(shù)量很少,尤其是病理狀態(tài)下內(nèi)源性EPCs數(shù)量和功能均會(huì)下降[22]。通過(guò)內(nèi)源性途徑治療ICVD,其策略是促進(jìn)、激活生理性存在于體內(nèi)的EPCs增殖、遷移和分化,避免了細(xì)胞移植中有關(guān)的倫理道德、異源性細(xì)胞致病性及移植細(xì)胞致瘤性等問(wèn)題。臨床上促進(jìn)EPCs動(dòng)員的最常見(jiàn)藥物是他汀類(lèi)藥物,其機(jī)制可能是通過(guò)他汀類(lèi)藥物促進(jìn)內(nèi)皮型一氧化氮合酶的合成而使一氧化氮增加有關(guān)[23]。血管緊張素Ⅱ是通過(guò)與EPCs表面的1型血管緊張素II受體結(jié)合來(lái)誘導(dǎo)凋亡信號(hào)通路,所以血管緊張素轉(zhuǎn)換酶抑制劑和血管緊張素阻滯劑類(lèi)藥物可以增加EPCs的數(shù)量和改善其功能[24-25]。Stenmetz等[26]發(fā)現(xiàn)聯(lián)合應(yīng)用替米沙坦和辛伐他汀比使用單一藥物對(duì)EPCs的數(shù)量增加和功能改善有更加顯著的作用,據(jù)此推測(cè)他汀類(lèi)藥物和沙坦類(lèi)藥物聯(lián)合使用時(shí)對(duì)EPCs數(shù)量增加和功能改善有協(xié)同作用。De Ciuceis等[27]在觀察降壓藥對(duì)EPCs數(shù)量的影響時(shí)給2組患者分別給予巴尼地平20 mg、氫氯噻嗪25 mg,6月后2種藥物對(duì)于患者的降壓效果相同,但巴尼地平能夠增加循環(huán)EPCs的數(shù)量,而氫氯噻嗪不能,據(jù)此推測(cè)鈣離子通道阻滯劑可能增加EPCs的數(shù)量,其機(jī)制可能與其促進(jìn)血管平滑肌細(xì)胞釋放血管內(nèi)皮生長(zhǎng)因子和清除氧自由基有關(guān)。Sheu等[28]對(duì)55例肢體嚴(yán)重缺血的患者給予氯吡格雷和西洛他唑治療,3個(gè)月肢體疼痛明顯改善,并且其血循環(huán)中EPCs數(shù)量明顯增加。西洛他唑單獨(dú)使用也可增加循環(huán)EPCs的數(shù)量,促進(jìn)臍血來(lái)源的EPCs遷移和粘附[29]。胞二磷膽堿作為神經(jīng)內(nèi)科常用的神經(jīng)保護(hù)劑,單獨(dú)注射或與rt-PA同時(shí)注射均可增加急性腦血管病患者血循環(huán)中EPCs的數(shù)量[30]。Zhao等[31]通過(guò)170例患者的臨床研究證實(shí)丁苯酞注射液不僅能有效改善急性缺血性腦卒中患者神經(jīng)功能缺損,還能促進(jìn)EPCs動(dòng)員,增加循環(huán)EPCs的數(shù)量。粒細(xì)胞集落刺激因子是細(xì)胞因子家族中的成員,其主要功能是刺激粒、單核巨噬細(xì)胞成熟,促進(jìn)成熟細(xì)胞向外周血釋放。動(dòng)物實(shí)驗(yàn)證實(shí),粒細(xì)胞集落刺激因子還能動(dòng)員骨髓干細(xì)胞進(jìn)入外周血并促進(jìn)腦組織基質(zhì)細(xì)胞衍生因子表達(dá)以趨化干細(xì)胞,促進(jìn)腦組織的血管再生和神經(jīng)修復(fù),繼而改善大腦中動(dòng)脈阻塞后大鼠神經(jīng)功能缺損癥狀[32]。臨床研究也證實(shí),靜脈給予粒細(xì)胞集落刺激因子,刺激EPCs動(dòng)員至周?chē)h(huán)中,可使冠心病患者血循環(huán)中的EPCs數(shù)量增加[33]。在ICVD患者中粒細(xì)胞集落刺激因子可動(dòng)員CD34+骨髓干細(xì)胞至周?chē)h(huán)中,并改善患者美國(guó)國(guó)立衛(wèi)生研究院卒中量表(NIHSS)和改良Rankin量表(MRS)[34]。此外,促紅細(xì)胞生成素(erythopietin,EPO)因具有神經(jīng)保護(hù)作用曾認(rèn)為可以用于ICVD的治療[35]。但在德國(guó)進(jìn)行的一項(xiàng)多中心大樣本臨床試驗(yàn)中對(duì)522例ICVD患者用rt-PA靜脈溶栓后6、24或48 h使用EPO,顯示EPO非但不能改善ICVD發(fā)病后3個(gè)月的Barthel指數(shù),反而會(huì)增高其病死率[36]。然而,最新一項(xiàng)臨床試驗(yàn)表明EPO治療可以增加循環(huán)EPCs的水平,并且能夠改善3個(gè)月后的Barthel指數(shù)[37]。動(dòng)物實(shí)驗(yàn)也證實(shí),EPO能動(dòng)員EPCs至周?chē)?,促進(jìn)血管生成[38]。所以,EPO是否能夠用于ICVD的治療,目前還需要進(jìn)一步的臨床試驗(yàn)去評(píng)價(jià)其有效性和安全性。
4.2外源性EPCs移植
4.2.1外源性EPCs移植現(xiàn)狀
基于EPCs在ICVD中的治療作用,EPCs移植可能成為治療ICVD的新方法。動(dòng)物實(shí)驗(yàn)表明,CD34+細(xì)胞移植在ICVD后對(duì)促進(jìn)新血管形成和神經(jīng)再生有治療作用[39]。Moubarik等[40]在小鼠大腦中動(dòng)脈閉塞模型中向缺血損傷區(qū)注射人臍血源性的EPCs同種亞型細(xì)胞即內(nèi)皮克隆形成細(xì)胞(endothelial colony-forming cells, ECFCs)24 h后發(fā)現(xiàn),用熒光標(biāo)記的ECFCs定位于大腦缺血區(qū),14 d發(fā)現(xiàn)注射ECFCs的大鼠神經(jīng)功能較對(duì)照組大鼠有明顯改善。另一項(xiàng)動(dòng)物實(shí)驗(yàn)表明,EPO結(jié)合臍帶血源性的ECFCs移植較單獨(dú)注射EPO或者人臍帶血源性的ECFCs更有利于抑制細(xì)胞凋亡,促進(jìn)血管和神經(jīng)再生,改善ICVD的預(yù)后[41]。此外,在EPCs移植前在體外對(duì)移植EPCs進(jìn)行基因修飾的預(yù)處理能夠增強(qiáng)其治療效果[42]。目前,修飾后的EPCs移植尚未應(yīng)用于腦缺血?jiǎng)游飳?shí)驗(yàn)中,因此為進(jìn)一步腦缺血的動(dòng)物實(shí)驗(yàn)研究提供了一個(gè)新的方向。
4.2.2EPCs移植的安全性和有效性
雖然EPCs的移植在動(dòng)物實(shí)驗(yàn)?zāi)P椭腥〉昧艘欢ǖ男Ч?,但仍存在一些?wèn)題。由于EPCs可以產(chǎn)生趨化因子白細(xì)胞介素-8及單核細(xì)胞趨化蛋白-1, 并且招募更多的單核細(xì)胞和巨噬細(xì)胞,這些都會(huì)加重缺血性腦損傷[40];產(chǎn)生血管內(nèi)皮生長(zhǎng)因子,它在促進(jìn)血管和神經(jīng)再生的同時(shí)還增加血管的通透性,加重腦水腫[43];EPCs還可以遷移至腫瘤組織促進(jìn)腫瘤組織血管形成,加快腫瘤增長(zhǎng)[44]。但是,在對(duì)55例行EPCs移植的急性心肌梗死患者長(zhǎng)達(dá)5年的隨訪中并未發(fā)現(xiàn)有腫瘤形成[45]。動(dòng)物實(shí)驗(yàn)中習(xí)慣經(jīng)靜脈、動(dòng)脈和經(jīng)顱途徑進(jìn)行EPCs移植,由于動(dòng)脈內(nèi)注射容易形成血栓,經(jīng)顱途徑移植手術(shù)復(fù)雜,并且易造成腦出血等并發(fā)癥,所以臨床上移植首先考慮經(jīng)靜脈途徑移植。此外,移植濃度和移植時(shí)間對(duì)于移植效果有重要意義,但目前在此方面研究很少。最近臺(tái)灣進(jìn)行的一項(xiàng)動(dòng)物實(shí)驗(yàn)顯示,與低濃度(1.7×106/kg)相比,給家兔動(dòng)脈注射高濃度(5.7×106/kg)骨髓來(lái)源EPCs時(shí)能顯著減少大腦梗死面積和改善其神經(jīng)功能缺損的程度[46]。在體外分別檢測(cè)ICVD急性期和亞急性期的EPCs功能時(shí)發(fā)現(xiàn),亞急性期的EPCs的血管形成能力更強(qiáng),據(jù)此推測(cè)在ICVD亞急性期進(jìn)行細(xì)胞移植可能比急性期更有效。EPCs在ICVD治療中的作用仍需進(jìn)一步探索和驗(yàn)證。
大量研究證實(shí)EPCs在ICVD的治療中有重要意義,EPCs在缺血后腦組織血管再生和神經(jīng)保護(hù)的作用已得到證實(shí),但是在ICVD中EPCs的增殖、遷移和修復(fù)作用的機(jī)制還不完全清楚。關(guān)于EPCs作為ICVD治療中的研究還停留在動(dòng)物模型試驗(yàn)階段,還需要更多的動(dòng)物實(shí)驗(yàn)和臨床試驗(yàn)去證實(shí)其有效性和安全性。除了在治療方面的意義,EPCs在ICVD的診斷和預(yù)后中也有重要意義,EPCs在預(yù)防ICVD方面或許是一個(gè)新的研究方向。因此,EPCs在ICVD中的作用還需要進(jìn)一步探討。
[1]Moskowitz MA,Lo EH,Iadecola C.The science of stroke: mechanisms in search of treatments[J].Neuron,2010,67(2):181-198.
[2]Sun F,Wang X,Mao X,et al.Ablation of neurogenesis attenuates recovery of motor function after focal cerebral ischemia in middle-aged mice[J].PLoS One,2012,7(10):e46326.
[3]Shiber JR,Fontane E,Adewale A.Stroke registry: hemorrhagic vs ischemic strokes[J].Am J Emerg Med,2010,28(3):331-333.
[4]Molina CA.Reperfusion therapies for acute ischemic stroke: current pharmacological and mechanical approaches[J].Stroke,2011,42(1 Suppl):S16-S19.
[5]Shobha N,Buchan AM,Hill MD.Thrombolysis at 3-4.5 hours after acute ischemic stroke onset - evidence from the Canadian alteplase for stroke effectiveness study (CASES) registry[J].Cerebrovascular Diseases,2011,31(3):223-228.
[6]Adeoye O,Hornung R,Khatri P,et al.Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years[J].Stroke,2011,42(7):1952-1955.
[7]Lutsep HL,Lynn MJ,Cotsonis GA,et al.Does the stenting versus aggressive medical therapy trial support stenting for subgroups with intracranial stenosis?[J].Stroke,2015,46(11):3282-3284.
[8]Bogoslovsky T,Chaudhry A,Latour L,et al.Endothelial progenitor cells correlate with lesion volume and growth in acute stroke[J].Neurology,2010,75(23):2059-2062.
[9]Isner JM,Kalka C,Kawamoto A,et al.Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair[J].Ann N Y Acad Sci,2001,953:75-84.
[10]Hur J,Yoon CH,Kim HS,et al.Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis[J].Arterioscler Thromb Vasc Biol,2004,24(2):288-293.
[11]Hristov M,Erl W,Weber PC.Endothelial progenitor cells: mobilization, differentiation, and homing[J].Arterioscler Thromb Vasc Biol,2003,23(7):1185-1189.
[12]Rouhl RP,Van Oostenbrugge RJ,Damoiseaux J,et al.Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts[J].Stroke,2008,39(7):2158-2165.
[13]Fadini GP,Losordo D,Dimmeler S.Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use[J].Circ Res,2012,110(4):624-637.
[14]Hirschi KK,Ingram DA,Yoder MC.Assessing identity, phenotype, and fate of endothelial progenitor cells[J].Arterioscler Thromb Vasc Biol,2008,28(9):1584-1595.
[15]Zhang ZG,Zhang L,Jiang Q,et al.Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse[J].Circ Res,2002,90(3):284-288.
[16]Murayama T,Tepper OM,Silver M,et al.Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo[J].Exp Hematol,2002,30(8):967-972.
[17]Thored P,Wood J,Arvidsson A,et al.Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke[J].Stroke,2007,38(11):3032-3039.
[18]Qiu J,Li W,Feng SH,et al.Transplantation of bone marrow-derived endothelial progenitor cells attenuates cerebral ischemia and reperfusion injury by inhibiting neuronal apoptosis, oxidative stress and nuclear factor-kappa B expression[J].Int J Mol Med,2013,31(1):91-98.
[19]Shen SW,Duan CL,Chen XH,et al.Neurogenic effect of VEGF is related to increase of astrocytes transdifferentiation into new mature neurons in rat brains after stroke[J].Neuropharmacology,2015,pii:S0028-3908(15):30173-30176.
[20]Mao L,Huang M,Chen SC,et al.Endogenous endothelial progenitor cells participate in neovascularization via CXCR4/SDF-1 axis and improve outcome after stroke[J].CNS Neurosci Ther,2014,20(5):460-468.
[21]Hess DC,Hill WD,Martin-Studdard A,et al.Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke[J].Stroke,2002,33(5):1362-1368.
[22]Fadini GP,Agostini C,Avogaro A.Endothelial progenitor cells in cerebrovascular disease[J].Stroke,2005,36(6):1112-1113; author reply 1113.
[23]Sobrino T,Blanco M,P rez-Mato M,et al.Increased levels of circulating endothelial progenitor cells in patients with ischaemic stroke treated with statins during acute phase[J].Eur J Neurol,2012,19(12):1539-1546.
[24]Endtmann C,Ebrahimian T,Czech T,et al.Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration[J].Hypertension,2011,58(3):394-403.
[25]Gong X,Shao L,Fu YM,et al.Effects of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis[J].Med Sci Monit,2015,21:1189-1193.
[26]Steinmetz M,Brouwers C,Nickenig G,et al.Synergistic effects of telmisartan and simvastatin on endothelial progenitor cells[J].J Cell Mol Med,2010,14(6b):1645-1656.
[27]De Ciuceis C,Pilu A,Rizzoni D,et al.Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension[J].Blood Press,2011,20(2):77-83.
[28]Sheu JJ,Lin PY,Sung PH,et al.Levels and values of lipoprotein-associated phospholipase A2, galectin-3, RhoA/ROCK, and endothelial progenitor cells in critical limb ischemia: pharmaco-therapeutic role of cilostazol and clopidogrel combination therapy[J].J Transl Med,2014,12(19):101.
[29]Lee DH,Lee HR,Shin HK,et al.Cilostazol enhances integrin-dependent homing of progenitor cells by activation of cAMP-dependent protein kinase in synergy with Epac1[J].J Neurosci Res,2011,89(5):650-660.
[30]Sobrino T,Rodr guez-Gonz lez R,Blanco M,et al.CDP-choline treatment increases circulating endothelial progenitor cells in acute ischemic stroke[J].Neurol Res,2011,33(6):572-577.
[31]Zhao H,Yun W,Zhang Q,et al.Mobilization of circulating endothelial progenitor cells by dl-3-n-Butylphthalide in acute ischemic stroke patients[J].J Stroke Cerebrovasc Dis,2016,25(4):752-760.
[32]張興秀,郭慧娟,李琳,等.缺血性腦卒中大鼠模型骨髓干細(xì)胞的動(dòng)員和神經(jīng)修復(fù)作用[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2012,34(12):1192-1196.
[33]Powell TM,Paul JD,Hill JM,et al.Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease[J].Arterioscler Thromb Vasc Biol,2005,25(2):296-301.
[34]Fan ZZ,Cai HB,Ge ZM,et al.The efficacy and safety of granulocyte Colony-Stimulating factor for patients with stroke[J].J Stroke Cerebrovasc Dis,2015,24(8):1701-1708.
[35]Wang Y,Zhang ZG,Rhodes K,et al.Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia[J].Br J Pharmacol,2007,151(8):1377-1384.
[36]Ehrenreich H,Weissenborn K,Prange H,et al.Recombinant human erythropoietin in the treatment of acute ischemic stroke[J].Stroke,2009,40(12):e647-e656.
[37]Tsai TH,Lu CH,Wallace CG,et al.Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: a randomized, prospective, placebo-controlled clinical trial[J].Crit Care,2015,19(1):49.
[38]Wang L,Wang X,Su H,et al.Recombinant human erythropoietin improves the neurofunctional recovery of rats following traumatic brain injury via an increase in circulating endothelial progenitor cells[J].Transl Stroke Res,2015,6(1):50-59.
[39]Taguchi A,Soma T,Tanaka H,et al.Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model[J].J Clin Invest,2004,114(3):330-338.
[40]Moubarik C,Guillet B,Youssef BA,et al.Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke[J].Stem Cell Reviews and Reports,2011,7(1):208-220.
[41]Pellegrini L,Bennis Y,Guillet B,et al.Therapeutic benefit of a combined strategy using erythropoietin and endothelial progenitor cells after transient focal cerebral ischemia in rats[J].Neurol Res,2013,35(9):937-947.
[42]Chen J,Chen J,Chen S,et al.Transfusion of CXCR4-primed endothelial progenitor cells reduces cerebral ischemic damage and promotes repair in db/db diabetic mice[J].PLoS One,2012,7(11):e50105.
[43]Greenberg DA,Jin K.Vascular endothelial growth factors (VEGFs) and stroke[J].Cell Mol Life Sci,2013,70(10):1753-1761.
[44]Dome B,Timar J,Ladanyi A,et al.Circulating endothelial cells, bone marrow-derived endothelial progenitor cells and proangiogenic hematopoietic cells in cancer: From biology to therapy[J].Crit Rev Oncol Hematol,2009,69(2):108-124.
[45]Leistner DM,Fischer-Rasokat U,Honold J,et al.Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy[J].Clin Res Cardiol,2011,100(10):925-934.
[46]Chen YL,Tsai TH,Wallace CG,et al.Intra-carotid arterial administration of autologous peripheral blood-derived endothelial progenitor cells improves acute ischemic stroke neurological outcomes in rats[J].Int J Cardiol,2015,201:668-683.
(2016-04-08收稿)
甘肅省衛(wèi)生行業(yè)科研計(jì)劃項(xiàng)目(編號(hào)為GSWSKY-2015-56)
730030蘭州大學(xué)第二醫(yī)院神經(jīng)內(nèi)科[王琪王滿(mǎn)俠(通信作者)鄭婷 張帥杰張新燕]
R【文獻(xiàn)標(biāo)識(shí)碼】A
1007-0478(2016)04-0298-04
10.3969/j.issn.1007-0478.2016.04.024