李國安
(寧波大學(xué)理學(xué)院,浙江寧波315211)
?
二元Weinman型指數(shù)分布隨機(jī)變量之和、差、積、商及比率的分布
李國安
(寧波大學(xué)理學(xué)院,浙江寧波315211)
[摘要]出于水文科學(xué)應(yīng)用的需要,本文導(dǎo)出了二元Weinman型指數(shù)分布隨機(jī)變量之和、差、及比率的精確分布;計(jì)算了二元Weinman型指數(shù)分布隨機(jī)變量之積、及商的精確分布,所得結(jié)果可應(yīng)用于水文科學(xué)的教學(xué)和研究之中.
[關(guān)鍵詞]二元Weinman型指數(shù)分布; 和; 積; 比率; 水文科學(xué)
1引言
Weinman[1]于1966年引入了如下的二元指數(shù)分布
它是所有不獨(dú)立的二元指數(shù)分布中所含參數(shù)最小的二元指數(shù)分布,同時又是一個對稱指數(shù)分布,稱之為二元Weinman型指數(shù)分布,文獻(xiàn)[2]獲得了來自二元Weinman型指數(shù)分布II型截尾樣本的應(yīng)力—強(qiáng)度結(jié)構(gòu)系統(tǒng)可靠度的一致最小方差無偏估計(jì);文獻(xiàn)[3]對它的特征及參數(shù)估計(jì)問題進(jìn)行了研究,導(dǎo)出了二元Weinman型指數(shù)分布的一個特征,獲得了參數(shù)的最大似然估計(jì)及矩估計(jì),給出了二元Weinman型指數(shù)分布的二種模擬,還得到了強(qiáng)度為二元Weinman型指數(shù)分布時并聯(lián)結(jié)構(gòu)系統(tǒng)可靠度的估計(jì);幾乎與此同時,國外學(xué)者對二元指數(shù)分布隨機(jī)變量之和、積、商的分布展開了研究,文獻(xiàn)[4]研究了二元Gumbel指數(shù)分布隨機(jī)變量之和、積、比率的分布;文獻(xiàn)[5]研究了二元Freund型指數(shù)分布隨機(jī)變量之和、積、比率的分布;文獻(xiàn) [6]研究了二元Lawrance-Lewis型指數(shù)分布隨機(jī)變量之和、積、比率的分布;文獻(xiàn)[7]研究了二元downton型指數(shù)分布隨機(jī)變量之和、積、比率的分布;文獻(xiàn)[8]研究了可靠性模型中的五類二元指數(shù)分布,分別研究了二元downton型、Arnold-Strauss型、Marshall-Olkin型、Freund型、Lawrance-Lewis型指數(shù)分布隨機(jī)變量之和的精確分布.出于教學(xué)和科研二方面的需要:本文導(dǎo)出了二元Weinman型指數(shù)分布隨機(jī)變量之和、差、積、商、及比率的精確分布.
2二元Weinman型指數(shù)分布隨機(jī)變量之和、差、及比率的分布
由
得行列式
由此得
得行列式
3二元Weinman型指數(shù)分布隨機(jī)變量之積、及商的分布
由此得
分別代入,合并得
由此得
得
[參考文獻(xiàn)]
[1]Weinman D G.A multivariate extension of the exponential distribution[D].Ph. D. thesis, Arizona State University, 1966.
[2]Cramer E,Kamps U.The UMVUE of P{X [3]李國安.二元Weinman型指數(shù)分布的特征及其應(yīng)用[J].數(shù)學(xué)研究與評論,2005,25(2):337-340. [4]Nadarajah S.Sums, products, and ratios for the bivariate gumbel distribution[J].Mathematical and Computer Modelling,2005,42:499-518. [5]Gupta A K,Nadarajah S.Sums, products, and ratios for Freund’s bivariate exponential distribution[J].Applied Mathematics and Computation,2006,173:1334-1349. [6]Saralees Nadarajah S,Ali M M.The distribution of sums, products and ratios for Lawrance and Lewis’s bivariate exponential random variables[J].Computational Statistics & Data Analysis,2006,50:3449-3463. [7]Nadarajah S,Kotz S.Sums, products, and ratios for downton’s bivariate exponential distribution[J].Stoch Environ Res Risk Assess,2006,20:164-170. [8]Nadarajah S,Kotz S.Reliability models based on bivariate exponential distributions[J].Probabilistic Engineering Mechanics,2006,21:338-351. [9]Arnold B C,Strauss D J.Bivariate distributions with exponential conditionals[J].Journal of the American Statistical Association,1988,83:522-527. [10]Marshall A W,Olkin I.A multivariate exponential distribution[J].Journal of the American Statistical Association,1967,62(1):30-44. [11]Nadarajah S.Exact distributions of XY for some bivariate exponential distributions[J].Statistics: A Journal of Theoretical and Applied Statistics, 2006,40(4):307-324. [12]Block, H W and Basu, A P. A continuous bivariate exponential extension[J].Journal of the American Statistical Association,1974,69:1031-1037. [13]Nadarajah S,Gupta A K.Friday and Patil’s bivariate exponential distribution with application to drought data[J] ].Water Res. Manag. 2006,20:749-759. [14]Friday D S,Patil G. P.A bivariate exponential model with applications to reliability and computer generation of random variables [C] . in: C.P. Tsokos, I. Shimi (Eds.), Theory and Applications of Reliability, vol. I, New York :Academic Press, 1977:527-549. Sums, Minus, Products, Quotients, and Ratios for Weinman’s Bivariate Exponential Distribution LIGuo-an (Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, China) Abstract:Motivated by hydrological applications,the exact distribution of U=X+Y,Z=X-Y, when X and Y follow Weinman’s bivariate exponential distribution is derived in this paper;also, The exact distribution of V=XY,T=XY when X and Y follow Weinman’s bivariate exponential distribution is calculated, the results can be applied to hydrological sciences. Key words:Weinman’s bivariate exponential distribution; sums; products; ratios; hydrological sciences [中圖分類號]O212.4 [文獻(xiàn)標(biāo)識碼]C [文章編號]1672-1454(2015)05-0114-06 [基金項(xiàng)目]寧波大學(xué)學(xué)科項(xiàng)目(XKL14D2037) [收稿日期]2014-11-02