徐朋亮 朱勇俊 宋 陽 陳志明
·綜述·
調節(jié)性T細胞在重癥肌無力研究中的進展
徐朋亮 朱勇俊 宋 陽 陳志明
重癥肌無力(MG)為一種由乙酰膽堿受體的抗體介導的、具有T細胞依賴性的自身免疫性疾病。目前研究發(fā)現(xiàn),調節(jié)性T細胞(Treg)功能異常在多種自身免疫性疾病包括重癥肌無力的發(fā)生、發(fā)展起著重要作用。文章重點介紹了Treg細胞的特點及其在重癥肌無力作用機制方面的進展,旨在能夠發(fā)現(xiàn)一種對重癥肌無力和其他自身免疫性疾病有效的以異常T細胞為基礎的治療方法。
重癥肌無力; 調節(jié)性T細胞; Foxp3
重癥肌無力(myasthenia gravis,MG)是一種相對罕見的疾病,臨床癥狀表現(xiàn)為骨骼肌和眼肌無力。MG的發(fā)生機制是T細胞依賴、抗體及補體介導的自身免疫性疾病??棺陨砜贵w與神經(jīng)肌肉接頭處突觸后膜上的相關受體結合,阻礙了神經(jīng)肌接頭處信號轉導[1]。抗體包括乙酰膽堿受體抗體(antiacetylcholine receptor,AChR)(占患者總量的85%)、肌肉特異性激酶抗體(Musk抗體)、脂蛋白受體相關蛋白4(lipoprotein receptor related protein 4,LRP4)抗體[24]。AChR抗體結合后通過補體反應損傷突觸后膜,其中約80%的AChR抗體陽性患者存在胸腺異常(包括胸腺濾泡增生或胸腺瘤)。目前研究[5]發(fā)現(xiàn)調節(jié)性T細胞(regulatory T cell,Treg)在MG發(fā)生、發(fā)展中起著重要作用。本文對Treg細胞的特點及其在MG發(fā)病機制中的作用進行綜述。
1.Treg細胞分類:主要依據(jù)其來源分為兩類,包括天然Treg和獲得性Treg[6]。天然調節(jié)性T細胞(natural regulatory T cells,nTreg)是由胸腺的T細胞自然分化并發(fā)育成熟后,進入外周淋巴組織的調節(jié)性T細胞。nTreg抑制活性需要在T細胞受體(T cell receptor,TCR)活化后才能表現(xiàn)出來,但其活化后所介導的免疫抑制作用為抗原非特異性。獲得性Treg細胞(iTreg)是在外周血中成熟的CD4+CD25+T細胞,也可在一定條件下被誘導而轉變成Treg,并獲得抑制活性。實驗顯示,誘導外周血未成熟CD4+CD25+T細胞向Treg轉化的主要細胞為未成熟樹突狀細胞(immature dendritic cell,IDC)和轉化生長因子β1(transforming growth factor-β,TGF-β1)[7]。此外,抗原通過黏膜途徑也可誘導Treg分化。
2.Treg細胞表面標志分子:Treg細胞表面分子標志主要為CD4+和CD25+。CD4+CD25+T細胞同時具有免疫無反應性和免疫抑制性兩大特征,其特征性分子標志為轉錄因子3(forkheadtranscription factor 3,F(xiàn)OXP3)。FOXP3對Treg的發(fā)育及功能起重要作用。用反轉錄病毒將Foxp3基因轉染至小鼠外周血中型CD4+CD25+T細胞后,在體內外均表現(xiàn)出Treg細胞的免疫無反應性和免疫抑制性,能夠抑制抗原特異性CD4+細胞增殖[8]。Foxp3已被確認為大型轉錄復合體(如HDAC、Runx1、Gata3)的成分之一,通過特定參與組成Treg細胞轉錄因子復合物,Treg中的基因才能表達轉錄因子[9]。CD4+CD25+Treg是維持機體免疫耐受的重要T細胞,由胸腺產(chǎn)生并通過主動調節(jié)方式抑制正常機體內潛在的自身反應性T細胞的活化與增殖,從而防止自身免疫應答的發(fā)生。CD4+CD25+Treg細胞核內表達的Foxp3是該細胞發(fā)育的主要調節(jié)分子以及識該T細胞亞群最好的標志物。細胞毒T淋巴細胞相關抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)則是成熟Treg組成性表達的細胞表面分子,它作為一種共刺激信號分子參與免疫應答的負調控。CTLA-4在維持T細胞耐受方面具有雙重功能:Treg表達的CTLA-4可抑制異常幼稚T細胞激活,而Tconv表達的CTLA-4可以防止自身反應性T細胞在重要器官中的積累[10]。Chan等[11]通過阻斷CD4+T細胞上CTLA-4的表達后發(fā)現(xiàn)CD4+T細胞比CD8+T細胞有增殖能力。這種CD4+和CD8+T細胞亞群對阻斷CTLA-4后表現(xiàn)出不同的反應,提示抗CTLA-4治療可以用于臨床改變自身免疫疾病的免疫應答反應。糖皮質激素誘導的腫瘤壞死因子受體(glucocorticoid induced tumour necrosis factor receptor,GITR)主要表達在靜息性的Treg細胞,當Treg被激活也可以在一定時間內持續(xù)表達GITR;用抗GITR或糖皮質激素誘導的腫瘤壞死因子受體配體(glucocorticoidinduced tumor necrosis factor receptor ligand,GITRL)抗體均可消除Treg的免疫抑制作用。Masuda等[12]證實了GITR在CD4+CD25+Treg中組成性高表達,GITR+Treg在外周血淋巴細胞中所占比例與患者病情的嚴重程度相關,因此GITR+Treg能增強免疫抑制功能。
3.Treg的功能:Treg在抑制自身免疫反應方面起著重要作用。1995年,Sakaguchi等首先發(fā)現(xiàn)[13],將CD4+CD25+T細胞去除后的裸鼠體會引發(fā)多種自身免疫性疾??;當同時輸入CD4+CD25+T細胞則可避免自身免疫疾病的發(fā)生。出生后3d進行了胸腺切除的小鼠,會罹患自發(fā)的多器官自身免疫病,同時伴有外周淋巴細胞中CD25+T細胞數(shù)量減少;然而如果將正常小鼠Treg細胞移植到實驗組小鼠,可有效抑制身免疫反應。
4.nTreg細胞在胸腺內的發(fā)育:成熟的CD4+CD25+Treg細胞轉移至外周,發(fā)揮抑制自身免疫應答功能。同時,Sakaguchi等[14]在自身免疫疾病的動物實驗模型中發(fā)現(xiàn)CD4+CD25+Foxp3+Treg細胞功能的破壞導致了自身免疫性疾病,而這些疾病在接受移植的有功能的Treg細胞后會有逆轉。Treg可抑制T淋巴細胞激活,對B淋巴細胞、巨噬細胞及樹突樣細胞也具有調節(jié)作用。抑制其他CD4+細胞和CD25+細胞活性,其抑制活性具有抗原非特異性和可逆性,推測其抑制作用途徑可能是細胞與細胞的直接接觸或通過分泌抑制性細胞因子發(fā)揮抑制作用。
1.Treg細胞和MG的關系 胸腺中存在自身受體反應性CD4+T細胞,若對此類細胞抑制減弱,將產(chǎn)生抗自身抗體。如果對AchR反應性CD4+T細胞的抑制作用減弱,將會引起輔助B細胞分化成熟產(chǎn)生AchR抗體,進而導致MG發(fā)生。這同時也可以解釋合并胸腺異常的MG患者可同時合并其他自身免疫性疾病,如SLE、橋本甲狀腺炎、純紅細胞再生障礙性貧血等[1516]。Luther等[17]發(fā)現(xiàn),MG合并胸腺瘤組的胸腺中,CD4+CD25+T細胞數(shù)量明顯下降。Treg數(shù)量改變可能與MG合并胸腺瘤相關。Sun等[18]研究發(fā)現(xiàn):MG癥狀穩(wěn)定患者外周血Treg數(shù)量顯著高于癥狀不穩(wěn)定患者。Chi等[19]研究發(fā)現(xiàn)部分MG患者CD4+CD25+Treg數(shù)量雖正常,但Foxp3表達明顯減少,且這些細胞不具有抑制自身反應性T細胞增殖的能力,提示CD4+CD25+Treg和FoxP3陽性表達細胞數(shù)目減少與MG相關。Balandina等[20]的研究也表明MG患者胸腺CD4+CD25+T細胞Foxp3mRNA表達水平低于對照組,且伴免疫抑制功能降低。該研究發(fā)現(xiàn),MG患者胸腺中FoxP3陽性細胞率、mRNA表達水平均顯著低于正常對照組,并且Foxp3表達的下降與MG患者的性別、年齡無關,而與MG的臨床分型呈負相關,即臨床癥狀較重者Foxp3表達水平較低,提示Foxp3表達變化可能在MG的發(fā)生、發(fā)展中起重要作用,其基因的異常表達可能是MG自身免疫調控失衡的主要原因。
2.Treg細胞與MG的治療:Ronchetti等[21]研究發(fā)現(xiàn),GITR為有活性的Treg細胞的關鍵分子,可誘導iTreg細胞分化[22]。莊戰(zhàn)強等[23]報道,MG患者經(jīng)過糖皮質激素治療后,外周血CD4+CD25+Treg細胞Foxp3表達顯著提高,但仍然低于健康人群,提示糖皮質激素可以誘導Foxp3的表達。T細胞功能受損不僅僅由于Treg細胞數(shù)量較少和功能低下,也來自效應性T細胞對Treg介導的抑制作用的抵抗[24]。
2012年,Singh和Kamen等[25]發(fā)現(xiàn)高濃度1,25(OH)2維生素D3的活化形式在體外也可以促進CD4+FOXP3+Treg產(chǎn)生,并且維生素D3能直接促進CD4+CD25?T細胞產(chǎn)生FOXP3+T細胞,從而表達高水平的CTLA-4產(chǎn)生免疫抑制作用[26]。另外,Askmark等[27]發(fā)現(xiàn)MG患者血漿維生素D水平較正常人降低,這種低水平可能對MG患者的CD4+CD25++Treg產(chǎn)生了潛在的作用[28]。Khoo等[29]證明Treg能表達維生素D受體。維生素D3在健康個體體外可以誘導產(chǎn)生Treg,促進FOXP3和IL-10分泌細胞的表達[30]。然而,僅僅維生素D低水平并不能解釋MG患者Treg抑制能力的下降,有研究證實土耳其的健康人也會有較低水平的維生素D[31],患者Treg細胞調節(jié)功能的改變可能與Treg、Tresp和抗原提呈細胞(antigen presenting cell,APC)的協(xié)同刺激或協(xié)同抑制分子作用有關,F(xiàn)OXP3在CD4+CD25+T細胞中的低表達可能與IL-2介導的STAT5的磷酸化作用有關[32]。
胸腺切除術(thymectomy,TE)是目前治療MG的一種方法,可以起到改善臨床癥狀的作用。Guillermo等[33]證實有52%的MG患者在TE后得到緩解,Hatton等[34]則證實有59%獲得緩解,Busch等[35]證實有71%獲得緩解,F(xiàn)rist等[36]證實有87%獲得緩解。非胸腺瘤MG患者胸腺切除術后一年,89%患者量化肌無力評分有降低。但僅做TE治療而沒有免疫抑制治療的患者不足以增加足夠的循環(huán)Treg細胞以及建立完全穩(wěn)定緩解率(complete stable remission,CSR),Jakubikova等[37]還觀察到TE術前僅使用新斯的明的患者Treg細胞增加率遠低于類固醇激素治療的患者。
Zhang等[38]發(fā)現(xiàn)免疫抑制劑雷帕霉素對增加Treg細胞數(shù)量具有顯著的積極作用。雷帕霉素作為一種新型大環(huán)內酯類免疫抑制劑,最近研究顯示其在體外可以選擇性地擴增nTreg,CD4+T細胞的擴增和活化能夠誘導細胞凋亡,但確切機制尚不清楚。Barrat等[39]研究表明,經(jīng)皮質類固醇激素治療后的MG患者比未經(jīng)激素治療者體內的調節(jié)性T細胞抑制功能增強,因而認為激素在控制外周調節(jié)網(wǎng)絡中可能發(fā)揮作用,其作用可能是提供一種環(huán)境以促進免疫調節(jié)作用??赡芤驗槠淇梢愿蓴_樹突狀細胞的成熟,從而減少了表層表達或者共刺激分子,同時可以產(chǎn)生IL-10來誘導抑制性T細胞的產(chǎn)生。因此,MG患者進行免疫抑制治療后Treg數(shù)量會明顯增加[40]。
隨著對Treg細胞在各種自身免疫性疾病方面研究的進展,其在MG發(fā)病機制方面的研究也日趨深入,已基本明確Treg細胞數(shù)量和功能缺陷與MG的發(fā)生、發(fā)展相關,但其引起MG的具體發(fā)病機制尚不明確。MG患者Treg細胞Foxp3誘導表達仍不十分清楚,依靠Treg細胞對人類自身免疫性疾病,特別是MG的治療方法還存在很多爭議。理想的治療方法是利用MG患者自身的Treg細胞來治療MG,因此有必要進一步探究MG患者Treg細胞重新建立免疫抑制作用所需的條件。
1 Meriggioli MN,Sanders DB.Autoimmune myasthenia gravis:emerging clinical and biological heterogeneity[J].Lancet Neurol,2009,8(5):475-490.
2 Cavalcante P,Le Panse R,Berrih-Aknin S,et al.The thymus in myasthenia gravis:Site of"innate autoimmunity"?[J]Muscle Nerve,2011,44(4):467-484.
3 Lindstrom J.Antibody to acetylcholine receptors in human MG[J].Int J Neurol,1980,14(1):17-24.
4 Shigemoto K,Kubo S,Maruyama N,et al.Induction of myasthenia by immunization against muscle-specific kinase[J].J Clin Invest,2006,116(4):1016-1024.
5 夏強,劉衛(wèi)彬,陳振光,等.重癥肌無力患者胸腺調節(jié)性T細胞的原位表達及意義[J].中華醫(yī)學雜志,2009,89(43):3031-3034.
6 Bluestone JA,Abbas AK.Natural versus adaptive regulatory T cells[J].Nat Rev Immunol,2003,3(3):253-257.
7 Sakaguchi S,Yamaguchi T,Nomura T,et al.Regulatory Tcells and immune tolerance[J].Cell,2008,133(5):775-787.
8 Sakaguchi S,Miyara M,Costantino CM,et al.FOXP3+regulatory T cells in the human immune system[J].Nat Rev Immunol,2010,10(7):490-500.
9 Rudra D,Deroos P,Chaudhry A,et al.Transcription factor Foxp3and its protein partners form a complex regulatory network[J].Nat Immunol,2012,13(10):1010-1019.
10 Jain N,Nguyen H,Chambers C,et al.Dual function of CTLA-4in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity[J].Proc Natl Acad Sci U S A,2010,107(4):1524-1528.
11 Chan DV,Gibson HM,Aufiero BM,et al.Differential CTLA-4expression in human CD4+versus CD8+T cells is associated with increased NFAT1and inhibition of CD4+proliferation[J].Genes Immun,2014,15(1):25-32.
12 Masuda M,Matsumoto M,Tanaka S,et al.Clinical implication of peripheral CD4+CD25+regulatory T cells and Th17cells in myasthenia gravis patients[J].J Neuroimmunol,2010,225(1-2):123-131.
13 Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol,1995,155(3):1151-1164.
14 Sakaguchi S,Ono M,Setoguchi R,et al.Foxp3+CD25+CD4+natural regulatory T cells in dominant self-tolerance and autoimmune disease[J].Immunol Rev,2006,212:8-27.
15 Bekircan-Kurt CE,Tuncer KA,Erdem-Ozdamar S,et al.The course of myasthenia gravis with systemic lupus erythematosus[J].Eur Neurol,2014,72(5-6):326-329.
16 Bernard C,F(xiàn)rih H,Pasquet F,et al.Thymoma associated with autoimmune diseases:85cases and literature review[J].Autoimmun Rev,2016,15(1):82-92.
17 Luther C,Poeschel S,Varga M,et al.Decreased frequency of intrathymic regulatory T cells in patients with myastheniaassociated thymoma[J].J Neuroimmunol,2005,164(1-2):124-128.
18 Sun Y,Qiao J,Lu CZ,et al.Increase of circulating CD4+CD25+T cells in myasthenia gravis patients with stability and thymectomy[J].Clin Immunol,2004,112(3):284-289.
19 Chi LJ,Wang HB,Wang WZ.Impairment of circulating CD4+CD25+regulatory T cells in patients with chronic inflammatory demyelinating polyradiculoneuropathy[J].J Peripher Nerv Syst,2008,13(1):54-63.
20 Balandina A,Lecart S,Dartevelle P,et al.Functional defect of regulatory CD4+CD25+T cells in the thymus of patients with autoimmune myasthenia gravis[J].Blood,2005,105(2):735-741.
21 Ronchetti S,Ricci E,Petrillo M G,et al.Glucocorticoidinduced tumour necrosis factor receptor-related protein:a key marker of functional regulatory T cells[J].J Immunol Res,2015,2015:171520.
22 Xiao X,Shi X,F(xiàn)an Y,et al.GITR subverts Foxp3+Tregs to boost Th9immunity through regulation of histone acetylation[J].Nat Commun,2015,6:8266.
23 莊戰(zhàn)強,許文華,吳元波,等.糖皮質激素對重癥肌無力患者外周血調節(jié)性T細胞中Foxp3及其胞內CTLA-4表達的影響[J].安徽醫(yī)科大學學報,2015,50(9):1297-1300.
24 Clough LE,Wang CJ,Schmidt EM,et al.Release from regulatory T cell-mediated suppression during the onset of tissue-specific autoimmunity is associated with elevated IL-21[J].J Immunol,2008,180(8):5393-5401.
25 Singh A,Kamen DL.Potential benefits of vitamin D for patients with systemic lupus erythematosus[J].Dermatoendocrinol,2012,4(2):146-151.
26 Chambers ES,Suwannasaen D,Mann EH,et al.1alpha,25-dihydroxyvitamin D3in combination with transforming growth factor-beta increases the frequency of Foxp3+regulatory T cells through preferential expansion and usage of interleukin-2[J].Immunology,2014,143(1):52-60.
27 Askmark H,Haggard L,Nygren I,et al.Vitamin D deficiency in patients with myasthenia gravis and improvement of fatigue after supplementation of vitamin D3:apilot study[J].Eur J Neurol,2012,19(12):1554-1560.
28 Alahgholi-Hajibehzad M,Oflazer P,Aysal F,et al.Regulatory function of CD4+CD25++T cells in patients with myasthenia gravis is associated with phenotypic changes and STAT5 signaling:1,25-Dihydroxyvitamin D3modulates the suppressor activity[J].J Neuroimmunol,2015,281:51-60.
29 Khoo A L,Joosten I,Michels M,et al.1,25-Dihydroxyvitamin D3inhibits proliferation but not the suppressive function of regulatory T cells in the absence of antigen-presenting cells[J].Immunology,2011,134(4):459-468.
30 Chambers ES,Suwannasaen D,Mann EH,et al.1alpha,25-dihydroxyvitamin D3in combination with transforming growth factor-beta increases the frequency of Foxp3+regulatory T cells through preferential expansion and usage of interleukin-2[J].Immunology,2014,143(1):52-60.
31 Cigerli O,Parildar H,Unal AD,et al.Vitamin D deficiency is aproblem for adult out-patients?A university hospital sample in Istanbul,Turkey[J].Public Health Nutr,2013,16(7):1306-1313.
32 Li Q,Barish S,Okuwa S,et al.A functionally conserved gene regulatory network module governing olfactory neuron diversity[J].PLoS Genet,2016,12(1):e1005780.
33 Guillermo GR,Tellez-Zenteno JF,Weder-Cisneros N,et al.Response of thymectomy:clinical and pathologicalcharacteristics among seronegative and seropositive myasthenia gravis patients[J].Acta Neurol Scand,2004,109(3):217-221.
34 Hatton PD,Diehl JT,Daly BD,et al.Transsternal radical thymectomy for myasthenia gravis:a 15-year review[J].Ann Thorac Surg,1989,47(6):838-840.
35 Busch C,Machens A,Pichlmeier U,et al.Long-term outcome and quality of life after thymectomy for myasthenia gravis[J].Ann Surg,1996,224(2):225-232.
36 Frist WH,Thirumalai S,Doehring CB,et al.Thymectomy for the myasthenia gravis patient:factors influencing outcome[J].Ann Thorac Surg,1994,57(2):334-338.
37 Jakubikova M,Pitha J,Mareckova H,et al.Two-year outcome of thymectomy with or without immunosuppressive treatment in nonthymomatous myasthenia gravis and its effect on regulatory T cells[J].J Neurol Sci,2015,358(1-2):101-106.
38 Zhang C,Shan J,F(xiàn)eng L,et al.The effects of immunosuppressive drugs on CD4+CD25+regulatory T cells:a systematic review of clinical and basic research[J].J Evid Based Med,2010,3(2):117-129.
39 Barrat FJ,Cua D J,Boonstra A,et al.In vitro generation of interleukin 10-producing regulatory CD4+T cells is induced by immunosuppressive drugs and inhibited by T helper type 1(Th1)-and Th2-inducing cytokines[J].J Exp Med,2002,195(5):603-616.
40 Xu WH,Zhang AM,Ren MS,et al.Changes of Tregassociated molecules on CD4+CD25+Treg cells in myasthenia gravis and effects of immunosuppressants[J].J Clin Immunol,2012,32(5):975-983.
Regulatory T cells and its research progress in myasthenia gravis Xu Pengliang,Zhu Yongjun,Song
Yang,Chen Zhiming.Department of Cardiothoracic Surgery,Huashan Hospital,F(xiàn)udan University,Shanghai 200040,China
Chen Zhiming,Email:chzm_md@163.com
Myasthenia gravis(MG)is an antibody-mediated,T cell-dependent autoimmune disease.Recent researches have revealed that the dysfunction in the Regulatory T cell(Treg)compartment is involved in the etiology and pathogenesis of a variety of autoimmune diseases,including MG.This paper focuses on the characteristics of Treg and its mechanism of action on MG.It is hoped to pave a way that will restore self-tolerance in MG and other autoimmune diseases towards the Treg-based treatment modalities.
Myasthenia gravis; Regulatory T cell; Foxp3
2016-03-14)
(本文編輯:周珠鳳)
10.3877/cma.j.issn.2095-8773.2016.04.09
200040 上海,復旦大學附屬華山醫(yī)院心胸外科
陳志明,Email:chzm_md@163.com
徐朋亮,朱勇俊,宋陽,等.調節(jié)性T細胞在重癥肌無力研究中的進展[J/CD].中華胸部外科電子雜志,2016,3(4):234-238.