張瀾,趙前進(jìn)
(安徽理工大學(xué)理學(xué)院,安徽淮南232001)
預(yù)給極點(diǎn)的連分式插值
張瀾,趙前進(jìn)
(安徽理工大學(xué)理學(xué)院,安徽淮南232001)
本文給出一種預(yù)給極點(diǎn)的連分式插值算法。通過每個插值函數(shù)值乘以一個確定的數(shù),將預(yù)給極點(diǎn)的插值轉(zhuǎn)化為無預(yù)給極點(diǎn)的插值,基于逆差商構(gòu)造Thiele型連分式插值,最終通過除以一個確定的函數(shù)獲得預(yù)給極點(diǎn)的連分式插值,具有預(yù)給的極點(diǎn)且極點(diǎn)保持原有的重數(shù)。數(shù)值實(shí)例驗(yàn)證了新方法的優(yōu)點(diǎn)。
連分式;插值;預(yù)給極點(diǎn);重數(shù);逆差商
在工程實(shí)踐和科學(xué)研究領(lǐng)域存在大量有極點(diǎn)的奇異函數(shù)的計算問題,連分式插值與逼近是解決此類問題的有效途徑之一[1-6]。基于連分式的Thiele型連分式插值是一種多見的有理函數(shù)插值,Thiele型連分式容易計算,所以在實(shí)際問題中應(yīng)用十分廣泛[7-11]。朱功勤等[1]提出了一個計算預(yù)給極點(diǎn)的二元向量有理插值方法,通過設(shè)定極點(diǎn)處的向量函數(shù)值為無窮大向量以及基于向量的Samelson逆來計算預(yù)給極點(diǎn)的二元向量有理插值,但是無法區(qū)分和保持極點(diǎn)的重數(shù)。本文研究預(yù)給極點(diǎn)的連分式插值。
設(shè)點(diǎn)集X={x0,x1,…,xn}?[a,b],函數(shù)f(x)在[a,b]上有定義。X上的Thiele型連分式插值[2]為
其中φ[x0,x1,…,xk]為f(x)在x0,x1,…,xk處的k階逆差商,遞推定義如下,
設(shè)x0,x1,…,xn是在區(qū)間[a,b]上n+1個不同的插值節(jié)點(diǎn),fi=f(xi),i=0,1,…,n是被插值函數(shù)f(x)在這些節(jié)點(diǎn)處對應(yīng)的函數(shù)值。
基于逆差商,計算得滿足(3)式的Thiele型連分式插值函數(shù)r*(x),從而得到預(yù)給極點(diǎn)的連分式插值
計算得Thiele型連分式插值函數(shù)
顯然,當(dāng)r(x)的分子、分母多項式在各極點(diǎn)處的值均不等于零時,有理插值函數(shù)不僅存在r(x)預(yù)給的極點(diǎn),而且每個預(yù)給極點(diǎn)保持原有的重數(shù)。
朱功勤等[13]中提出計算預(yù)給極點(diǎn)的有理插值方法,通過設(shè)定極點(diǎn)處的函數(shù)值為無窮大,將預(yù)給極點(diǎn)結(jié)合原有的插值節(jié)點(diǎn)都作為新的插值節(jié)點(diǎn)。這里設(shè)定在x0=0和x6=1處,f(x0)和f(x6)取無窮大,那么由文獻(xiàn)[13]的方法得到Thiele型連分式插值函數(shù)
此方法雖然能夠求出插值函數(shù),但是無法區(qū)分和保持極點(diǎn)的重數(shù)。
給出不同的插值節(jié)點(diǎn)在不同的插值函數(shù)處的取值以及誤差,如表1所示。
表1 誤差分析
經(jīng)過比較發(fā)現(xiàn)│r-f│<│R-f│,驗(yàn)證了新方法的優(yōu)點(diǎn)。
也可以通過對兩種連分式插值函數(shù)的定積分結(jié)果進(jìn)行對比分析,如表2所示。
表2 定積分結(jié)果分析
上述數(shù)值例子驗(yàn)證了預(yù)給極點(diǎn)的連分式插值方法誤差較小。
通過每個插值函數(shù)值乘以一個確定的數(shù),將預(yù)給極點(diǎn)的插值轉(zhuǎn)化為常規(guī)的無預(yù)給極點(diǎn)的插值,進(jìn)一步基于逆差商來計算Thiele型連分式插值,最終再通過除以一個確定的函數(shù)獲得預(yù)給極點(diǎn)的插值函數(shù),它具有預(yù)給的極點(diǎn)且每個預(yù)給極點(diǎn)保持原有的重數(shù)。給出的數(shù)值實(shí)例說明了新方法的優(yōu)點(diǎn)。
[1]朱功勤,檀結(jié)慶,王洪燕.預(yù)給極點(diǎn)的向量有理插值及性質(zhì)[J].高等學(xué)校計算數(shù)學(xué)學(xué)報,2000,22(2):97-104.
[2]檀結(jié)慶.連分式理論及其應(yīng)用[M].北京:科學(xué)出版社,2007: 90-130.
[3]TAN J Q,FANG Y.Newton-Thiele's rational interpolants[J]. NumericalAlgorithms,2000,24(1-2):141-157.
[4]TAN JQ.Bivariate blending rational interpolants[J].Approx Theory &Its Appl,1999,15(2):74-83.
[5]ZHAO Q J,TAN JQ.Block-based Thiele-like blending rational interpolation[J].Journalof Computational&Applied Mathematics, 2006,195(1-2):312-325.
[6]LUDW,SONG ZX.Some new continued fraction estimatesof the Somos'quadratic recurrence constant[J].JournalofNumber Theory, 2015,155:36-45.
[7]LORENTZEN L.A convergence theorem for random continued fractions[J].Journalof Approximation Theory,2014,197:1-8.
[8]FANG L,WU M,SHIEH N R,etal.Random continued fractions: Lévyconstantand Chernoff-typeestimate[J].Journal of Mathematical Analysis&Applications,2015,429(1):513-531.
[9]CUYT A,VERDONK B.Multivaite rational interpolation[J]. Computing,1985,34:141-161.
[10]CUYTA,VERDONK B.Different Techniques for the Construction of Multivariate ational Interpolants[M].Nonlinear Numerical Methods and RationalApproximation:Springer Netherlands,1988: 167-190.
[11]CUYT A,VERDONK B.Multivariate reciprocal differences for branched Thiele continued fraction expansions[J].Journal of Computational&App lied Mathematics,1988,21(2):145-160.
[12]BERRUT JP.The barycentric weights of rational interpolation with prescribed poles[J].Journalof Computational&App lied Mathematics,1997,86(1):45-52.
[13]王仁宏,朱功勤.有理函數(shù)的逼近以其應(yīng)用[M].北京:科學(xué)出版社,2004:139-142.
Continued Fraction Interpolation with Prescribed Poles
ZHANG Lan,ZHAOQian-jin
(College of Science,Anhui University of Science&Technology,Huainan,Anhui 232001,China)
An algorithm is given to calculate the continued fraction interpolant with prescribed poles.By means of multiplying each interpolated value by a certain number,interpolation with prescribed poles is transformed into the one without prescribed poles.The Thiele-type continued fraction interpolant is constructed based on inverse differences.Finally,the continued fraction interpolant with prescribed poles is obtained and has been prescribed poles with intrinsic multiplicity.An example is given to show the advantage of the newmethod.
continued fraction;interpolation;prescribed poles;multiplicity;inverse differences
O241.3
A
1007-4260(2016)04-0008-03
時間:2017-1-3 17:19
http://www.cnki.net/kcms/detail/34.1150.N.20170103.1719.003.html
2016-06-15
國家自然科學(xué)基金(60973050)和安徽省教育廳自然科學(xué)基金(KJ2009A50)。
張瀾,女,河南南陽人,安徽理工大學(xué)理學(xué)院碩士研究生,研究方向?yàn)橛欣聿逯蹬c逼近,數(shù)字圖像處理。
E-mail:zhanglan0703@163.com
10.13757/j.cnki.cn34-1150/n.2016.04.003