国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

二元Weinman型指數(shù)分布隨機(jī)變量之和、差、積、商及比率的分布

2016-01-28 03:08李國安
大學(xué)數(shù)學(xué) 2015年5期
關(guān)鍵詞:理學(xué)院寧波大學(xué)指數(shù)分布

李國安

(寧波大學(xué)理學(xué)院,浙江寧波315211)

?

二元Weinman型指數(shù)分布隨機(jī)變量之和、差、積、商及比率的分布

李國安

(寧波大學(xué)理學(xué)院,浙江寧波315211)

[摘要]出于水文科學(xué)應(yīng)用的需要,本文導(dǎo)出了二元Weinman型指數(shù)分布隨機(jī)變量之和、差、及比率的精確分布;計(jì)算了二元Weinman型指數(shù)分布隨機(jī)變量之積、及商的精確分布,所得結(jié)果可應(yīng)用于水文科學(xué)的教學(xué)和研究之中.

[關(guān)鍵詞]二元Weinman型指數(shù)分布; 和; 積; 比率; 水文科學(xué)

1引言

Weinman[1]于1966年引入了如下的二元指數(shù)分布

它是所有不獨(dú)立的二元指數(shù)分布中所含參數(shù)最小的二元指數(shù)分布,同時又是一個對稱指數(shù)分布,稱之為二元Weinman型指數(shù)分布,文獻(xiàn)[2]獲得了來自二元Weinman型指數(shù)分布II型截尾樣本的應(yīng)力—強(qiáng)度結(jié)構(gòu)系統(tǒng)可靠度的一致最小方差無偏估計(jì);文獻(xiàn)[3]對它的特征及參數(shù)估計(jì)問題進(jìn)行了研究,導(dǎo)出了二元Weinman型指數(shù)分布的一個特征,獲得了參數(shù)的最大似然估計(jì)及矩估計(jì),給出了二元Weinman型指數(shù)分布的二種模擬,還得到了強(qiáng)度為二元Weinman型指數(shù)分布時并聯(lián)結(jié)構(gòu)系統(tǒng)可靠度的估計(jì);幾乎與此同時,國外學(xué)者對二元指數(shù)分布隨機(jī)變量之和、積、商的分布展開了研究,文獻(xiàn)[4]研究了二元Gumbel指數(shù)分布隨機(jī)變量之和、積、比率的分布;文獻(xiàn)[5]研究了二元Freund型指數(shù)分布隨機(jī)變量之和、積、比率的分布;文獻(xiàn) [6]研究了二元Lawrance-Lewis型指數(shù)分布隨機(jī)變量之和、積、比率的分布;文獻(xiàn)[7]研究了二元downton型指數(shù)分布隨機(jī)變量之和、積、比率的分布;文獻(xiàn)[8]研究了可靠性模型中的五類二元指數(shù)分布,分別研究了二元downton型、Arnold-Strauss型、Marshall-Olkin型、Freund型、Lawrance-Lewis型指數(shù)分布隨機(jī)變量之和的精確分布.出于教學(xué)和科研二方面的需要:本文導(dǎo)出了二元Weinman型指數(shù)分布隨機(jī)變量之和、差、積、商、及比率的精確分布.

2二元Weinman型指數(shù)分布隨機(jī)變量之和、差、及比率的分布

得行列式

由此得

得行列式

3二元Weinman型指數(shù)分布隨機(jī)變量之積、及商的分布

由此得

分別代入,合并得

由此得

[參考文獻(xiàn)]

[1]Weinman D G.A multivariate extension of the exponential distribution[D].Ph. D. thesis, Arizona State University, 1966.

[2]Cramer E,Kamps U.The UMVUE of P{X

[3]李國安.二元Weinman型指數(shù)分布的特征及其應(yīng)用[J].數(shù)學(xué)研究與評論,2005,25(2):337-340.

[4]Nadarajah S.Sums, products, and ratios for the bivariate gumbel distribution[J].Mathematical and Computer Modelling,2005,42:499-518.

[5]Gupta A K,Nadarajah S.Sums, products, and ratios for Freund’s bivariate exponential distribution[J].Applied Mathematics and Computation,2006,173:1334-1349.

[6]Saralees Nadarajah S,Ali M M.The distribution of sums, products and ratios for Lawrance and Lewis’s bivariate exponential random variables[J].Computational Statistics & Data Analysis,2006,50:3449-3463.

[7]Nadarajah S,Kotz S.Sums, products, and ratios for downton’s bivariate exponential distribution[J].Stoch Environ Res Risk Assess,2006,20:164-170.

[8]Nadarajah S,Kotz S.Reliability models based on bivariate exponential distributions[J].Probabilistic Engineering Mechanics,2006,21:338-351.

[9]Arnold B C,Strauss D J.Bivariate distributions with exponential conditionals[J].Journal of the American Statistical Association,1988,83:522-527.

[10]Marshall A W,Olkin I.A multivariate exponential distribution[J].Journal of the American Statistical Association,1967,62(1):30-44.

[11]Nadarajah S.Exact distributions of XY for some bivariate exponential distributions[J].Statistics: A Journal of Theoretical and Applied Statistics, 2006,40(4):307-324.

[12]Block, H W and Basu, A P. A continuous bivariate exponential extension[J].Journal of the American Statistical Association,1974,69:1031-1037.

[13]Nadarajah S,Gupta A K.Friday and Patil’s bivariate exponential distribution with application to drought data[J] ].Water Res. Manag. 2006,20:749-759.

[14]Friday D S,Patil G. P.A bivariate exponential model with applications to reliability and computer generation of random variables [C] . in: C.P. Tsokos, I. Shimi (Eds.), Theory and Applications of Reliability, vol. I, New York :Academic Press, 1977:527-549.

Sums, Minus, Products, Quotients, and Ratios for Weinman’s

Bivariate Exponential Distribution

LIGuo-an

(Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, China)

Abstract:Motivated by hydrological applications,the exact distribution of U=X+Y,Z=X-Y, when X and Y follow Weinman’s bivariate exponential distribution is derived in this paper;also, The exact distribution of V=XY,T=XY when X and Y follow Weinman’s bivariate exponential distribution is calculated, the results can be applied to hydrological sciences.

Key words:Weinman’s bivariate exponential distribution; sums; products; ratios; hydrological sciences

[中圖分類號]O212.4

[文獻(xiàn)標(biāo)識碼]C

[文章編號]1672-1454(2015)05-0114-06

[基金項(xiàng)目]寧波大學(xué)學(xué)科項(xiàng)目(XKL14D2037)

[收稿日期]2014-11-02

猜你喜歡
理學(xué)院寧波大學(xué)指數(shù)分布
《寧波大學(xué)學(xué)報(bào)(理工版)》征稿簡則
《寧波大學(xué)學(xué)報(bào)(教育科學(xué)版)》稿約
基于Rényi熵的q-指數(shù)分布及其可靠性分析應(yīng)用
A Personal Tragedy The professionalism of Stevens
Research on College Education Based on VR Technology
西安航空學(xué)院專業(yè)介紹
———理學(xué)院
On J-clean Rings
指數(shù)分布抽樣基本定理及在指數(shù)分布參數(shù)統(tǒng)計(jì)推斷中的應(yīng)用
利用半離散型隨機(jī)變量分析指數(shù)分布
It?積分和Str atonovich積分的比較