韓艷妮,王格慧
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安710061;2.中國科學(xué)院大學(xué),北京100049)
華北農(nóng)村大氣PM2.5中水溶性物質(zhì)化學(xué)組成、吸濕性能及光學(xué)特征
韓艷妮1,2,王格慧1
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安710061;2.中國科學(xué)院大學(xué),北京100049)
2013年6月10—25日在河北保定市固城鎮(zhèn)運用大流量采樣器進行每3小時1次PM2.5樣品采集,對其進行有機碳(OC)、元素碳(EC)、水溶性有機碳(WSOC)、水溶性有機氮(WSON)、水溶性總氮(WSTN)、吸濕增長因子、吸光度以及無機離子分析,探討其濃度、組成、吸濕性能與吸光性的變化特征。結(jié)果表明:采樣期間固城鎮(zhèn)PM2.5中WSON 平均濃度為5.0 ± 4.0 μg·m-3,最高濃度達15 μg·m-3;污染期WSON為6.9 ± 3.9 μg·m-3,是清潔期的四倍。整個采樣期間WSON與、和呈強線性相關(guān)(R2>0.89),污染天陽陰離子當(dāng)量比值F= 1.01,清潔天F= 1.45,表明污染期顆粒物酸性增強有利于氣態(tài)有機胺等WSON通過酸堿中和轉(zhuǎn)移到顆粒相。不同相對濕度下水溶性組分的吸濕增長因子(Gf)測量結(jié)果顯示:[WSOC+WSON]/離子的比值越大,吸濕增長因子越小,表明與無機離子相比,水溶性有機物吸濕性能較低。固城夏季大氣PM2.5中WSOC在365 nm波長下質(zhì)量吸收效率(MAE)均值為0.52 m2·g-1,表明WSOC對PM2.5整體消光效應(yīng)具有重要貢獻。
PM2.5;水溶性離子;組成;吸濕性;質(zhì)量吸收效率MAE
大氣顆粒物通過吸收和散射太陽光降低能見度,直接影響全球能量平衡,此外,大氣顆粒物通過成為云凝結(jié)核和冰核,影響云的形成和分布,從而間接影響全球氣候。PM2.5是指大氣中粒徑小于2.5 μm的顆粒物,約占大氣總顆粒物的20%—90%。衛(wèi)星數(shù)據(jù)顯示我國京津冀地區(qū)是全球大氣PM2.5高污染地區(qū)。高濃度PM2.5導(dǎo)致灰霾事件頻發(fā),并呈現(xiàn)區(qū)域性特征。研究表明:北京周邊省份的污染物傳輸是導(dǎo)致北京灰霾的重要原因之一。然而,關(guān)于PM2.5的研究大多集中在北京地區(qū),而有關(guān)北京周邊地區(qū)尤其是農(nóng)村PM2.5的來源和形成機制研究還很缺乏。
水溶性物質(zhì)是PM2.5的重要組成部分,占其質(zhì)量的三分之一以上,可分為水溶性無機離子和水溶性有機物兩部分。由于具有親水性,PM2.5中水溶性物質(zhì)可吸收空氣中的水分,在顆粒物上形成水相,一方面使得顆粒物長大,增強其消光性能;另一方面也為各種氣態(tài)物質(zhì)在顆粒物上進一步富集和發(fā)生多相化學(xué)反應(yīng)提供了媒介。因此,充分了解水溶性物質(zhì)的理化特性對PM2.5的有效控制具有重要意義。
本研究以北京西南上風(fēng)向農(nóng)村地區(qū)夏季大氣為對象,著重探討PM2.5中水溶性物質(zhì)的組成、來源、形成機制、吸濕性能和光學(xué)特征,以期為全面理解京津冀地區(qū)灰霾成因提供科學(xué)依據(jù)。
1.1 樣品采集
應(yīng)用Anderson大流量(1.13 m3·min-1)便攜式采樣器于2013年6月10—25日在河北省保定市固城鎮(zhèn)進行采樣,每3 h采集一個樣品,共采集121個樣品。所有樣品均采用石英纖維濾膜(Whatman QM/A)收集。濾膜使用之前于馬弗爐中450℃灼燒6 h以去除可能存在的有機污染物。采樣后濾膜保存于-20℃冰箱中待分析。
1.2 有機碳OC和元素碳EC分析
OC、EC的分析采用DRI Model 2001熱光碳分析儀,在采樣濾膜上截取一定面積濾膜片,應(yīng)用IMPROVEA熱光反射原理分析(Chow et al,2004,2007)。
1.3 水溶性碳、氮和無機離子分析
所有樣品均采用TOC-L型總有機碳分析儀(日本島津公司)進行水溶性總碳(water-solution total carbon,WSTC)、水溶性有機碳(water-solution organic carbon,WSOC)、水溶性無機碳(watersolution inorganic carbon,WSIC)以及水溶性總氮(water-solution total nitrogen,WSTN)分析。無機離子采用(Dionex)DX-600型離子色譜儀進行分析。具體操作如下:剪取一定面積濾膜,加入50 mL超純水(R>18.2 MΩ),超聲萃取4次,每次15 min,隨后經(jīng)脫色搖床振蕩1 h后靜置。萃取后水溶液用一次性針管和0.45 μm水系過濾器(德國MEMBRANA公司生產(chǎn))過濾,取28 mL萃取液用于水溶性碳、氮分析,4 mL用于無機離子分析。
水溶性有機氮(WSON)的濃度通過水溶性總氮(WSTN)與水溶性無機氮(WSIN)的差值來獲得,即WSON=WSTN - WSIN。其中,WSIN由離子色譜所測的硝酸鹽()、銨鹽()二者之和來計算。公式如下:
1.4 顆粒物吸濕性能與光學(xué)特性分析
顆粒物吸濕性能分析的前處理步驟與無機離子相同,先剪取一定面積樣品濾膜,用Mill-Q超純水超聲萃取,萃取液過濾后置于氣溶膠發(fā)生器中。用美國MSP公司生產(chǎn)的吸濕性串聯(lián)差分電遷移率分析儀(HTDMA,Hygroscopicity tandem differential mobility analyzer)在相對濕度(RH)分別為20%、40%、60%、70%、75%、80%的條件下,測量氣溶膠發(fā)生器產(chǎn)生的100 nm干粒子的粒徑增長,計算其吸濕增長因子(Gf=Dwet/Ddry)(Swietlicki et al,2008)。
氣溶膠光學(xué)特性測量的前處理步驟與無機離子相同。取萃取液3 mL于比色皿中,用上海邁普達公司生產(chǎn)的型號為UV-6100S的紫外可見分光光度計掃描365 nm波長處樣品的吸光度,并計算質(zhì)量吸收效率(MAE)。質(zhì)量吸收效率是吸光性物質(zhì)的質(zhì)量濃度與吸光度之間轉(zhuǎn)換的有效參數(shù),是一個重要的光學(xué)特征量。本研究中水溶性有機碳MAE的計算公式如下(吳一凡等,2013;閆才青等,2014; Yan et al,2015):
其中,ATNλ由紫外可見分光光度計直接測量;ATN700作為吸收基線扣除;Vw為萃取液的體積,mL;Va為顆粒物樣品的采樣體積,L;l為光程,m;WSOC為水溶性有機物質(zhì)量濃度,μg·m-3;MAEλ指波長λ處水溶性有機物的單位質(zhì)量吸光效率,m2·g-1。
2.1 化學(xué)組成
2.1.1 采樣期污染狀況概述
表1 2013年夏季河北固城鎮(zhèn)PM2.5中水溶性各組分濃度(單位:μg·m-3)Tab.1 Concentrations of water-soluble species of PM2.5in Gucheng, Hebei Province during the summer of 2013 (Unit: μg·m-3)
由表1可知,2013年夏季固城鎮(zhèn)大氣中PM2.5的平均質(zhì)量濃度為135 ± 90 μg·m-3(范圍是5 —372 μg·m-3),約為國家環(huán)境空氣質(zhì)量二級標(biāo)準(zhǔn)(GB 3095—2012,75 μg·m-3)的2倍。陽離子中各離子濃度大小依次為,陰離子中各離子濃度大小依次為其中是最主要的水溶性無機離子,3小時平均質(zhì)量濃度分別為18 μg·m-3、19 μg·m-3和9.1 μg·m-3,分別占總離子的29%、30%、14%。本次研究與北京(靳軍莉等,2014;刀谞等,2015;黃玉虎等,2015;張大偉等,2015)、天津(刀谞等,2015)、保定(刀谞等,2015)、石家莊(靳軍莉等,2014;刀谞等,2015)以及同時段固城(孟昭陽等,2015)等國內(nèi)城市PM2.5以及無機離子對比見表2。
固城夏季PM2.5濃度低于同年冬季固城及石家莊的污染水平,但高于北京夏、冬兩季。與2014年夏季相比,固城和的濃度均高于北京,但略低。主要來源于養(yǎng)殖業(yè)、農(nóng)業(yè)灌溉和有機質(zhì)的降解等過程產(chǎn)生的NH3在大氣中的氣固轉(zhuǎn)化(Neff et al,2002;張婷等,2007;Zhang et al,2008),化肥的施用也會增加大氣中NH3的含量(Zhu et al,2000)。孟昭陽等(2015)研究表明,固城站NH3主要來自農(nóng)作物施肥等農(nóng)業(yè)源以及牛羊的放牧活動,由于夏季溫度高,土壤、動植物和垃圾中的NH3易于揮發(fā)至大氣中,所以的濃度較高。統(tǒng)計分析結(jié)果顯示:與和呈線性強相關(guān),相關(guān)系數(shù)R2分別為0.92和0.90,與[+]摩爾比為1.0,表明上述三種離子是以NH4HSO4和NH4NO3的形式存在于大氣中。由于Mg2+、Ca2+均為粉塵源,因此也呈現(xiàn)較強線性相關(guān)(R2= 0.68)。諸多研究表明大氣細粒子中Cl-和K+主要來源于生物質(zhì)燃燒,本次觀測期間固城鎮(zhèn)地區(qū)農(nóng)村大氣PM2.5中Cl-和K+相關(guān)系數(shù)R2= 0.44,表明生物質(zhì)燃燒對華北農(nóng)村大氣PM2.5有一定貢獻。
表2 固城與周邊城市PM2.5及、、濃度比較Tab.2 Comparison of concentration of,,and PM2.5between Gucheng and other cities
表2 固城與周邊城市PM2.5及、、濃度比較Tab.2 Comparison of concentration of,,and PM2.5between Gucheng and other cities
地點Site采樣時期TimePM2.5/(μg·m-3)/(μg·m-3)/(μg·m-3)本研究This study北京-榆垡Beijing-Yufa /(μg·m-3)參考文獻Reference固城Gucheng 2013.06.10—06.25 135 ± 9 (5.0—372) 18 ± 15 (0.8—60) 19 ± 15 (0.9—66) 9.1 ± 6.8 (0.1—28) 2012.08—2013.07143.7 ± 101.319.6 ± 16.921.1 ± 20.914.7 ± 13.4張大偉等,2015 Zhang et al,2015北京-城區(qū)Beijing-urban 2012.08—2013.07126.3 ± 86.520.7 ± 25.118.1 ± 17.712.7 ± 12.5張大偉等,2015 Zhang et al,2015固城Gucheng孟昭陽等,2015 Meng et al,2015北京Beijing 2013.06.01—08.31—11.3 ± 9.1 (1.1—9.1) 20.5 ± 13.6 (3.3—117.0) 19.8 ± 33.2 (1.1—340.6) 2013.01—2013.03Mean 69——靳軍莉等,2014 Jin et al,2014均值69固城Gucheng石家莊Shijiazhuang 2013.01—2013.03 2013.01—2013.03 Mean 149——靳軍莉等,2014 Jin et al,2014均值149 Mean 241——靳軍莉等,2014 Jin et al,2014均值241北京Beijing 2013.10—2014.0868.9 ± 10.67.9 ± 2.317.3 ± 3.29.7 ± 2.1黃玉虎等,2015 Huang et al,2015北京Beijing刀谞等,2015 Dao et al,2015石家莊Shijiazhuang刀谞等,2015 Dao et al,2015天津Tianjin 2014.11.03—11.20—13.9 (1.2—45.2) 5.39 (1.48—13.8) 5.37 (0.904—12.7) 2014.11.03—11.20—21.5 (1.86—78.5) 12.6 (2.78—43.1) 11.9 (1.39—39.4)刀谞等,2015 Dao et al,2015保定Baoding 2014.11.03—11.20—15.9 (1.17—44.6) 12.2 (1.29—37.9) 10.7 (1.52—30.3) 2014.11.03—11.20—18.2 (1.65—42.4) 10.5 (1.65—22.8) 11.8 (2.27—26.6)刀谞等,2015 Dao et al,2015
2013年夏季固城PM2.5中WSOC、WSIC濃度分別為12 μg·m-3、4.7 μg·m-3;WSON、WSIN分別為5.0 μg·m-3、11 μg·m-3。圖1是WSON與水溶性離子、、和K+的相關(guān)分析, 從中可以看出,WSON與,,這三種離子的線性關(guān)系較強(R2> 0.89),與的相關(guān)系數(shù)最高(R2= 0.98)。WSON主要包括類似的小分子量有機胺(Ge et al,2011),比如甲胺、二甲胺、乙胺、二乙胺等,它們都是揮發(fā)性堿性氣體,與氨氣理化性質(zhì)近似,易與和發(fā)生酸堿中和反應(yīng)。另外,分析還發(fā)現(xiàn)WSOC與K+有很好的相關(guān)性(R2= 0.73),進一步證明生物質(zhì)燃燒是該區(qū)域PM2.5的重要來源。
2.1.2 污染期與清潔期比較
圖2為2013年夏季固城采樣期間PM2.5質(zhì)量濃度、WSOC、WSON的時間變化序列。我國國家環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)(GB 3095—2012)規(guī)定的PM2.5質(zhì)量濃度日均值二級標(biāo)準(zhǔn)是75 μg·m-3,據(jù)此我們將采樣期間PM2.5濃度大于75 μg·m-3的時段定義為污染期,小于75 μg·m-3的時段定義為清潔期。2013年夏季固城PM2.5污染期和清潔期3 h平均質(zhì)量濃度分別為184 ± 72 μg·m-3和42 ± 21 μg·m-3,污染期PM2.5質(zhì)量濃度約為清潔期的4.4倍。
大氣顆粒物的酸堿性一般用中和度(F)來定義,它是指陽離子與陰離子的比值:若F>1,說明陽離子多于陰離子,多余的陽離子未被中和,即顆粒物呈堿性;同理,若F<1,則說明顆粒物呈酸性。
圖1 采樣期間大氣PM2.5中WSON與、、、K+相關(guān)性Fig.1 Linear fit regression of WSON with,,, and K+
圖2 水溶性有機氮、水溶性有機碳以及PM2.5時間變化序列(陰影部分為污染期,PM2.5>75 μg·m-3;其余為清潔期,PM2.5<75 μg·m-3)Fig.2 Temporal variations of WSON, WSOC and PM2.5(The time with PM2.5>75 μg·m-3is de fi ned as polluted period and marked in grey color)
陰陽離子當(dāng)量濃度根據(jù)以下公式計算:
經(jīng)分析可知,整個采樣期中和度F均值為1.17,其中清潔期為1.45,污染期為1.01。相關(guān)分析表明WSON與中和度(F)呈負相關(guān)(R2= 0.3),這是因為大氣中有機胺等氣態(tài)水溶性含氮有機物可與顆粒相中酸性物質(zhì)發(fā)生酸堿中和反應(yīng),使氣態(tài)類物質(zhì)轉(zhuǎn)移至顆粒相中,并且較高的濕度、較低的溫度和靜風(fēng)等氣象條件有利酸堿中和反應(yīng),促進氣固相之間的轉(zhuǎn)化從而生成更多的WSON(程玉婷等,2014)。圖3顯示,清潔期和污染期都是陽離子當(dāng)量濃度小于陰離子當(dāng)量濃度,且污染期陽離子當(dāng)量濃度缺失的比例更大,即污染期顆粒物酸性強于清潔期。圖4為污染期與清潔期九種離子的摩爾百分比,其中清潔期陽離子當(dāng)量濃度占總離子當(dāng)量濃度的61%,而污染期陽離子當(dāng)量濃度之占總離子當(dāng)量濃度的53%。與清潔期相比,摩爾比重上升10個百分點,、比重下降。在清潔天風(fēng)力較大,Na+、Ca2+、Mg2+三種離子的濃度較高約占到30%,污染期由于靜風(fēng)等氣象因素,粉塵粒子易于干沉降,因此Na+、Ca2+、Mg2+三種離子總和只占到10%。K+作為生物質(zhì)燃燒的標(biāo)志物,并無明顯變化。
圖3 污染期(紅點)與清潔期(綠點)陰陽離子平衡Fig.3 Correlations between cations and antions during pollution and clean periods
圖4 污染期與清潔期陰陽離子摩爾百分比Fig. 4 Molar ratios of inorganic ions during polluted and clean periods
從表1中可看出,污染時段WSOC、WSON的濃度分別為16 ± 7.4 μg·m-3和6.9 ± 4.0 μg·m-3,分別是清潔時段濃度的3.4倍和4.0倍;WSIN污染期濃度是清潔期濃度的3.6倍;WSON/WSOC的比值從污染期的0.44降到清潔天的0.38,這和程玉婷等(2014)研究結(jié)果相一致,表明污染時段酸性氣溶膠更利于WSON的生成。
2.2 吸濕性能與光學(xué)特性
根據(jù)WSOC濃度以及氣象條件,我們選取五個典型樣品(已在圖1中標(biāo)出)進行吸濕增長因子和光學(xué)特性的測定。其中,Sample 1和Sample 2是WSOC濃度最小和最大的兩個樣品;Sample 3和Sample 4,為典型清潔期樣品,Sample 5是PM2.5濃度最高的樣品(見表3)。
表3 2013年夏季固城PM2.5典型樣品的物質(zhì)組成和吸濕增長因子(Gf)Tab.3 Composition and hygroscopic growth factor (Gf) of selected PM2.5samples in Gucheng
2.2.1 吸濕性能
相同粒徑顆粒物從大氣環(huán)境中吸收水份而長大的能力取決于其化學(xué)組成。葉興南和陳建民(2013)、王宗爽等(2013)、劉新罡和張遠航(2010)、王軒等(2011)的研究表明,可溶性無機鹽對氣溶膠吸濕增長的貢獻最大,粒徑為100 nm的硫酸銨、硝酸銨和氯化鈉在各自的潮解點的吸濕增長因子分別為1.46、1.23和1.88。黃耀等(2015)的研究表明沙塵粒子由于其本身含有一定量的水溶性無機鹽,因此沙塵粒子也具有一定吸濕性。此外,有研究表明:有機物對氣溶膠吸濕增長也有一定貢獻(Svenningsson and Rissler,2006)。
圖5為上述典型樣品不同相對濕度下的吸濕增長因子變化趨勢。從中可以看出:隨著相對濕度(RH)升高,吸濕增長因子(Gf)越來越大。水溶性有機碳、水溶性有機氮之和與離子總量比值([WSOC+WSON]/[total ions])越大,增長因子越小,這與有機物吸濕性能較低相符。相對濕度(RH)為80%時,吸濕增長因子與離子總量和水溶性碳、氮的比值之間呈強相關(guān)(R2= 0.98),進一步表明:對顆粒物的吸濕性起主要作用的是無機離子。在相對濕度為80%時,Sample 1至Sample 5的吸濕增長因子分別為1.42、1.31、1.29、1.37和1.24。在這5個典型樣品中,Sample 1處于清潔期,無機離子與水溶性有機物的比值最大,吸濕增長因子也高于污染期的其他4個樣品。近幾年灰霾席卷我國眾多城市,有研究表明在灰霾期間硫酸鹽、硝酸鹽和銨鹽等無機鹽暴增,加上灰霾期濕度相對較高,促進了灰霾顆粒在高濕條件下的吸濕增長,體積的增長會加強顆粒物的消光作用,進一步降低了大氣能見度。
2.2.2 光學(xué)特性
“棕色碳”是指能夠在波長為200 —550 nm的紫外—近可見光波段吸收光的有機碳,被學(xué)者廣泛研究的多為小于400 nm波段(Zhang et al,2011;Hoffer et al,2006;Liu et al,2013),為排除硝酸鹽等其他吸光性物質(zhì)的干擾,較多選擇λ= 365 nm處的光吸收作為棕色碳的表征(閆才青等,2014)。運用1.4中公式,經(jīng)計算,本研究觀測期間5個典型樣品的WSOC在365 nm下的MAE值分別為0.55 m2·g-1、0.61 m2·g-1、0.50 m2·g-1、0.41 m2·g-1和0.54 m2·g-1。為進一步了解固城采樣點PM2.5的吸光特性,表4比較了國內(nèi)外不同地區(qū)大氣PM2.5的MAE 值。
圖5 固城典型樣品吸濕性Fig.5 Hygroscopic growth factor (Gf) of PM2.5aerosols collected from Gucheng, a rural site near Beijing
通過比較,我們發(fā)現(xiàn):就季節(jié)與地區(qū)來說,MAE普遍表現(xiàn)出冬季大于夏季,城市MAE值大于鄉(xiāng)村(見表4)。此外,從表4還可以看出:北京和固城水溶性棕色碳的吸光能力強于美國、韓國的城市和鄉(xiāng)村。例如:本研究中固城WSOC的MAE值0.52 ± 0.06 m2·g-1大于同期美國鄉(xiāng)村所測得MAE值,小于2009年夏季在北京所測的MAE值,更小于北京冬季觀測到的MAE值,這可能與冬季化石燃料燃燒排放增強相關(guān),因為化石燃料源產(chǎn)生的WSOC中富含吸光性不飽和C = C鍵化合物。Cheng et al(2011)與Du et al(2014)研究表明柴油車排放的棕色碳的MAE大于來自生物質(zhì)燃燒棕碳的MAE值,Zhang et al(2011)研究表明人為源棕色碳的吸光能力強于天然源棕色碳。上述不同地區(qū)和季節(jié)MAE比較,表明:我國城市大氣中富含吸光性棕碳、特別是冬季取暖燃煤產(chǎn)生的棕碳相對增加導(dǎo)致城市冬季MAE最高。
(1) 2013年夏季固城鎮(zhèn)大氣中PM2.5的3 h濃度水平在5—372 μg·m-3,平均為135 ± 90 μg·m-3,約為國家環(huán)境空氣質(zhì)量二級標(biāo)準(zhǔn)(GB 3095—2012,75 μg·m-3)的2倍;、和是最主要的水溶性無機離子,三者占總離子濃度的百分比依次為29%、30%、14%,共計約74%;水溶性有機物約占PM2.5質(zhì)量濃度的20%。
表4 不同研究中獲得的MAE值Tab.4 Comparison of MAE measured at Gucheng site with those at other sites around the world
(3) 固城典型樣品的吸濕特性和光學(xué)特性分析表明:污染期PM2.5中無機離子含量顯著增加,隨著濕度增加,灰霾粒子吸濕增長,消光能力增強,進一步降低了大氣能見度。
(4) 固城PM2.5中WSOC的光吸收效率均值為0.52 m2·g-1,高于美國、韓國等地區(qū)。與國內(nèi)外對比發(fā)現(xiàn):WSOC的光吸收效率普遍表現(xiàn)出:城市大于鄉(xiāng)村,冬季高于夏季。這是因為與自然源WSOC 相比,人為源產(chǎn)生的WSOC中富含吸光性不飽和鍵化合物。
程玉婷, 王格慧, 孫 濤, 等. 2014. 西安冬季非灰霾天與灰霾天PM2.5中水溶性有機氮污染特征比較[J].環(huán)境科學(xué), 35(7): 2468 – 2476. [Cheng Y T, Wang G H, Sun T, et al. 2014. Characteristics of water-soluble organic nitrogen of PM2.5in Xi’an during wintertime non-haze and haze periods [J].Environmental Science, 35(7): 2468-2476.]
刀 谞, 朱紅霞, 譚 麗, 等. 2015. 2014年APEC期間北京及周邊重點城市PM2.5中水溶性離子變化特征[J].環(huán)境化學(xué), 34(8): 1389 – 1395. [Dao X, Zhu H X, Tan L, et al. 2015. Variaations of PM2.5and its water soluble ions in Beijing and surrounding cities during the APEC in 2014 [J].Environmental Chemistry, 34(8): 1389 – 1395.]
黃 耀, 王格慧, 韓艷妮, 等. 2015. 沙塵暴期西安大氣顆粒物化學(xué)組成及吸濕性能小時變化特征[J].地球環(huán)境學(xué)報, 6(1): 44 – 53. [Huang Y, Wang G H, Han Y N, et al. 2015. Hourly characteristic of chemical composition and hygroscopic property of TSP in Xi’an during dust storm [J].Journal of Earth Environment, 6(1): 44 – 53.]
黃玉虎, 李 媚, 曲 松, 等. 2015. 北京城區(qū)PM2.5不同組分構(gòu)成特征及其對大氣消光系數(shù)的貢獻[J].環(huán)境科學(xué)研究, 28(8): 1193 – 1199. [Huang Y H, Li M, Qu S, et al. 2015. Characteristics of different components of PM2.5and contribution to ambient light extinction coef fi cient in Beijing [J].Research of Environmental Sciences, 28(8): 1193 – 1199.]
靳軍莉, 顏 鵬, 馬志強, 等. 2014. 北京及周邊地區(qū)2013年1—3月PM2.5變化特征[J].應(yīng)用氣象學(xué)報, 25(6): 690-700. [Jin J L, Yan P, Ma Z Q, et al. 2014. Characteristics of PM2.5in Beijing and Surrounding Areas from January to March in 2013 [J].Journal of Applied Meteorological Science, 25(6): 690 – 700.]
劉新罡, 張遠航. 2010. 大氣氣溶膠吸濕性質(zhì)國內(nèi)外研究進展[J].氣候與環(huán)境研究, 15(6): 808 – 816. [Liu X G, Zhang Y H. 2010. Advances in research on aerosol hygroscopic properties at home and abroad [J].Climatic and Environmental Research, 15(6): 808 – 816.]
孟昭陽, 謝育林, 賈詩卉, 等. 2015. 2013年夏季華北鄉(xiāng)村站點固城大氣氨變化特征[J].應(yīng)用氣象學(xué)報, 26(2): 141 – 150. [Meng Z Y, Xie Y L, Jia S H, et al. 2015. Characteristics of atmospheric ammonia at Gucheng, a rural site on North China Plain in summer of 2013 [J].Journal of Applied Meteorological Science, 28(8): 1186 – 1192.]
王 軒, 陳建華, 陳建明, 等. 2011. 實驗室發(fā)生納米氣溶膠吸濕性表征[J].環(huán)境科學(xué)研究, 24(6): 621 – 631. [Wang X, Chen J H, Chen J M, et al. 2011. Characterization of hygroscopic properties of laboratory-generated nanometer aerosol [J].Research of Environmental Science, 24(6): 621 – 631.]
王宗爽, 付 曉, 王占山, 等. 2013. 大氣顆粒物吸濕性研究[J].環(huán)境科學(xué)研究, 26(4): 341 – 349. [Wang Z S, Fu X, Wang Z S, et al. 2013. Research progress of the hygroscopicity of atmospheric particles [J].Research of Environmental Sciences, 26(4): 341 – 349.]
吳一凡, 黃曉峰, 蘭紫鵑, 等. 2013. PM2.5中水溶性有機物吸光特性的模擬研究[J].中國環(huán)境科學(xué), 33(10): 1736 – 1740. [Wu Y F, Huang X F, Lan Z J, et al. 2013. Simulation study of light absorption characteristics of water-soluble organic matter in PM2.5[J].China Environmental Science, 33(10): 1736 – 1740.]
閆才青, 鄭 玫, 張遠航. 2014. 大氣棕色碳的研究進展與方向[J].環(huán)境科學(xué), 35(11): 4404 – 4414. [Yan C Q, Zheng M, Zhang Y H. 2014. Research progress and direction of atmospheric brown carbon [J].Environmental Science, 35(11): 4404 – 4414.]
葉興南, 陳建民. 2013. 灰霾與顆粒物吸濕增長[J].自然雜志, 35(5): 337 – 341. [Ye X N, Chen J M. 2013. Haze and hygroscopic growth [J].Chinese Journal of Nature, 35(5): 337 – 341.]
張 婷, 曹軍冀, 吳 楓, 等. 2007. 西安春夏季氣體及PM2.5中水溶性組分的污染特征[J].中國科學(xué)院研究生院學(xué)報, 24(5): 641 – 647. [Zhang T, Cao J J, Wu F, et al. 2007. Characterization of gases and water soluble ion of PM2.5during spring and summer of 2006 in Xi'an [J].Journal of the Graduate University of the Chinese Academy of Sciences, 24(5): 641 – 647.]
張大偉, 王小菊, 劉保獻, 等. 2015. 北京城區(qū)大氣PM2.5主要化學(xué)組分以及污染特征[J].環(huán)境科學(xué)研究, 28(8): 1186 – 1192. [Zhang D W, Wang X J, Liu B X, et al. 2015. Characteristics of PM2.5and its chemical composition in the urban area of Beijing [J].Research of Environmental Sciences, 28(8): 1186 – 1192.]
Cao J J, Wu F, Chow J C, et al. 2005. Characterization and source apportionment of atmospheric organic and element carbon during fall and winter of 2003 in Xi’an, China [J].Atmospheric Chemistry and Physics, 5: 3127 – 3137.
Cheng Y, He K B, Zheng M, et al. 2011. Mass absorption ef fi ciency of elemental carbon and water-soluble organic carbon in Beijing, China [J].Atmospheric Chemistry and Physics, 11: 11497 – 11510.
Chow J C, Watson J G, Chen L W A, et al. 2004. Equivalence of element carbon by thermal/optical reflectance and transmittance with different temperature protocols [J].Environmental Science & Technology, 38(16): 4414 – 4422.
Chow J C, Watson J G, Chen L W A, et al. 2007. The IMPROVE-A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database [J].Journal of the Air & Waste Management Association, 57(9): 1014 – 1023.
Clarke A, McNaughton C, Kapustin V, et al. 2007. Biomass burning and pollution aerosol over North America:Organic components and their influence on spectral optical properties and humidification response [J].Journal of Geophysical Research, 112, D12818, doi: 10.1029/2006JD007777.
Du Z Y, He K B, Cheng Y, et al. 2014. A yearlong study of watersoluble organic carbon in Beijing Ⅱ: Light absorption properties [J].Atmospheric Environment, 89: 235 – 241.
Ge X L, Wexler A S, Clegg S L. 2011. Atmospheric amines—PartⅠ. A review [J].Atmospheric Environment, 45: 524 – 546.
Hoffer A, Gelencser A, Guyon P, et al. 2006. Optical properties of humic-like substance(HULIS) in biomass-burning aerosols [J].Atmospheric Chemistry and Physics, 6(11): 3563 – 3570.
Kirillova E N, Andersson A, Han J, et al. 2014. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China [J].Atmospheric Chemistry and Physics, 14(3): 1413 – 1422.
Liu J, Bergin M, Guo H, et al. 2013. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption [J].Atmospheric Chemistry and Physics, 13(24): 12389 – 12404.
Neff J C, Holland E A, Dentener F J, et al. 2002. The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle [J].Biogeochemistry, 57(1): 99 – 136.
Svenningsson B, Rissler J. 2006. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance [J].Atmospheric Chemistry and Physics, 6: 1937 – 1952.
Swietlicki E, Hansson H C, Svenningsson B, et al. 2008. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments-a review [J].Tellus, 60B: 432 – 469
Turpin B J, Lim H J. 2001. Species contributions to PM2.5mass concentrations: revisiting common assumptions for estimating organic mass [J].Aerosol Science and Technology, 35: 602 – 610.
Yan C Q, Zheng M, Sullivan A P, et al. 2015. Chemical characteristics and light-absorbing property of watersoluble organic carbon in Beijing: Biomass buring contributions [J].Atmospheric Environment, 121: 4 – 12.
Zhang X L, Lin Y H, Surratt J D, et al. 2011. Light-absorbing soluble organic aerosol in Los Atlanta: A Contrast in secondary organic aerosol [J].Geophysical Research Letters, 38, L21810, doi: 10.1029/2011GL049385.
Zhang Y, Zheng L, Liu X, et al. 2008. Evidence for organic N deposition and its anthropogenic sources in China [J].Atmospheric Environment, 42(5): 1035 – 1041.
Zhu T, Pattey E, Desjardins R L. 2000. Relaxed eddyaccumulation technique for measuring ammonia volatilization [J].Environmental Science & Technology, 34(1): 199 – 203.
Composition, hygroscopicity and light absorption of water-soluble fraction of PM2.5at a rural site near Beijing
HAN Yanni1,2, WANG Gehui1
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
Background, aim, and scopeHaze episodes have frequently occurred in North China Plain (NCP) due to rapid increases in vehicle numbers and fossil fuel consumption. Beijing is the largest megacity in NCP and has experienced severe air pollution. Previous studies indicate that the transportation of fi ne particulates from NCP is an important source to haze formation in Beijing. Many researches about PM2.5have focused on Beijing urban aerosols, while the information about the physical-chemical properties of aerosols from Beijing surrounding regions especially the rural areas is very limited. Hygroscopicity is one of the key factors affecting the behavior of an aerosol in the atmosphere, because by water vapor uptake aerosol may signi fi cantly alter its physical-chemical properties such as light scattering and absorbing, transportation, gasparticle phase partitioning and aqueous reaction. This paper aims to investigate the chemical composition,hygroscopic growth factor and optical absorption ef fi ciency of fi ne particles at Gucheng, a rural site with a distance of about 100 km southwest to Beijing.Materials and methods121 PM2.5samples were collected during June 10th—25th 2013 at Gucheng, Hebei Province by using high-volume sampler (1.13 m3·min-1) with a 3 h interval. The samples were measured for element carbon (EC), organic carbon (OC), watersoluble organic carbon (WSOC) and water-soluble organic nitrogen (WSON), inorganic ions, hygroscopic growth factor (Gf) and optical mass absorption efficiency (MAE) at 365 nm light wavelength.ResultsDuring sampling period PM2.5ranged from 5.0 μg·m-3to 372 μg·m-3with an average of 135 μg·m-3, which was about two times the national air quality secondary standard (GB 3095—2012, 75 μg·m-3). During the sampling period,andwere the dominant inorganic ions, accounting for 29%, 30%, 14% of the total inorganic ions, respectively. The average concentration of WSON was 5.0 ± 4.0 μg·m-3with a maximum of 15 μg·m-3during the whole campaign and four times higher in polluted periods (6.9 ± 3.9 μg·m-3) than in the clean periods (1.7 ± 0.9 μg·m-3). In the whole sampling period WSON well correlated with,and(R2> 0.89), and enahced with an increase in the equivalent ratio of cations to anions from 1.01 in the polluted periods to 1.45 in the clean periods, suggesting that acidity of PM2.5was favorable for the gas-to-particle partitioning of WSON species such as low molecular weight amines. Hygroscopic growth factors (Gf) of the water-soluble fraction of the PM2.5samples were measured by hygroscopic tandem differential mobility analyzer (HTDMA). The results showed thatGfnegatively correlated with the mass ratio of (WSOC + WSON) to (inorganic ions), indicating that water-soluble organic compounds were less hygroscopic in comparison with inorganic ions. Mass absorption ef fi ciency (MAE) of WSOC at the Gucheng site was 0.52 m2·g-1, higher than that in the United States, South Korea and other regions.DiscussionBy comparison the concentrations of,,, and PM2.5from the Gucheng site with those from other cities, we found that Cl-and K+at Gucheng site mainly derived from biomass burning. A comparison of MAE values measured in this study with those in the literature suggests that the values of MAE of WSOC are generally greater in cities than in rural regions and higher in winter than summer. Moreover, the Gucheng MAE values, together with others reported, showed that MAE was higher for Chinese aerosols those for any other countries, suggesting the importance of anthropogenic WSOC in China.ConclusionsHigh-volume PM2.5samples were collected during June 10th—25th 2013 at Gucheng, a rural site near Beijing, and determined for chemical composition including inorganic ions, organic carbon, elemental carbon, water-soluble organic carbon and water-soluble organic nitrogen, hygroscopic growth factor, and light absorption to investigate the sources, formation mechanisms, hygroscopicity and optical properties of PM2.5in NCP. During the whole period,andwere dominant inorganic ions, and acidity of aerosols was stronger in pollution period than clean period which was favorable for the gas-to-particle partitioning of low molecular weight amines. Hygroscopicity analysis showed thatGfof the samples was largely determined by its water-soluble inorganic fraction. MAE was higher in Gucheng than in other cities because of the consumption of coal in winter.Recommendationsand perspectivesIn current work sources, hygroscopic and optical properties of PM2.5were investigated in rural area near Beijing. Water-soluble organic compounds constitute an important fraction of the rural fine particles, and have been found to be light absorbing in UV-visible wavelength range. Details in molecular compositions of the water-soluble organic compounds are needed for explaining the haze formation in China.
PM2.5; water-soluble matter; composition; hygroscopicity; mass absorption ef fi ciency (MAE)
WANG Gehui, E-mail: wanggh@ieecas.cn
10.7515/JEE201601006
2015-11-23;錄用日期:2016-01-21
Received Date:2015-11-23;Accepted Date:2016-01-21
國家杰出青年科學(xué)基金項目(41325014)
Foundation Item:National Science Fund for Distinguished Young Scholars (41325014)
王格慧,E-mail: wanggh@ieecas.cn