李陸艷 張兵 李秀媛 綜述 馬列 審校
具有附屬器官再生性能的人工皮膚替代物研究進(jìn)展
李陸艷張兵李秀媛綜述馬列審校
【提要】缺損皮膚的再生與修復(fù)一直是臨床亟待解決的難題之一。目前,雖然已有眾多的皮膚替代物實(shí)現(xiàn)了臨床應(yīng)用,但是多數(shù)只能簡(jiǎn)單地實(shí)現(xiàn)表皮層和真皮層的結(jié)構(gòu)性修復(fù),修復(fù)的皮膚組織往往不含毛囊、汗腺、皮脂腺等皮膚附屬器,難以重建皮膚的各項(xiàng)功能。本文從種子細(xì)胞、支架材料及其生物活性化三個(gè)方面,詳細(xì)介紹了具有附屬器官再生功能,特別是毛囊再生性能的皮膚替代物的研究進(jìn)展,同時(shí)對(duì)該領(lǐng)域未來發(fā)展進(jìn)行展望。
毛囊汗腺皮脂腺皮膚替代物生物材料
皮膚是人體最大的器官,包括表皮、真皮和皮下組織三個(gè)部分。其中,表皮主要由角質(zhì)細(xì)胞構(gòu)成,底部是基底膜。真皮主要含有成纖維細(xì)胞、肥大細(xì)胞、淋巴細(xì)胞及少量真皮樹突狀細(xì)胞、噬黑素細(xì)胞和朗格漢斯細(xì)胞等。成纖維細(xì)胞能產(chǎn)生膠原纖維、彈力纖維、網(wǎng)狀纖維等基質(zhì)成分,是皮膚組織深層損傷后主要的修復(fù)細(xì)胞。此外,真皮中密布著血管、神經(jīng),還含有毛囊、汗腺、皮脂腺等附屬器官[1-2]。附屬器官具有調(diào)節(jié)體溫,感知觸覺,維持體內(nèi)水分和電解質(zhì)平衡等功能,是實(shí)現(xiàn)皮膚各項(xiàng)功能的關(guān)鍵。
自體皮移植是皮膚缺損治療的“金標(biāo)準(zhǔn)”,但對(duì)于大面積皮膚缺損病例,移植供體有限。而同種異體以及異種皮膚移植,則存在免疫反應(yīng)和組織相容性等問題。組織工程人工皮膚替代物的研究為皮膚缺損的修復(fù)提供了新的發(fā)展方向。
1975年,Rheinwald等[3-4]實(shí)現(xiàn)了人表皮細(xì)胞的體外分離和擴(kuò)增,并構(gòu)建了表皮膜片,基于該技術(shù)的EpiCelR表皮細(xì)胞膜片于1987年獲準(zhǔn)上市。Bell等[5]在接種了真皮成纖維細(xì)胞的膠原基質(zhì)上覆蓋了一層角質(zhì)細(xì)胞,構(gòu)建了全層人工皮膚替代物。之后,基于Yannas等[6]的研究,研制出了最早的皮膚誘導(dǎo)再生材料IntegraR。IntegraR的真皮部分以牛腱膠原和鯊魚軟骨中的6-硫酸軟骨素為原料,以戊二醛為交聯(lián)劑,采用冷凍干燥法形成三維多孔支架,并在表面覆蓋一層硅橡膠薄膜作為臨時(shí)表皮層。
曹誼林等[8]將自體原代表皮細(xì)胞和成纖維細(xì)胞復(fù)合到聚乙醇酸(PGA)為主的支架中,研制出了新的組織工程化皮膚。劉亞玲等[7]構(gòu)建了一種類似ApligrafR的雙層皮膚替代物,并于2007年獲得SFDA批準(zhǔn),成為我國(guó)第一個(gè)組織工程化皮膚產(chǎn)品(“安體膚”)?!鞍搀w膚”表皮層由人表皮細(xì)胞構(gòu)成,真皮層由人成纖維細(xì)胞和牛膠原蛋白構(gòu)成。馬列等[9]通過仿生設(shè)計(jì),研制了一種膠原-殼聚糖/硅橡膠皮膚誘導(dǎo)再生材料,避免了種子細(xì)胞來源、擴(kuò)增和安全性方面的問題,動(dòng)物實(shí)驗(yàn)表明該材料能有效誘導(dǎo)真皮再生,在超薄皮片移植后可實(shí)現(xiàn)全層皮膚的修復(fù)。郭瑞等[10]將N,N,N-三甲基殼聚糖(TMC)與表達(dá)VEGF的質(zhì)粒DNA結(jié)合形成納米復(fù)合物,再導(dǎo)入膠原-殼聚糖/硅橡膠皮膚再生材料中,構(gòu)建了一種基因活性化皮膚替代物。體內(nèi)移植結(jié)果顯示,該皮膚替代物可促進(jìn)血管的新生與成熟,實(shí)現(xiàn)移植材料的快速血管化,再生皮膚的結(jié)構(gòu)和機(jī)械強(qiáng)度均與正常皮膚接近。劉幸等[11]將能夠抑制TGF-β1表達(dá)的siRNA與TMC組合為復(fù)合粒子,與膠原-殼聚糖/硅橡膠皮膚再生材料復(fù)合,動(dòng)物實(shí)驗(yàn)結(jié)果顯示該材料能有效抑制再生皮膚組織的瘢痕化。
目前,已實(shí)現(xiàn)臨床應(yīng)用的皮膚替代物產(chǎn)品多達(dá)幾十種,如組織工程真皮替代物DermagraftR,全層組織工程皮膚替代物ApligrafR、IntegraR和“安體膚”等。然而,多數(shù)皮膚替代物產(chǎn)品只能實(shí)現(xiàn)表皮層和簡(jiǎn)單真皮層的結(jié)構(gòu)性修復(fù),修復(fù)的皮膚組織不含毛囊、汗腺、皮脂腺等皮膚附屬器官,難以重建皮膚的各項(xiàng)功能[12-14]。因此,構(gòu)建具有附屬器官再生性能的新型皮膚替代物具有重要的意義。
我們從種子細(xì)胞的選擇,支架材料種類和形式的設(shè)計(jì),以及支架材料的生物活性化等三個(gè)方面,對(duì)可再生附屬器官皮膚替代物的研究進(jìn)展進(jìn)行綜述。
早期的人工皮膚替代物中,首先采用成體細(xì)胞作為種子細(xì)胞。附屬器官的細(xì)胞用作附屬器官再生的種子細(xì)胞,因?yàn)檫@些細(xì)胞能最大程度地與目標(biāo)器官保持同源性,而且包含目標(biāo)器官再生所需的各種特異性細(xì)胞。例如,用于毛囊再生的有表皮細(xì)胞[15]、毛乳頭細(xì)胞[16-17]、真皮毛囊鞘細(xì)胞[18],用于汗腺再生的有汗腺細(xì)胞(SGC)等[19]。Asakawa等[15]利用仿生學(xué)的思想,模擬毛囊器官的胚胎發(fā)育過程,從胚胎皮膚組織中分離出上皮細(xì)胞和真皮組織細(xì)胞,體外混合培養(yǎng),構(gòu)建了組織工程毛囊胚芽,體內(nèi)移植后,能夠長(zhǎng)出具有正常循環(huán)的毛囊及毛干結(jié)構(gòu)。Fukuda等[20]將從小鼠分離的毛囊細(xì)胞和新生小鼠的成纖維細(xì)胞混合,結(jié)合聚乙二醇(PEG)水凝膠,植入小鼠的背部。兩周后切片結(jié)果顯示,有尚未發(fā)育完全的新生毛囊結(jié)構(gòu)生成,證明引入了混合細(xì)胞的PEG水凝膠具有毛囊再生能力。吳賢杰等[21]將毛囊組織混合細(xì)胞注射到膠原-殼聚糖三維多孔支架中,培養(yǎng)10 d后可見毛囊樣結(jié)構(gòu)及毛干。Huang等[19]制備了負(fù)載表皮細(xì)胞生長(zhǎng)因子(EGF)的明膠微球,并在微球上培養(yǎng)汗腺細(xì)胞,將這種細(xì)胞-生長(zhǎng)因子微載體復(fù)合到MatrigelR混合基質(zhì)與Ⅰ型膠原的混合溶液中,原位形成凝膠,體外培養(yǎng)一段時(shí)間后體內(nèi)移植,結(jié)果顯示有汗腺結(jié)構(gòu)的形成。
雖然采用附屬器官源細(xì)胞可實(shí)現(xiàn)特定附屬器官的再生,但是,由于皮膚附屬器官結(jié)構(gòu)精細(xì),形態(tài)微小,分離和純化過程復(fù)雜,而且體外分離后的細(xì)胞難以維持附屬器官再生能力,從而制約了附屬器官源細(xì)胞的廣泛應(yīng)用。
相對(duì)于成體細(xì)胞,干細(xì)胞具有多分化潛能、來源廣泛,能被定向誘導(dǎo)分化為組織特異性細(xì)胞等優(yōu)點(diǎn),被廣泛應(yīng)用于各種組織與器官再生修復(fù)。針對(duì)皮膚附屬器官再生,具有多分化潛能的胚胎干細(xì)胞、表皮干細(xì)胞[22]、脂肪干細(xì)胞[23-24]、毛囊干細(xì)胞[25-26]、間充質(zhì)干細(xì)胞[27],特別是骨髓間充質(zhì)干細(xì)胞[28](BMSC)越來越受到重視。Lin等[29]將由胚胎干細(xì)胞分化而來的表皮干細(xì)胞(ESC)與引入成纖維細(xì)胞的明膠-膠原支架復(fù)合,并將此人工皮膚植入老鼠背部的全層皮膚缺損處,結(jié)果再生皮膚組織中有類毛囊結(jié)構(gòu)與腺狀結(jié)構(gòu)。BMSC廣泛存在于骨髓中,來源豐富,有成熟的分離和培養(yǎng)方法,且分離培養(yǎng)后分化過程可控。同時(shí),BMSC能夠促進(jìn)皮膚組織的愈合,降低機(jī)體的免疫排斥反應(yīng)。這些特點(diǎn)使其作為附屬器官再生的種子細(xì)胞,具有突出的優(yōu)勢(shì)。Deng等[30]將白色毛發(fā)的BALB/c小鼠的BMSC移植到受體C57BL/6黑色毛發(fā)小鼠中,結(jié)果受體小鼠長(zhǎng)出白色毛發(fā),并擴(kuò)展到其他部位,證明BMSC能夠誘導(dǎo)毛囊的再生。Li等[28]將BMSC和SGC體外共培養(yǎng)后,靜脈注射到全層皮膚缺損的大鼠中,注入的BMSC不僅存在于汗腺中,還存在于毛囊和皮脂腺中,推測(cè)BMSC或許能夠誘導(dǎo)附屬器官的再生。Ma等[31]將對(duì)BMSC有黏附作用的CD29抗體接枝到膠原/聚乳酸-乙醇酸共聚物(PLGA)混合納米纖維支架,并導(dǎo)入一定數(shù)目的BMSC,應(yīng)用于全層皮膚缺損修復(fù)中,能夠有效促進(jìn)毛囊和皮脂腺的再生。
2.1材料組成設(shè)計(jì)
皮膚中含有大量的蛋白質(zhì)、多糖等細(xì)胞外基質(zhì)成分,這些細(xì)胞外基質(zhì)成分對(duì)于皮膚功能的維持和損傷后的修復(fù)具有重要作用。以天然細(xì)胞外基質(zhì)為原料制備的皮膚組織修復(fù)材料,具有生物相容性良好,可降解,且可促進(jìn)細(xì)胞黏附、增殖等優(yōu)點(diǎn)。天然材料主要有膠原、黏多糖、纖黏連蛋白、透明質(zhì)酸(HA)等[32-36]。膠原,特別是Ⅰ型膠原是皮膚細(xì)胞外基質(zhì)的主要成分,常被用來構(gòu)建皮膚替代物。最早的皮膚誘導(dǎo)再生材料IntegraR由Ⅰ型膠原和6-硫酸軟骨素兩種細(xì)胞外基質(zhì)成分組成[7]。馬列等[9]構(gòu)建的人工皮膚替代物由Ⅰ型膠原和殼聚糖組成。Huang等[19,37]將負(fù)載生長(zhǎng)因子與細(xì)胞的明膠微球與膠原水凝膠結(jié)合,實(shí)現(xiàn)了汗腺組織的再生。Wu等[38]將傳代的毛乳頭細(xì)胞、毛囊上皮細(xì)胞與Ⅰ型膠原混合形成凝膠,移植到裸鼠背部,12周后可觀察到較多的毛囊結(jié)構(gòu),并有毛干的形成。Kweon等[39]將殼聚糖和肝素的復(fù)合物植入大鼠背部的全層皮膚缺損部位,結(jié)果復(fù)合物在修復(fù)真皮與表皮組織的同時(shí),再生出的附屬器官結(jié)構(gòu)類似正常組織。Rustad等[40]利用包裹BMSC的支鏈淀粉-膠原復(fù)合水凝膠,促進(jìn)傷口的修復(fù)和附屬器官的再生。
相比于天然材料,人工合成材料具有易加工成型、機(jī)械性能良好、原材料來源廣泛、重復(fù)性好等優(yōu)點(diǎn)。目前應(yīng)用較多的合成材料主要有聚乳酸(PLA)、PGA、PLGA、PEG、聚己內(nèi)酯(PCL)、聚羥基丁酸戊酯(PHBV)、聚對(duì)苯二甲酸丁二酯(PBT)等[2,41-42]。Franco等[43]將PCL和PLGA制備成復(fù)合膜應(yīng)用于皮膚修復(fù)中。Lee等[44]制備了熱敏的PEG-PLGA-PEG復(fù)合水凝膠,該水凝膠能夠促進(jìn)糖尿病皮膚潰瘍的傷口修復(fù)。Biazar等[45]采用PHBV為主要原料的支架來促進(jìn)皮膚組織的修復(fù)。Sun等[46]采用沒有外加細(xì)胞與生長(zhǎng)因子的水凝膠實(shí)現(xiàn)了皮膚附屬器官的再生,這種水凝膠就是由接枝雙鍵的葡聚糖和接枝雙鍵的PEG組成的。Yang等[47]采用包載質(zhì)粒的核殼纖維實(shí)現(xiàn)了皮膚附屬器官的再生,此核殼纖維的核層組分聚乙烯亞胺和殼層組分聚乙二醇均為合成材料。
2.2材料形式設(shè)計(jì)
支架材料不僅需要具有一定的強(qiáng)度,還需要具備特定的材料形式與結(jié)構(gòu),從而有利于實(shí)現(xiàn)種子細(xì)胞遷移、黏附、增殖和分化,最終實(shí)現(xiàn)目標(biāo)器官的重建。在皮膚附屬器官重建領(lǐng)域,常見的材料形式主要有多孔支架、水凝膠和微載體等。
2.2.1多孔支架
皮膚損傷后,足夠強(qiáng)度的三維多孔支架的存在,可以填補(bǔ)損傷部位,避免傷口塌陷。大小合適、連通性良好的孔結(jié)構(gòu)有利于細(xì)胞的遷移和營(yíng)養(yǎng)物質(zhì)的交換。在附屬器官再生的過程中,連通的孔結(jié)構(gòu)能夠作為細(xì)胞或者生長(zhǎng)因子微載體的儲(chǔ)存池,同時(shí)有利于細(xì)胞形成團(tuán)簇,構(gòu)建附屬器官結(jié)構(gòu)。作為臨時(shí)細(xì)胞外基質(zhì),支架能夠誘導(dǎo)種子細(xì)胞向目標(biāo)器官和組織分化。異種脫細(xì)胞真皮基質(zhì),一般是從豬的皮膚上取得,通過脫除真皮細(xì)胞和滅菌,保留了其天然細(xì)胞外基質(zhì)的結(jié)構(gòu)及生物活性。Qi等[48]將毛乳頭細(xì)胞種植在脫細(xì)胞真皮基質(zhì)中,移植到裸鼠背部,4周后發(fā)現(xiàn)傷口收縮較小,新生皮膚與正常皮膚十分相似,從而證明復(fù)合毛乳頭細(xì)胞的支架具有活化新生皮膚和誘導(dǎo)毛囊再生的作用。
2.2.2水凝膠
水凝膠是由親水性聚合物通過物理或化學(xué)作用構(gòu)筑的三維網(wǎng)絡(luò),可大量吸水并且不溶解。其中原位凝膠則是在種子細(xì)胞存在的條件下,聚合物緩慢溫和地形成凝膠,在凝膠形成的同時(shí),有大量種子細(xì)胞被包封在聚合物凝膠中。
與多孔支架相比,水凝膠中充斥著大量的水分,這與機(jī)體組織極為相似,減少了植入后材料對(duì)機(jī)體的刺激,具有更好的生物相容性。因其流動(dòng)性好,可在溫和條件下交聯(lián),故可將未交聯(lián)的水凝膠注射入損傷部位,再通過溫度、pH、光照、離子強(qiáng)度等的變化交聯(lián)成凝膠。這種可注射水凝膠,能夠均勻地傳遞營(yíng)養(yǎng)物質(zhì)和細(xì)胞,以溫和的方式交聯(lián)則能夠保護(hù)預(yù)先分散在水凝膠中的活性因子和細(xì)胞。PEG作為一種合成高分子,因具有良好的親水性、生物相容性而被廣泛應(yīng)用于水凝膠。在PEG的兩端接上丙烯酸,可利用光引發(fā)劑引發(fā)雙鍵聚合形成水凝膠結(jié)構(gòu)[49]。Raeber等[50]利用乙烯砜功能化的四臂PEG大分子與含半胱氨酸的多肽自發(fā)交聯(lián),制備了一種可降解的水凝膠,此水凝膠具有細(xì)胞外基質(zhì)類似性質(zhì)。Metcalfe等[32]則將混入毛囊干細(xì)胞的PEG凝膠植入小鼠背部,2周后可見新生的毛囊。Weber等[51]將PEG與甲基丙烯酸酐以1∶10的摩爾比混合,以微波輻射方式引發(fā)反應(yīng),制備聚乙二醇二甲基丙烯酸酯(PEGDM),原位包裹小鼠細(xì)胞后,采用光引發(fā)聚合形成凝膠。
水凝膠的另外一個(gè)優(yōu)勢(shì)是易于通過物理或者化學(xué)的方法對(duì)材料改性,使水凝膠獲得適宜的力學(xué)性能、生物降解性能和組織相容性等。Liu等[52]用NaHCO3滴定酸性的殼聚糖溶液,得到了中性的能夠原位凝膠的殼聚糖溶液。HA在皮膚中含量豐富,而且吸水性很強(qiáng),作為皮膚附屬器官的種子細(xì)胞的載體,有著較好的應(yīng)用前景。HA因?yàn)榇嬖诒姸嗟聂然?、羥基可供反應(yīng),所以具有較多的化學(xué)改性方法[53]。硫醇修飾的HA能夠與雙鍵修飾的HA自發(fā)緩慢交聯(lián),用來原位包裹細(xì)胞。通過烯丙基異氰酸酯在葡聚糖上接枝雙鍵,將接枝雙鍵的葡聚糖與不同比例的兩端含有雙鍵的PEG大分子反應(yīng),制備性能可調(diào)的水凝膠,植入全層皮膚缺損模型中。實(shí)驗(yàn)結(jié)果顯示,這種水凝膠修復(fù)的皮膚組織存在附屬器官毛囊和皮脂腺[46,57]。
Foo等[58]將兩種能特異性相互作用的多肽分別修飾兩種蛋白質(zhì),這兩種蛋白質(zhì)相互混合可原位形成凝膠,從而實(shí)現(xiàn)細(xì)胞的原位包裹。趙海光等[59]從血漿中提取了纖維蛋白原,與凝血酶混合后可快速形成凝膠。
2.2.3微載體
因?yàn)榧?xì)胞在皮膚附屬器官中呈現(xiàn)團(tuán)簇狀,所以將種子細(xì)胞以團(tuán)簇狀的形式進(jìn)行培養(yǎng)或移植有助于實(shí)現(xiàn)附屬器官的再生。麥躍等[60]證明了毛乳頭細(xì)胞的凝集性生長(zhǎng)特性與其毛囊再生能力密切相關(guān),毛乳頭細(xì)胞凝集后毛囊再生能力增強(qiáng)。Osada等[61]的研究表明,毛乳頭細(xì)胞形成團(tuán)簇的能力和形成毛囊胚芽及毛囊再生的能力密切相關(guān),失去形成團(tuán)簇能力的毛乳頭細(xì)胞不再具有毛囊再生能力,但被人為聚集成微球后,其再次表現(xiàn)出毛囊再生能力。Huang等[19]實(shí)現(xiàn)汗腺再生所用的種子細(xì)胞也是被包裹在微球中以團(tuán)簇狀的形式存在。我們可以借鑒先進(jìn)的微凝膠、微球制備技術(shù),制備微載體化種子細(xì)胞,促進(jìn)種子細(xì)胞的團(tuán)簇化,進(jìn)而誘導(dǎo)形成毛囊、汗腺等附屬器官結(jié)構(gòu)。Chan等[63]利用立體光交聯(lián)技術(shù),制備了包裹細(xì)胞的聚乙二醇雙丙烯酸酯(PEGDA)微凝膠。Clausell-Tormos等[60]利用微流體模板法制備了包封細(xì)胞的微凝膠。Fukuda等[20]合成了可光交聯(lián)的殼聚糖,以聚二甲基硅氧烷(PDMS)為模板制備了包裹有細(xì)胞的殼聚糖微凝膠。Zhang等[65]通過靜電紡絲儀器,制備海藻酸鈉微膠囊。瓊脂、HA等天然高分子因?yàn)榱己玫纳锵嗳菪砸脖粡V泛應(yīng)用于制備細(xì)胞微載體[66-67]。Lin等[68]利用微囊化技術(shù),將毛乳頭細(xì)胞包裹到海藻酸-聚賴氨酸-海藻酸(APA)復(fù)合半透膜中,移植到老鼠腳掌上,10周后可在原本缺少毛囊的老鼠腳掌看到毛干。Huang等[19]通過戊二醛交聯(lián)制備明膠微球,將SGC和EGF導(dǎo)入微球,將微球注入膠原支架,發(fā)現(xiàn)包含微球的膠原支架在修復(fù)缺損皮膚的同時(shí),可再生汗腺結(jié)構(gòu)。此外,還有微模板法[20]、聚合物陣列[69]等先進(jìn)的制備方法可制備尺寸、結(jié)構(gòu)可控的各類微載體。
材料與細(xì)胞相互作用對(duì)細(xì)胞的遷移、增殖、團(tuán)簇化、細(xì)胞外基質(zhì)的分泌等產(chǎn)生重要影響,并最終影響組織的修復(fù)效果。實(shí)現(xiàn)附屬器官再生需要多種細(xì)胞的參與,細(xì)胞行為受到多種活性因子的精確調(diào)控。為了進(jìn)一步模擬機(jī)體調(diào)控機(jī)制,支架材料的生物活性化具有重要的意義。
在皮膚附屬器官再生體系中,種子細(xì)胞的凝集性生長(zhǎng)與附屬器官再生能力有很大關(guān)系,而載體材料對(duì)細(xì)胞的黏附強(qiáng)弱與細(xì)胞凝集性生長(zhǎng)能力有很大關(guān)系。所以,制備具有適宜黏附特性的材料,是調(diào)控細(xì)胞凝集性生長(zhǎng)和實(shí)現(xiàn)附屬器官再生的關(guān)鍵。Young等[70-71]分析了基底表面不同的蛋白質(zhì)涂層對(duì)毛囊細(xì)胞團(tuán)簇化的影響,證明了材料主要通過增加細(xì)胞的遷移能力,促進(jìn)細(xì)胞間黏附來提高其團(tuán)簇能力。將一定密度的毛乳頭細(xì)胞種植在低黏附性的聚乙烯-乙烯醇共聚物(EVAL)薄膜上,可成功誘導(dǎo)毛乳頭細(xì)胞形成類毛囊的微組織。
細(xì)胞與材料之間的相互作用主要是通過材料表面黏附的蛋白質(zhì)來實(shí)現(xiàn)的。在材料體系中,引入相關(guān)的活性位點(diǎn)是至關(guān)重要的[72]。Nanba等[73]發(fā)現(xiàn),鈣黏連蛋白在毛乳頭細(xì)胞形成團(tuán)簇行為方面發(fā)揮著重要作用。A lmond-Roesler等[74]指出,層黏連蛋白能夠促進(jìn)毛乳頭細(xì)胞的黏附。Young等[70]將4種不同的膜蛋白涂覆在EVAL膜上,研究膜蛋白與毛乳頭細(xì)胞的作用,發(fā)現(xiàn)纖黏連蛋白利于毛乳頭細(xì)胞的運(yùn)動(dòng),能夠促進(jìn)毛乳頭細(xì)胞成團(tuán)。Lindner等[76]認(rèn)為,膠原Ⅳ、硫酸軟骨素是毛囊細(xì)胞外基質(zhì)中的成分,可以用來優(yōu)化材料體系,調(diào)控材料與細(xì)胞的相互作用。
在組織修復(fù)的過程中,會(huì)有大量的生長(zhǎng)因子和細(xì)胞因子的釋放,這些因子能夠誘導(dǎo)細(xì)胞的增殖、遷移和分化,影響組織的修復(fù)效果[77]。而將生長(zhǎng)因子引入支架,制備的生物活性人工皮膚替代物能夠解決空白支架誘導(dǎo)能力不足的問題,使細(xì)胞朝著附屬器官再生的方向演化。一些生長(zhǎng)因子,如EGF、轉(zhuǎn)化生長(zhǎng)因子-α(TGF-α)、角化細(xì)胞生長(zhǎng)因子(KGF)、胰島素樣生長(zhǎng)因子-1(IGF-1)、白介素-1(IL-1)、堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF)、血管內(nèi)皮細(xì)胞生長(zhǎng)因子(VEGF)、肝細(xì)胞生長(zhǎng)因子(HGF),以及一些小分子藥物如抗壞血酸-2磷酸鹽、米諾地爾等都對(duì)毛囊循環(huán)的維持具有重要作用[78]。這些生長(zhǎng)因子或藥物常被引入材料體系,用來誘導(dǎo)種子細(xì)胞分化為毛囊細(xì)胞。HGF被認(rèn)為具有顯著的刺激毛囊再生及誘導(dǎo)BMSC向毛乳頭細(xì)胞分化的性能[79-81]。此外,Grant等[82]發(fā)現(xiàn)乙酰膽堿對(duì)于汗腺功能的發(fā)揮具有重要作用。Li等[83]證明了細(xì)胞外基質(zhì)金屬蛋白酶(MMP)和EGF對(duì)誘導(dǎo)汗腺形成和成熟中的協(xié)同作用,為后續(xù)的研究提供了理論基礎(chǔ)。Fu等[84]發(fā)現(xiàn)外異蛋白(EDA)能夠誘導(dǎo)汗腺再生。
但由于生長(zhǎng)因子半衰期短,易于失活,通過物理吸附或者化學(xué)接枝、微球包覆[85]等方式實(shí)現(xiàn)生長(zhǎng)因子的控制釋放是必要的[86-87]。Kweon等[41]制備了殼聚糖-肝素復(fù)合物,利用肝素對(duì)生長(zhǎng)因子的特異性作用實(shí)現(xiàn)因子的控制釋放。Li等[83]將血小板生長(zhǎng)因子(PDGF)通過PLGA-肝素復(fù)合微球引入反應(yīng)性的兩組分聚氨酯支架中,進(jìn)一步延緩PDGF的釋放時(shí)間至21天。結(jié)果顯示,相對(duì)于單純的聚氨酯體系,引入PDGF的體系能夠加速皮膚傷口的治愈速度。Kawai等[84]將戊二醛交聯(lián)凍干的明膠微球浸入一定濃度的成纖維細(xì)胞生長(zhǎng)因子(FGF)溶液中,使其吸附一定量的FGF,將一定量的明膠微球懸浮液均勻注入膠原海綿中,制備成引入FGF微球的人工皮膚替代物。和FGF直接加入膠原海綿的對(duì)照組相比,明膠微球組能夠?qū)崿F(xiàn)FGF持續(xù)的釋放,明顯加速成纖維細(xì)胞的增殖和組織的再生。Zeng等[88]利用FGF和肝素之間的靜電作用層層自組裝,使FGF固定到生物大分子表面,發(fā)現(xiàn)固定FGF的材料能夠更好促進(jìn)成纖維細(xì)胞的增殖。
Ozeki等[72]將HGF或FGF引入生物可降解的明膠水凝膠中,將VEGF引入生物可降解的膠原水凝膠中,實(shí)現(xiàn)了生長(zhǎng)因子的控制釋放。將這些水凝膠埋置于小鼠背部皮下,和空白的水凝膠或者是單純生長(zhǎng)因子注射的方法相比,實(shí)現(xiàn)生長(zhǎng)因子持續(xù)釋放的水凝膠能更加有效地促進(jìn)毛囊尺寸和數(shù)目的增長(zhǎng)。Huang等[19,92]將EGF負(fù)載于明膠微球上,實(shí)現(xiàn)EGF的控制釋放。含有一定量BMSC的培養(yǎng)基來培養(yǎng)負(fù)載EGF的多孔明膠微球,制備出傳遞干細(xì)胞的生長(zhǎng)因子活性微球。將此種微球混入皮膚支架溶液中,制備出含微球的皮膚替代物。植入小鼠腳掌的全層皮膚缺損后,與直接注射BMSC和含BMSC無(wú)EGF的皮膚支架相比,這種皮膚替代物能夠再生出汗腺狀的結(jié)構(gòu)。
隨著基因工程的發(fā)展,將能表達(dá)生長(zhǎng)因子的基因引入材料體系,能夠在創(chuàng)面區(qū)原位表達(dá)組織再生所需的生長(zhǎng)因子,原位調(diào)控缺損組織的再生修復(fù)過程[93]。馬列等[9]將陽(yáng)離子聚合物TMC,與編碼VEGF-165的質(zhì)粒DNA復(fù)合制備納米粒子,將復(fù)合納米粒子均勻引入膠原/殼聚糖支架中,得到基因活性皮膚替代物。用這種基因活性皮膚替代物來修復(fù)豬的全層皮膚缺損,結(jié)果顯示其能夠迅速地實(shí)現(xiàn)血管化和真皮再生。Li等[83]將乳液電紡技術(shù)與基因治療相結(jié)合,制備出具有核殼結(jié)構(gòu)的基因活性電紡纖維。這種以聚乙烯亞胺-bFGF質(zhì)粒復(fù)合物為核相,以PEG為殼相的纖維能夠?qū)崿F(xiàn)質(zhì)粒持續(xù)4周的釋放和有效轉(zhuǎn)染,將其應(yīng)用到糖尿病大鼠的皮膚潰瘍修復(fù)中,發(fā)現(xiàn)其能夠很快實(shí)現(xiàn)血管化和再上皮化,并最終在修復(fù)組織中觀察到毛囊和皮脂腺的結(jié)構(gòu)。
盡管在人工皮膚替代物方面已不斷取得突破,但具有一種或者多種附屬器官再生能力的皮膚替代物的研究還存在諸多問題。為了構(gòu)建具有附屬器官再生功能的人工皮膚替代物,需要對(duì)材料體系,如材料成分、結(jié)構(gòu)、力學(xué)性能等方面進(jìn)行優(yōu)化,對(duì)種子細(xì)胞、生長(zhǎng)因子合理選擇,綜合利用干細(xì)胞技術(shù)以及生長(zhǎng)因子控釋技術(shù)。但由于各個(gè)附屬器官結(jié)構(gòu)和生理功能的不同,不同種子細(xì)胞、生長(zhǎng)因子選取,及其誘導(dǎo)條件都不盡相同,要實(shí)現(xiàn)多附屬器官的同步再生,還需要對(duì)各個(gè)附屬器官的結(jié)構(gòu)、生理和相互之間的關(guān)系進(jìn)行深入的研究。
此外,在不引入細(xì)胞和生長(zhǎng)因子的條件下,通過對(duì)植入材料的優(yōu)化設(shè)計(jì),實(shí)現(xiàn)含附屬器官皮膚的原位誘導(dǎo)再生,可能是未來研究的重點(diǎn)方向之一。盡管已有部分類似概念的產(chǎn)品上市,但迄今為止,具有原位誘導(dǎo)再生特性的皮膚再生產(chǎn)品多處于實(shí)驗(yàn)室研究階段,商業(yè)化還沒有實(shí)現(xiàn)。為了誘導(dǎo)細(xì)胞的遷移,可以在材料上面接枝一定的活性蛋白或者多肽,利用其對(duì)細(xì)胞的特異性識(shí)別作用,誘導(dǎo)自體細(xì)胞遷移,從而避免植入細(xì)胞的免疫和倫理等問題[94-97]。
[1]MacNeil S.Progress and opportunities for tissue-engineered skin [J].Nature,2007,445(7130):874-880.
[2]Duan H,Feng B,Guo X,etal.Engineering ofepidermisskin grafts using electrospun nanofibrousgelatin/polycaprolactonemembranes [J].Int JNanomedicine,2013,8(1):2077-2084.
[3]Rheinwatd JG,Green H.Seria cultivation of strains of human epidemal keratinocytes:the formation keratinizin colonies fromsingle cells[J].Cell,1975,6(3):331-343.
[4]Green H,Kehinde O,Thomas J.Growth of cultured human epidermal cells into multiple epithelia suitable for grafting[J]. ProcNatl Acad SciU SA,1979,76(11):5665-5668.
[5]Bell E,Ivarsson B,MerrillC.Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro[J].ProcNatl Acad Sci U SA,1979, 76(3):1274-1278.
[6]Yannas JBI,Quinby Jr W,Bondoc C,et al.Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury[J].Ann Surg,1981,194(4):413-427.
[7]劉亞玲,金巖,聶鑫,等.人組織工程全層活性皮膚在深度燒傷創(chuàng)面的臨床應(yīng)用[J].第四軍醫(yī)大學(xué)學(xué)報(bào),2004,25(3):224-228.
[8]蔡霞,崔磊,劉偉,等.組織工程技術(shù)修復(fù)皮膚缺損的動(dòng)物實(shí)驗(yàn)[J].中華醫(yī)學(xué)美學(xué)美容雜志,2005,10(6):349-351.
[9]Ma L,Gao C,Mao Z,et al.Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering[J]. Biomaterials,2003,24(26):4833-4841.
[10]GuoR,Xu S,Ma L,etal.Enhanced angiogenesisof gene-activated dermal equivalent for treatmentof full thickness incisionalwounds in a porcinemodel[J].Biomaterials,2010,31(28):7308-7320.
[11]Liu X,Ma L,Liang J,et al.RNAi functionalized collagenchitosan/silicone membrane bilayer dermal equivalent for fullthickness skin regeneration with inhibited scarring[J]. Biomaterials,2013,34(8):2038-2048.
[12]Zhong S,Zhang Y,Lim C.Tissue scaffolds for skin wound healing and dermal reconstruction[J].W iley Interdiscip Rev Nanomed Nanobiotechnol,2010,2(5):510-25.
[13]CaiS,Pan Y,Han B,etal.Transplantation ofhuman bonemarrowderived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands[J].Chin Med J(Engl),2011,124 (15):2260-2268.
[14]Shevchenko RV,James SL,James SE.A review of tissue-engineered skin bioconstructs available for skin reconstruction[J].J R Soc Interface,2010,7(43):229-58.
[15]Asakawa K,Toyoshima KE,IshibashiN,etal.Hairorgan regeneration via the bioengineered hair follicular unit transplantation[J].Sci Rep,2012,2(424):1-7.
[16]AoiN,Inoue K,Kato H,etal.Clinically applicable transplantation procedure of dermal papilla cells for hair follicle regeneration[J]. JTissue Eng Regen Med,2012,6(2):85-95.
[17]Higgins CA,Chen JC,Cerise JE,et al.Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth[J]. Proc Natl Acad Sci U SA,2013,110(49):19679-19688.
[18]Mahjour SB,Ghaffarpasand F,Wang H.Hair follicle regeneration in skin grafts:current concepts and future perspectives[J].Tissue Eng Part B Rev,2011,18(1):15-23.
[19]Huang S,Xu YA,Wu CH,et al.In vitro constitution and in vivo implantation of engineered skin constructs with sweat glands[J]. Biomaterials,2010,31(21):5520-5525.
[20]Fukuda J,Khademhosseini A,Yeo Y,et al.Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures[J].Biomaterials,2006,27(30):5259-5267.
[21]吳賢杰,呂中法,周健光,等.毛囊混合細(xì)胞在膠原/殼聚糖多孔支架上重建毛囊樣結(jié)構(gòu)[J].中華皮膚科雜志,2006,39(10):565-567.
[22]Huang S,Xu Y,Wu C,et al.In vitro constitution and in vivo implantation of engineered skin constructs with sweat glands[J]. Biomaterials,2010,31(21):5520-5525.
[23]Kamstrup M,Faurschou A,Gniadecki R,et al.Epidermal stem cells-role in normal,wounded and pathological psoriatic and cancer skin[J].Curr Stem Cell Res Ther,2008,3(2):146-150.
[24]Festa E,Fretz J,Berry R,etal.Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling[J].Cell,2011, 146(5):761-771.
[25]Peng LH,Mao ZY,Qi XT,et al.Transplantation of bone-marrowderived mesenchymal and epidermal stem cells contribute to wound healingwith different regenerative features[J].Cell Tissue Res,2013,352(3):573-583.
[26]Toyoshima K,Asakawa K,Ishibashi N,et al.Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches[J].Nat Commun,2012,3(784):1-12.
[27]Gharzi A,Reynolds A,Jahoda C.Plasticity of hair follicle dermal cells in wound healing and induction[J].Exp Dermatol,2003,12 (2):126-136.
[28]Li H,Fu X.Mechanisms of action ofmesenchymal stem cells in cutaneous wound repair and regeneration[J].Cell Tissue Res, 2012,348(3):371-377.
[29]Li H,Fu X,Ouyang Y,et al.Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages[J].Cell Tissue Res,2006,326(3):725-736.
[30]Lin Y,LiH,Huang J,etal.Following the fate ofmurine epidermal stem cells in a syngeneic dermal equivalent in vivo[J].Burns, 2005,31(8):1007-1012.
[31]Deng WM,Han Q,Liao LM,et al.Engrafted bone marrowderived Flk-1(+)mesenchymal stem cells regenerate skin tissue [J].Tissue Eng,2005,11(1-2):110-119.
[32]Li HH,Fu XB,Ouyang YS,et al.Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages[J].Cell Tissue Res,2006,326(3):725-736.
[33]Ma K,Liao S,He LM,et al.Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds [J].Tissue EngPart A,2011,17(9-10):1413-1424.
[34]Metcalfe AD,Ferguson MW.Bioengineering skin usingmechanisms of regeneration and repair[J].Biomaterials,2007,28(34):5100-5113.
[35]Chen JF,Ding HM,Wang JX,etal.Preparation and characterization of porous hollow silica nanoparticles for drug delivery application [J].Biomaterials,2004,25(4):723-727.
[36]Krishnan R,Rajeswari R,Venugopal J,et al.Polysaccharide nanofibrous scaffoldsasamodel for in vitro skin tissue regeneration [J].JMater SciMater Med,2012,23(6):1511-1519.
[37]Liu Y,Ma L,Gao C.Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering[J].Mater Sci Eng C,2012,32(8):2361-2366.
[38]Monteiro IP,Shukla A,Marques AP,et al.Spray-assisted layerby-layer assembly on hyaluronic acid scaffolds for skin tissue engineering[J].JBiomedMaterResA,2015,103(1):330-340.
[39]Sheng Z,Fu X,Cai S,et al.Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells[J].Wound RepairRegen,2009,17(3): 427-435.
[40]Wu JJ,Zhu TY,Lu YG,et al.Hair follicle reformation induced by dermal papilla cells from human scalp skin[J].Arch Dermatol Res,2006,298(4):183-190.
[41]Kweon DK,Song SB,Park YY.Preparation ofwater-soluble chitosan/ heparin complex and its application aswound healing accelerator [J].Biomaterials,2003,24(9):1595-1601.
[42]Rustad KC,Wong VW,Sorkin M,etal.Enhancementofmesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold[J].Biomaterials,2012,33(1):80-90.
[43]Gholipour-Kanani A,Bahrami SH,Joghataie MT,et al.Tissue engineered poly(caprolactone)-chitosan-poly(vinyl alcohol) nanofibrous scaffolds for burn and cuttingwound healing[J].IET Nanobiotechnol,2014,8(2):123-131.
[44]Yun EJ,Yon B,Joo MK,et al.Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(l-alanine) thermogel[J].Biomacromolecules,2012,13(4):1106-1111.
[45]Franco RA,Nguyen TH,Lee BT.Preparation and characterizationof electrospun PCL/PLGAmembranesand chitosan/gelatin hydrogels for skin bioengineering app lications[J].JMater Sci Mater Med, 2011,22(10):2207-2218.
[46]Lee PY,Cobain E,Huard J,etal.Thermosensitive hydrogel PEG–PLGA–PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound[J].Mol Ther, 2007,15(6):1189-1194.
[47]Biazar E,Keshel SH.Unrestricted somatic stem cells loaded in nanofibrous scaffolds as potential candidate for skin regeneration [J].Int JPolym Mater,2014,63(14):741-752.
[48]Sun G,Zhang X,Shen Y,etal.Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing[J].Proc Natl Acad Sci U SA,2011, 108(52):20976-20981.
[49]Yang Y,Xia T,Chen F,et al.Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats[J].Mol Pharm,2011,9(1):48-58.
[50]Qi S,Liu P,Xie J,et al.Experimental study on repairing of nude mice skin defects with composite skin consisting of xenogeneic dermis and epidermal stem cells and hair follicle dermal papilla cells[J].Burns,2008,34(3):385-392.
[51]Lutolf M,Hubbell J.Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed byMichael-typeaddition[J].Biomacromolecules,2003,4(3):713-722.
[52]Raeber G,Lutolf M,Hubbell J.Molecularly engineered PEG hydrogels:a novelmodel system for proteolyticallymediated cell migration[J].Biophys J,2005,89(2):1374-1388.
[53]Metcalfe AD,Ferguson MWJ.Bioengineering skin usingmechanisms of regeneration and repair[J].Biomaterials,2007,28(34):5100-5113.
[54]Weber LM,He J,Bradley B,et al.PEG-based hydrogels as an in vitro encapsulation platform for testing controlledβ-cellmicroenvironments[J].Acta Biomater,2006,2(1):1-8.
[55]Liu L,Tang X,Wang Y,et al.Smart gelation of chitosan solution in the presence of NaHCO3for injectable drug delivery system [J].Int JPharm,2011,414(1):6-15.
[56]Burdick JA,Prestwich GD.Hyaluronic acid hydrogels for biomedical applications[J].Adv Mater,2011,23(12):H41-H56.
[57]Sun G,Shen YI,Kusuma S,et al.Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors[J].Biomaterials,2011,32(1):95-106.
[58]Foo CTWP,Lee JS,Mulyasasmita W,et al.Two-component protein-engineered physical hydrogels for cell encapsulation[J]. Proc Natl Acad Sci U SA,2009,106(52):22067-22072.
[59]Zhao H,Ma L,Zhou J,etal.Fabrication and physical and biological properties of fibrin gel derived from human plasma[J].Biomed Mater,2008,3(1):015001.
[60]麥躍,劉榮卿,伍津津,等.毛乳頭細(xì)胞凝集性生長(zhǎng)對(duì)誘導(dǎo)毛囊樣結(jié)構(gòu)形成能力的影響[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2004,26(13):1197-1200.
[61]Osada A,Iwabuchi T,Kishimoto J,et al.Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction[J].Tissue Eng,2007,13(5):975-982.
[62]Huang S,Xu Y,Wu C,et al.In vitro constitution and in vivo implantation of engineered skin constructs with sweat glands[J]. Biomaterials,2010,31(21):5520-5525.
[63]Chan V,Zorlutuna P,Jeong JH,et al.Three dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation[J].Lab Chip,2010,10(16):2062-2070.
[64]Clausell-Tormos J,Lieber D,Baret JC,etal.Droplet-based microfluidic platforms for theencapsulation and screening ofmammalian cells andmulticellular organisms[J].Chem Biol,2008,15(5):427-437.
[65]Zhang W,He X.Encapsulation of living cells in small(~100μm) alginate microcapsules by electrostatic spraying:a parametric study[J].JBiomech Eng,2009,131(7):074515.
[66]Kumachev A,Greener J,Tumarkin E,et al.High-throughput generation of hydrogelmicrobeads with varying elasticity for cell encapsulation[J].Biomaterials,2011,32(6):1477-1483.
[67]Yeh J,Ling Y,Karp JM,etal.Micromolding of shape-controlled, harvestable cell-laden hydrogels[J].Biomaterials,2006,27(31): 5391-5398.
[68]Lin CM,Li Y,Ji YC,etal.Microencapsulated human hair dermal papilla cells:a substitute for dermal papilla[J]?Arch Dermatol Res,2008,300(9):531-535.
[69]Khademhosseini A,Langer R,Borenstein J,et al.Microscale technologies for tissue engineering and biology[J].Proc Natl Acad SciUSA,2006,103(8):2480-2487.
[70]Young TH,Tu HR,Chan CC,et al.The enhancement of dermal papilla cell aggregation by extracellular matrix proteins through effects on cell–substratum adhesivity and cell motility[J]. Biomaterials,2009,30(28):5031-5040.
[71]Young TH,Lee CY,Chiu HC,et al.Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly (ethylene-co-vinyl alcohol)membranes for hair follicle regeneration [J].Biomaterials,2008,29(26):3521-3530.
[72]OzekiM,Tabata Y.In vivo promoted growth ofmice hair follicles by the controlled release of growth factors[J].Biomaterials,2003, 24(13):2387-2394.
[73]Nanba D,NakanishiY,Hieda Y.Establishmentof cadherin-based intercellular junctions in the dermal papilla of the developing hair follicle[J].Anat Rec A Discov Mol Cell Evol Biol,2003,270(2): 97-102.
[74]Almond-Roesler B,Sch?n M,Sch?n MP,et al.Cultured dermal papilla cells of the rat vibrissa follicle.Proliferative activity, adhesion properties and reorganization of the extracellular matrix in vitro[J].Arch Dermatol Res,1997,289(12):698-704.
[75]Young TH,Tu HR,Chan CC,et al.The enhancement of dermal papilla cell aggregation by extracellular matrix proteins through effects on cell-substratum adhesivity and cell motility[J]. Biomaterials,2009,30(28):5031-5040.
[76]Lindner G,Horland R,Wagner I,et al.De novo formation and ultra-structural characterization of a fiber-producing human hair follicle equivalent in vitro[J].JBiotechnol,2011,152(3):108-112.
[77]Werner S,Grose R.Regulation ofwound healing by growth factors and cytokines[J].PhysiolRev,2003,83(3):835-870.
[78]Chueh SC,Lin SJ,Chen CC,et al.Therapeutic strategy for hair regeneration:hair cycle activation,niche environmentmodulation, wound-induced follicle neogenesis,and stem cell engineering[J]. ExpertOpin Biol Ther,2013,13(3):377-391.
[79]Yoo BY,Shin YH,Yoon HH,et al.Application ofmesenchymal stem cells derived from bone marrow and umbilical cord in human hairmultiplication[J].JDermatol Sci,2010,60(2):74-83.
[80]Yamazaki M,Tsuboi R,Lee YR,et al.Hair cycle-dependent expression of hepatocyte growth factor(HGF)activator,other proteinases,and proteinase inhibitors correlates with the expression of HGF in rat hair follicles[J].J Investig Dermatol Symp Proc,1999,4(3):312-315.
[81]Jindo T,TsuboiR,Takamori K,et al.Local injection ofhepatocyte growth factor scatter factor(HGF/SF)alters cyclic growth of murine hair follicles[J].JInvestDermatol,1998,110(4):338-342.
[82]Grant MP,Francis NJ,Landis SC.The role of acetylcholine in regulating secretory responsiveness in rat sweat glands[J].Mol Cell Neurosci,1995,6(1):32-42.
[83]Li JF,Fu XB,Sun XQ,etal.The interaction between epidermal growth factorandmatrixmetalloproteinasesinduces the development of sweat glands in human fetal skin[J].JSurgRes,2002,106(2): 258-263.
[84]Fu XB,Li JF,Sun XQ,et al.Epidermal stem cells are the sourceof sweat glands in human fetal skin:Evidence of synergetic developmentof stem cells,sweatglands,growth factors,andmatrix metalloproteinases[J].Wound RepairRegen,2005,13(1):102-108.
[85]CaiS,Pan Y,Han B,etal.Transplantation ofhuman bonemarrowderived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands[J].Chin Med J(Engl),2011,124 (15):2260-2268.
[86]Tabata Y,Hijikata S,Muniruzzaman M,et al.Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor[J].JBiomater Sci Polym Ed,1999,10(1): 79-94.
[87]Johnson NR,Wang Y.Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing[J].JControl Release,2013,166(2):124-129.
[88]Zeng W,Rong M,Hu X,et al.Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor[J].PloSone,2014,9(7):e101300.
[89]Li B,Davidson JM,Guelcher SA.The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds[J].Biomaterials,2009,30(20):3486-3494.
[90]KawaiK,SuzukiS,Tabata Y,etal.Accelerated tissue regeneration through incorporation ofbasic fibroblast grow th factor-impregnated gelatin microspheres into artificial dermis[J].Biomaterials,2000, 21(5):489-499.
[91]Mao ZW,Ma L,Zhou J,et al.Bioactive thin film of acidic fibroblastgrowth factor fabricated by layer-by-layer assembly[J]. Bioconjug Chem,2005,16(5):1316-1322.
[92]Huang S,Lu G,Wu Y,et al.Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair[J].JDermatol Sci,2012,66 (1):29-36.
[93]Eming SA,Krieg T,Davidson JM.Gene therapy and wound healing [J].Clin Dermatol,2007,25(1):79-92.
[94]Psaltis PJ,Zannettino AC,Worthley SG,et al.Concise review: mesenchymal stromal cells:potential for cardiovascular repair[J]. Stem Cells,2008,26(9):2201-2210.
[95]Ko IK,Ju YM,Chen T,et al.Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration[J].Faseb J,2012,26(1):158-168.
[96]Lau K,Paus R,Tiede S,et al.Exp loring the role of stem cells in cutaneouswound healing[J].Exp Dermatol,2009,18(11):921-933.
[97]YueyiC,Xiaoguang H,JingyingW,etal.Calvarial defecthealing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin[J].Biomaterials,2013,34(37):9373-9380.
Progress of Skin Substitutes for Regenerating Appendages
LI Luyan1,ZHANG Bing1,LI Xiuyuan1,MA Lie1,2.1 MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Department of Polymer Science and Engineering, Zhejiang University,Hangzhou 310027,China;2 State Key Laboratory of Molecular Engineering of Polymers,Fudan University,Shanghai200000,China.Corresponding author:MA Lie(E-mail:liema@zju.edu.cn).
【Summary】It is still an urgent problem to regenerate and repair skin defects in clinic.Up to now,even though a lot of skin substitutes have been developed and realize the clinical application,most of them can only repair the structure of epidermis and simple derm is.The reconstructive skin tissue can't reconstruct the functions of normal skin,usually due to the lack of skin appendages,such as hair follicles,sweat glands and sebaceous glands.In this paper,from the aspects of seed cells,scaffold materials and its bioactivation,the skin substitutes with the ability of regenerating skin appendages,especially hair follicleswere reviewed.Finally,some important challenges for the future studies in this field were discussed.
Hair follicles;Sweat glands;Sebaceous glands;Skin substitutes;Biomaterials
Q813.1+2
B
1673-0364(2016)05-0313-07
10.3969/j.issn.1673-0364.2016.05.012
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)項(xiàng)目(2011CB606203);國(guó)家自然科學(xué)基金項(xiàng)目(51322302)。
310027浙江省杭州市浙江大學(xué)高分子科學(xué)與工程學(xué)系高分子合成與功能構(gòu)造教育部重點(diǎn)實(shí)驗(yàn)室;200000上海市復(fù)旦大學(xué)聚合物分子工程國(guó)家重點(diǎn)實(shí)驗(yàn)室。
馬列(E-mail:liema@zju.edu.cn)。
(2015年12月3日;
2016年3月11日)