朱 洪
(安徽三聯(lián)學(xué)院基礎(chǔ)部,合肥230601)
?
六點(diǎn)Binary逼近細(xì)分法
朱洪
(安徽三聯(lián)學(xué)院基礎(chǔ)部,合肥230601)
[摘要]提出了一種新的細(xì)分算法——六點(diǎn)Binary逼近細(xì)分法.利用生成多項(xiàng)式等方法對(duì)細(xì)分法的一致收斂性和Ck連續(xù)性進(jìn)行了分析,通過(guò)對(duì)細(xì)分法中張力參數(shù)μ的不同取值,極限曲線可達(dá)到C0~C7連續(xù).特別是當(dāng)μ=11/1024時(shí),極限曲線可達(dá)到C9連續(xù).數(shù)值算例表明,該方法是合理有效的.
[關(guān)鍵詞]Binary細(xì)分法; 逼近; 生成多項(xiàng)式; Ck連續(xù)性
1引言
細(xì)分法是根據(jù)初始數(shù)據(jù)或初始控制多邊形由計(jì)算機(jī)直接生成曲線曲面或其他幾何形體的一類方法,其處理方法簡(jiǎn)單、易于實(shí)現(xiàn),因此在幾何造型中得到廣泛的應(yīng)用.Dyn等[1-2]從理論上對(duì)Binary細(xì)分格式及其極限曲線的存在性和光滑性進(jìn)行研究,利用三次Lagrange插值提出了四點(diǎn)Binary逼近細(xì)分法,可以構(gòu)造出C2連續(xù)曲線.Hassan等[3-4]提出了三點(diǎn)Ternary逼近細(xì)分法和四點(diǎn)Ternary插值細(xì)分法,并給出了三重格式的充分條件,其生成的極限曲線均達(dá)到C2連續(xù).Siddiqi等[5]利用三次均勻B樣條基函數(shù)構(gòu)造了一種三點(diǎn)Ternary逼近細(xì)分法,并生成了C2連續(xù)的極限曲線.Siddiqi等[6-7]提出了五點(diǎn)Binary逼近細(xì)分法和五點(diǎn)Ternary逼近細(xì)分法,其生成的極限曲線分別達(dá)到C3和C4連續(xù).Siddiqi等[8]提出了改進(jìn)的三點(diǎn)Binary細(xì)分算法.Ko等[9]將文獻(xiàn)[2]推廣到三重格式的情形,提出了四點(diǎn)Ternary逼近細(xì)分法.Daniel等[10]將靜態(tài)格式推廣到動(dòng)態(tài)格式,提出了動(dòng)態(tài)的三點(diǎn)Binary逼近細(xì)分法,可以產(chǎn)生C1連續(xù)的極限曲線.Bao-jun LI等[11]定義了一類帶有松弛參數(shù)列的動(dòng)態(tài)細(xì)分格式,并使得這種方法可以重構(gòu)指數(shù)多項(xiàng)式空間.檀結(jié)慶等[12]提出了基于插值細(xì)分的逼近細(xì)分法,在Hassan四點(diǎn)Ternary插值細(xì)分法中引入一個(gè)偏移參數(shù),推導(dǎo)出一種逼近細(xì)分法,從而使Ternary插值細(xì)分和逼近細(xì)分統(tǒng)一到一個(gè)細(xì)分格式中.鄭紅蟬等[13]介紹了雙參數(shù)四點(diǎn)細(xì)分法及其性質(zhì).本文提出了六點(diǎn)Binary逼近細(xì)分法,并利用生成多項(xiàng)式方法討論了極限曲線的收斂性和Ck連續(xù)性,使造型曲線具有更大的光滑度,以滿足實(shí)際應(yīng)用的需要.
2預(yù)備知識(shí)
(1)
其中a={ai|i∈}為該細(xì)分法的掩模,將細(xì)分法記為S,則S的生成多項(xiàng)式為
定理1[1]若Binary細(xì)分法S一致收斂,則其掩模a={ai}滿足
(2)
定理2[1]設(shè)Binary細(xì)分法S的掩模a={ai}滿足式(2),則存在一個(gè)Binary細(xì)分法S1,滿足
dPk=S1dPk-1,
(3)
3六點(diǎn)Binary逼近細(xì)分法的收斂性和Ck連續(xù)性分析
(4)
其中
μ為張力參數(shù),且有
λ1+λ2+λ3+λ4+λ5+λ6=1.
證由細(xì)分法(4)生成的多項(xiàng)式為
根據(jù)定理2知
根據(jù)定理3知,六點(diǎn)Binary逼近細(xì)分法是一致收斂的.
又由定理2知
根據(jù)定理3知,六點(diǎn)Binary逼近細(xì)分法是C1連續(xù)的.
證根據(jù)定理2知,
又S4的生成多項(xiàng)式為
根據(jù)定理3知,六點(diǎn)Binary逼近細(xì)分法是C3連續(xù)的.
證根據(jù)定理2知
又S6的生成多項(xiàng)式為
根據(jù)定理3知,六點(diǎn)Binary逼近細(xì)分法是C5連續(xù)的.
證根據(jù)定理2知,
又S8的生成多項(xiàng)式為
4結(jié)論和數(shù)值算例
圖1 六點(diǎn)Binary逼近細(xì)分法算例
[參考文獻(xiàn)]圖2本文算法與其它幾種算法的比較
[1]Dyn N.Subdivision schemes in CAGD[A].Light W (eds.),Advances in Numerical Analysis,Vol.2,Oxford : Clarendon Press,1992:36-104.
[2]Dyn N,Floater M S,Hormann K. A C2four-point subdivision scheme with fourth order accuracy and its extensions[A].Dhlen M,M?rken K,Schumaker L L (eds.),Mathematical Methods for Curves and Surfaces: Troms? 2004,Nashboro Press,Brentwood,2005:145-156.
[3]Hassan M F,Dodgson N A.Ternary and three-point univariate subdivision schemes[A].Cohen A,Merrien J L,Schumaker L L (eds.),Curve and Surface Fitting:Saint-Malo 2002,Nashboro Press,Brentwood,2003:199-208.
[4]Hassan M F,Ivrissimitzis I P,Dodgson N A,Sabin M A.An interpolating 4-point C2ternary stationary subdivision scheme[J].Computer Aided Geometric Design,2002,19:1-18.
[5]Siddiqi S S,Rehan K.A ternary three-point scheme for curve designing[J].International Journal of Computer Mathematics,2010,87(8):1709-1715.
[6]Siddiqi S S,Ahmad N.A new five-point approximating subdivision scheme[J].International Journal of Computer Mathematics,2008,85(1):65-72.
[7]Siddiqi S S,Rehan K.A stationary ternary C4scheme for curve sketching[J].European Journal of Scientific Research,2009,30(3):380-388.
[8]Siddiqi S S,Rehan K.Modified form of binary and ternary 3-point subdivision schemes[J].Applied Mathematics and Computation,2010,216:970-982.
[9]Ko K P,Lee B G,Yoon G J.A ternary 4-point approximating subdivision scheme[J].Applied Mathematics and Computation,2007,190:1563-1573.
[10]Daniel S,Shunmugaraj P.Three point stationary and non-stationary subdivision scheme[C]∥3rd International Conference on Geometric Modeling & Imaging, London:IEEE Press, 2008:3-8.
[11]Bao-jun LI,Zhi-ling YU,Bo-wen YU,Zhi-xun SU,Xiu-ping LIU.Non-stationary subdivision for Exponential Polynomials Reproduction[J].Acta Mathematicae Application Sinica,2013,29(3):567-578.
[12]檀結(jié)慶,童廣悅,張莉.基于插值細(xì)分的逼近細(xì)分法[J].計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),2015,27(7): 1162-1166.
[13]鄭紅嬋,葉正麟,趙紅星.雙參數(shù)四點(diǎn)細(xì)分法及其性質(zhì)[J].計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),2004,16(8): 1140-1145.
A Six-Point Binary Approximating Subdivision Scheme
ZHUHong
(Department of Basic Courses, Anhui Sanlian University, hefei 230009, China)
Abstract:A binary six-point approximating subdivision scheme is presented. Using the generating polynomial method,the uniform convergence and Ck-continuity of subdivision scheme are analyzed. The subdivision scheme can be used to generate a family of Ck(k=1,2,…7) limit curves in certain range of tension parameter μ and C9limit curves forμ=11/1024. The numerical examples show that the proposed method is proper and effective.
Key words:binary subdivision scheme; approximation; generating polynomial; Ck-continuity
[中圖分類號(hào)]TP391
[文獻(xiàn)標(biāo)識(shí)碼]C
[文章編號(hào)]1672-1454(2015)05-0108-06
[基金項(xiàng)目]安徽三聯(lián)學(xué)院校級(jí)自然科學(xué)基金(2014Z002)
[收稿日期]2015-07-26