占長林,萬的軍,王 平,韓永明,張家泉,劉紅霞,肖文勝,劉先利
(1.湖北理工學(xué)院 環(huán)境科學(xué)與工程學(xué)院,礦區(qū)環(huán)境污染控制與修復(fù)湖北省重點(diǎn)實(shí)驗(yàn)室,黃石 435003;2.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061;3.中國地質(zhì)科學(xué)院 水文地質(zhì)環(huán)境地質(zhì)研究所,石家莊 050061)
華中地區(qū)某縣農(nóng)田土壤黑碳分布特征及來源解析
占長林1,2,萬的軍3,王 平2,韓永明2,張家泉1,劉紅霞1,肖文勝1,劉先利1
(1.湖北理工學(xué)院 環(huán)境科學(xué)與工程學(xué)院,礦區(qū)環(huán)境污染控制與修復(fù)湖北省重點(diǎn)實(shí)驗(yàn)室,黃石 435003;2.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061;3.中國地質(zhì)科學(xué)院 水文地質(zhì)環(huán)境地質(zhì)研究所,石家莊 050061)
以華中地區(qū)陽新縣農(nóng)田土壤為研究對(duì)象,采用熱光反射法研究了不同類型農(nóng)田土壤(水稻土、紅壤、潮土)中黑碳、焦炭、煙炱含量的變化特征,并探討了影響黑碳、焦炭和煙炱分布的影響因素以及黑碳的可能來源。結(jié)果表明,農(nóng)田土壤中黑碳、焦炭和煙炱含量變幅較大,分別為0.17—3.18 g·kg-1,0.03—2.37 g·kg-1和0.09—1.50 g·kg-1,平均值分別為0.85 g·kg-1,0.45 g·kg-1和0.40 g·kg-1。不同類型土壤中黑碳、焦炭、煙炱含量的大小順序是:水稻土>紅壤>潮土。黑碳占有機(jī)碳的比例變化范圍在1.45%—26.43%,平均值為6.76%。相關(guān)分析結(jié)果表明土壤黑碳含量與有機(jī)碳、焦炭和煙炱含量之間都呈顯著的正相關(guān)關(guān)系。根據(jù)焦炭/煙炱比值分析結(jié)果推測農(nóng)田土壤中的黑碳主要來源于化石燃料燃燒,如工業(yè)燃煤及機(jī)動(dòng)車尾氣排放等。
農(nóng)田土壤;黑碳;焦炭;煙炱;有機(jī)碳;來源
黑碳是化石燃料和生物質(zhì)不完全燃燒的產(chǎn)物,是含碳物質(zhì)的連續(xù)統(tǒng)一體,廣泛存在于大氣、土壤、水體(河流、湖泊、海洋)、沉積物及冰雪等地球環(huán)境系統(tǒng)中(Kuhlbusch et al,1998;Masiello,2004)。一般來說,燃燒生成的黑碳大部分就近沉降于地表,還有一部分微納米級(jí)的黑碳細(xì)顆粒以氣溶膠的形式進(jìn)入大氣循環(huán),并對(duì)全球的氣候產(chǎn)生重要的影響(Ramanathan and Carmichael,2008)。由于黑碳特殊的化學(xué)結(jié)構(gòu),具有較強(qiáng)的化學(xué)和生物惰性,因此被認(rèn)為是全球緩慢碳循環(huán)中的重要碳庫,對(duì)全球碳的生物地球化學(xué)循環(huán)起到極其重要的作用(Schmidt and Noack,2000)。作為土壤中有機(jī)碳的重要組成部分,黑碳在土壤有機(jī)碳中所占的比重可以達(dá)到45%(Schmidt et al,1999)。最新的一項(xiàng)研究發(fā)現(xiàn),英國東北部工業(yè)城市地區(qū)土壤中黑碳占有機(jī)碳的比例甚至達(dá)到66.9%(Edmondson et al,2015)。因黑碳具有較高的比表面積和多種官能團(tuán),它具有較強(qiáng)的保肥能力和吸附性能,對(duì)土壤環(huán)境中污染物的遷移轉(zhuǎn)化產(chǎn)生一定影響,而且能夠提高土地生產(chǎn)力(Shrestha et al,2010)。此外,由于黑碳的穩(wěn)定性和漫長的降解過程使得它可以將從生物-大氣碳循環(huán)中捕獲的碳貯存起來,起到了增匯減排的作用,而且能減緩溫室效應(yīng)(Lehmann,2007)。
根據(jù)黑碳的形成條件,一般將其分為兩類:焦炭和煙炱。焦炭是植物組織不完全燃燒的殘留物,保留了原始燃料的結(jié)構(gòu)特征;而煙炱是高溫燃燒條件下生成氣體的濃縮產(chǎn)物。兩者物理化學(xué)性質(zhì)存在較大的差異,導(dǎo)致其遷移、傳輸、沉降模式和環(huán)境行為的不同。因此區(qū)分不同類型的黑碳對(duì)于研究土壤黑碳有十分重要的意義。然而,由于當(dāng)前國際上還沒有統(tǒng)一的標(biāo)準(zhǔn)黑碳測量分析方法,而且不同測量方法都只是對(duì)黑碳連續(xù)統(tǒng)一體中的某一個(gè)組分或者是全部組分進(jìn)行測量(Schmidt et al,2001),無法將不同組分的黑碳進(jìn)行區(qū)分,給黑碳的研究造成一定的困難。近年來,有研究報(bào)道熱光反射法能夠很好地對(duì)焦炭和煙炱組分進(jìn)行區(qū)分(Han et al,2007a),而且被成功應(yīng)用于土壤和沉積物黑碳的研究(Zhan et al,2013,2015;Han et al,2015)。
目前我國關(guān)于土壤黑碳的研究主要集中于城市土壤(He and Zhang,2009;Liu et al,2011;徐福銀等,2014)和林地土壤(劉兆云和章明奎,2009;尹云峰等,2009;王曦,2012),而對(duì)于農(nóng)田土壤的關(guān)注相對(duì)較少(戴婷等,2009)。絕大多數(shù)研究都只是將黑碳作為一個(gè)整體進(jìn)行研究,而很少有研究對(duì)土壤中不同類型的黑碳進(jìn)行區(qū)分,來探討它們的環(huán)境行為及可能來源。本文以湖北省東南部某縣農(nóng)田土壤為研究對(duì)象,研究了不同類型農(nóng)田土壤中黑碳、焦炭、煙炱含量的變化特征,并探討了影響黑碳、焦炭和煙炱分布的影響因素以及黑碳的可能來源。
1.1 研究區(qū)地理概況
研究區(qū)域選擇中國著名的“苧麻之鄉(xiāng)”—陽新縣。該縣地處湖北省東南部,長江中游南岸,幕阜山北麓,隸屬于黃石市。地理位置為東經(jīng)114°43'—115°30′,北緯29°30′—30°09′,東西長76.5 km,南北距71.5 km。境內(nèi)中小湖泊較多,被譽(yù)為“百湖之縣”。陽新縣地處中緯度,屬亞熱帶季風(fēng)性氣候,年均氣溫16.8℃,年均降雨量1389.6 mm,年均日照時(shí)數(shù)1923 h。該縣富藏金、銀、銅、鋅等金屬礦藏,煤炭、石灰石、大理石、膨潤土等外生礦儲(chǔ)量亦豐,具有礦種多、分布廣、儲(chǔ)量大等特點(diǎn)。陽新縣主要土壤類型有紅壤土、石灰土、紫色土、潮土、沼澤土、水稻土6個(gè)土類。主要種植農(nóng)作物有水稻、小麥、紅薯、大豆、棉花、油菜、芝麻、花生、苧麻等。
1.2 樣品的采集與處理
根據(jù)陽新縣農(nóng)田土壤類型分布及地形特點(diǎn)共采集46個(gè)土壤表層(0—20 cm)樣品,其中紅壤土、水稻土和潮土分別采集18個(gè)、23個(gè)和5個(gè)。采樣時(shí)利用手持GPS定位系統(tǒng)記錄每個(gè)采樣點(diǎn)的經(jīng)緯度坐標(biāo),并做好野外采樣記錄。采樣點(diǎn)分布見圖1。
每一樣點(diǎn)的土壤樣品采集時(shí)用四分法進(jìn)行混合制樣,保證每個(gè)樣品采集1 kg左右,裝入聚乙烯塑料袋密封保存,并貼好標(biāo)簽。同時(shí)用環(huán)刀法采集容重樣品。采集好的土壤樣品帶回實(shí)驗(yàn)室后經(jīng)自然風(fēng)干,過2 mm尼龍篩去除植物根系和礫石等雜物,研磨并取適量風(fēng)干后的土壤樣品過0.15 mm篩后備用。
1.3 實(shí)驗(yàn)方法
土壤樣品總有機(jī)碳含量測定采用《土壤有機(jī)碳的測定:重鉻酸鉀氧化—分光光度法》(HJ 615—2011)。
黑碳含量測定采用熱光反射法(Han et al,2007b),具體操作步驟如下:(1)取經(jīng)研磨過200目篩(<60 μm)的土壤樣品約0.5 g樣品,放入聚乙烯試管中,再加入15 mL 2 mol·L-1的鹽酸溶液,以去除樣品中的碳酸鹽以及金屬元素;(2)向試管中加入15 mL 6 mol·L-1的濃鹽酸和48%的氫氟酸(VHCl:VHF= 1:2)混合溶液,以去除樣品中的硅酸鹽以及未溶解的金屬鹽類;(3)向試管中加入10 mL 4 mol·L-1的鹽酸,以去除殘留樣品中第二階段產(chǎn)生的氟化物(如CaF2等)。每次加酸溶液進(jìn)行處理后,要在室溫下靜置24 h,讓充分反應(yīng)完全。同時(shí)用去離子水將樣品漂洗、離心3—4次,使得懸浮液的pH>6,并將懸浮液倒掉。最后使用約400 mL去離子水將試管中的殘留物過濾到直徑為47 mm的石英濾膜(使用前在780℃下焙燒3 h)上。將濾膜樣品于40℃烘干后保存在冰箱中(1—4℃),留待后面的黑碳含量分析測定。
圖1 采樣點(diǎn)分布圖Fig.1 Location of the sampling sites
采用IMPROVE_A協(xié)議,使用DRI Model 2001碳分析儀進(jìn)行黑碳含量的分析。由于黑碳不具有揮發(fā)性,在純He通入的情況下,溫度階段性上升到140℃,280℃,480℃,580℃,生成4個(gè)有機(jī)碳組分(OC1,OC2,OC3,OC4);然后通入2% O2/ 98% He的混合氣體,溫度階段性上升到580℃,740℃,840℃,生成3個(gè)元素碳組分(EC1,EC2,EC3)。在純He的情況下加熱溫度,伴隨著有機(jī)物的氧化和碳化,反射光不斷降低,而當(dāng)O2通入的時(shí)候,隨著碳的氧化,反射光不斷增強(qiáng),當(dāng)反射光回到起始值時(shí),將這一點(diǎn)定義為有機(jī)碳和黑碳的分界點(diǎn),定義EC1的前面這一部分為熱解碳(POC)。定義有機(jī)碳為OC1+OC2+OC3+OC4+POC,總的黑碳(BC)為EC1+EC2+EC3-POC(Cao et al,2003)。另外,根據(jù)Han et al(2007a)定義,焦炭(char)為EC1-POC,煙炱(soot)為EC2+EC3。所有樣品黑碳含量測定均在中國科學(xué)院地球環(huán)境研究所粉塵與環(huán)境研究室完成。樣品分析過程中的質(zhì)量保證/質(zhì)量控制詳見Cao et al(2003)。
1.4 數(shù)據(jù)統(tǒng)計(jì)分析
實(shí)驗(yàn)數(shù)據(jù)采用Origin 8.5以及SPSS 19.0軟件進(jìn)行分析。
2.1 土壤有機(jī)碳、黑碳、焦炭和煙炱含量變化特征
由表1可以看出,陽新縣農(nóng)田土壤總有機(jī)碳含量變化范圍是4.31— 32.87 g · kg-1,平均值為14.27 g · kg-1,變異系數(shù)為53.09%,屬中等變異。不同類型土壤總有機(jī)碳含量的大小順序是:水稻土>紅壤>潮土。陽新縣農(nóng)田土壤總有機(jī)碳平均含量與我國水稻土相當(dāng)(13.83 g · kg-1)(Pan at al,2004),遠(yuǎn)低于青海湖流域土壤(31.64 g · kg-1)(胡衛(wèi)國等,2010),但高于我國黃土高原土壤(4.59 g · kg-1)(涂夏明等,2010)。農(nóng)田土壤總有機(jī)碳含量低一方面與長期耕作有關(guān),因?yàn)楦鞯臋C(jī)械作用會(huì)導(dǎo)致土壤呼吸作用加強(qiáng),有機(jī)碳分解加快(West and Post,2002;Baker et al,2007);另一方面,陽新縣屬亞熱帶季風(fēng)性氣候,一般認(rèn)為較為濕熱的環(huán)境條件會(huì)使得土壤中有機(jī)碳的分解速率加快(張國盛等,2005)。
黑碳、焦炭和煙炱含量分別為0.17— 3.18 g · kg-1,0.03—2.37 g·kg-1和0.09—1.50 g·kg-1(表1)。其中水稻土黑碳含量最高,其次為紅壤,潮土最低。不同類型土壤焦炭和煙炱含量也呈現(xiàn)相同的變化趨勢,但焦炭含量一般高于煙炱含量。黑碳與煙炱含量的變異系數(shù)在10%—100%,屬中等變異;而焦炭含量的變異系數(shù)大于100%,屬強(qiáng)變異性。從表2中對(duì)比發(fā)現(xiàn),本研究中的農(nóng)田土壤黑碳含量要低于世界其他城市地區(qū)背景土壤。例如,陽新農(nóng)田土壤黑碳含量低于歐洲黑鈣土(Schmidt et al,1999)、美國農(nóng)田土壤(Skjemstad et al,2002)和西伯利亞森林土(Czimczik et al,2003)。與國內(nèi)一些城市土壤黑碳研究對(duì)比,陽新農(nóng)田土壤黑碳含量低于南京(He and Zhang,2009)、北京(Liu et al,2011)、上海(徐福銀等,2014)以及西安(Han et al,2009)等城市土壤,但是高于黃土高原表土(Zhan et al,2013)。目前,由于國際上還沒有統(tǒng)一的土壤黑碳分離和分析方法,同一樣品采用不同的測定方法得到的黑碳濃度可能相差1— 2個(gè)數(shù)量級(jí)(Schmidt et al,2001)。因此,如果測量方法不同,不同的研究結(jié)果之間則很難進(jìn)行比較。造成不同地區(qū)土壤黑碳含量差異的主要原因是來源貢獻(xiàn)不同,森林、草原土壤中黑碳主要來源于生物質(zhì)燃燒,即自然野火。一些研究發(fā)現(xiàn)頻發(fā)的野火會(huì)導(dǎo)致土壤中黑碳的繼續(xù)氧化,使得黑碳含量降低(Czimczik et al,2005)。而城市地區(qū)土壤黑碳含量受人類活動(dòng)干擾較大,如工業(yè)活動(dòng)、機(jī)動(dòng)車尾氣排放、居民燃煤及薪柴燃燒、垃圾焚燒等。
表1 不同類型土壤中有機(jī)碳、黑碳、焦炭和煙炱含量統(tǒng)計(jì)Tab.1 Statistical analysis of total organic carbon (TOC), black carbon (BC), char and soot concentrations in different types of soils
黑碳占有機(jī)碳的比例變化范圍在1.45%—26.43%,平均值為6.76%。這一研究結(jié)果低于浙北平原農(nóng)業(yè)土壤(戴婷等,2009)和美國農(nóng)田土壤(Skjemstad et al,2002)。不同類型土壤中,潮土黑碳/有機(jī)碳比值最高,其次是紅壤,水稻土最低。一方面,這可能與旱地土壤施用較多的農(nóng)家肥帶入黑碳物質(zhì)較多有關(guān);另一方面,土壤的傳統(tǒng)翻耕方式以及作物輪作耕作制度可能導(dǎo)致土壤中有機(jī)碳的礦化分解加快(Six et al,2002),從而影響黑碳/有機(jī)碳的比值。而水稻土因?yàn)殚L期處于水淹的環(huán)境,土壤中有機(jī)碳的分解較慢,因此導(dǎo)致黑碳/有機(jī)碳比值較低。
表2 與世界其他地區(qū)不同土壤中黑碳含量的比較Tab.2 Comparison of black carbon concentrations in other soils from the world with this study
焦炭/煙炱比值變化范圍為0.02—3.44,平均值為1.18。三種不同類型土壤焦炭/煙炱比值的大小順序?yàn)椋杭t壤>潮土>水稻土。反映出不同類型土壤黑碳的來源可能有所不同。農(nóng)田土壤中焦炭和煙炱來源較為復(fù)雜,除了田間秸稈焚燒的貢獻(xiàn)外,還可能來自于工業(yè)燃煤、機(jī)動(dòng)車尾氣等的排放。因此,不同地區(qū)土壤中焦炭和煙炱含量受污染排放源的影響較大。這可能也是導(dǎo)致不同類型土壤中焦炭/煙炱比值存在差異的主要原因。
2.2 有機(jī)碳、黑碳、焦炭、煙炱含量之間相關(guān)性分析
由圖2相關(guān)性分析結(jié)果表明,農(nóng)田土壤中黑碳與焦炭含量(r= 0.92,p< 0.01)、黑碳與煙炱含量(r= 0.75,p< 0.01)都呈顯著正相關(guān),說明焦炭與煙炱是農(nóng)田土壤黑碳的重要組成部分。此外,黑碳與黑碳/有機(jī)碳比值(r= 0.53,p<0.01)、黑碳與有機(jī)碳含量之間(r= 0.44,p< 0.01)呈顯著正相關(guān),說明農(nóng)田土壤黑碳含量的增加有助于有機(jī)碳的積累,也間接地說明黑碳在有機(jī)碳積累過程中發(fā)揮著重要的作用。一方面由于黑碳類物質(zhì)的存在,其特殊的化學(xué)和生物惰性使得土壤中的有機(jī)碳得以保存下來;另一方面,由于黑碳的存在,吸附和固定了有機(jī)物質(zhì)、粘土礦物,并起到穩(wěn)定和固持有機(jī)質(zhì)的作用(Czimczik and Masiello,2007)。這與其他很多土壤和道路塵研究結(jié)果相一致。有些學(xué)者研究發(fā)現(xiàn),上海市綠地土壤黑碳含量與有機(jī)碳之間有顯著的正相關(guān)性(r2= 0.82)(徐福銀等,2014),南京市土壤有機(jī)碳與黑碳呈對(duì)數(shù)顯著相關(guān)(r2= 0.80)(He and Zhang,2009),浙江省地表灰塵中黑碳含量與有機(jī)碳呈正相關(guān)(r2= 0.88)(黃佳鳴等,2012)。農(nóng)田土壤能夠固定較多有機(jī)碳與黑碳組分存在有關(guān),或者是黑碳在農(nóng)田土壤有機(jī)碳的固定過程中充當(dāng)了重要的作用。
圖2 有機(jī)碳、黑碳、焦炭和煙炱含量之間的相關(guān)性Fig.2 Relationships between concentrations of black carbon and organic carbon, char and soot
2.3 土壤黑碳來源分析
一般情況下,黑碳的產(chǎn)生來自兩個(gè)方面:一是自然源排放,主要來自火山爆發(fā)、草原或森林大火等;二是人為源的排放,主要來自居民/商業(yè)活動(dòng)、能源生產(chǎn)、工業(yè)排放和機(jī)動(dòng)車尾氣等。這些排放的黑碳絕大部分就地埋藏沉積進(jìn)入到土壤中。由于焦炭和煙炱的形成條件存在較大差異,因此其來源也不相同。一般認(rèn)為,機(jī)動(dòng)車排放和草本植物燃燒會(huì)產(chǎn)生較小的char/soot比值,而木本植物在低溫下燃燒會(huì)產(chǎn)生較高的char/soot比值(Chow et al,2004;Chen et al,2007)。煤燃燒產(chǎn)生的char/soot比值大小取決于煤的類型,如煙煤比無煙煤燃燒產(chǎn)生更大的char/soot比值(Han et al,2010)。Cao et al(2005)在西安地區(qū)研究發(fā)現(xiàn),char/soot比值為1.9指示煤燃燒,比值為11.6指示生物質(zhì)燃燒。Han et al(2009)的研究結(jié)果顯示,西安市道路塵中char/soot比值為1.66,說明黑碳主要來源于煤和機(jī)動(dòng)車排放;而較高的char/soot比值(大于2.6)則主要與郊區(qū)農(nóng)田的露天燃燒和居民薪柴燃燒有關(guān)。Lim et al(2012)對(duì)韓國高山郡大氣氣溶膠研究發(fā)現(xiàn),夏季PM1.0和PM10中char/soot比值最小,分別為0.8和2.0,主要反映來自于韓國和日本的機(jī)動(dòng)車尾氣的貢獻(xiàn)較大。
從char/soot比值的頻數(shù)分析結(jié)果(圖3)可以看出,所有樣品char/soot比值均小于3.5,說明陽新地區(qū)農(nóng)田土壤中的黑碳主要來源于化石燃料燃燒,如工業(yè)燃煤排放及機(jī)動(dòng)車尾氣等。陽新地區(qū)由于金屬礦藏資源豐富,分布有較多的礦冶企業(yè),粉塵排放較多。工業(yè)粉塵中粉煤灰的大量排放,為土壤中黑碳的大量積累創(chuàng)造了條件。Lehndorff et al(2015)研究發(fā)現(xiàn),自1958年以來,德國哈雷市耕地土壤中75%的黑碳來源于工業(yè)排放。此外,作為黃石地區(qū)重要的原材料工業(yè)基地,交通運(yùn)輸業(yè)也十分發(fā)達(dá)。機(jī)動(dòng)車,特別是重型卡車尾氣排放也成為農(nóng)田土壤黑碳的一個(gè)重要來源。王俊霞等(2009)研究發(fā)現(xiàn)土壤黑碳含量的高低與距離高速公路沿線遠(yuǎn)近有關(guān),一般隨著距離的增加,黑碳含量逐漸降低。這一方面與機(jī)動(dòng)車尾氣排放有關(guān),另一方面可能與機(jī)動(dòng)車行駛過程中道路揚(yáng)塵污染有關(guān)。研究發(fā)現(xiàn),城市道路交通揚(yáng)塵是大氣顆粒物污染的重要來源(韓力慧等,2009)。關(guān)于城市道路塵黑碳的研究已有較多報(bào)道(黃佳鳴等,2012;潘蘇紅等,2012;鄧正偉等,2014),而且城市道路塵中黑碳含量普遍較高。因此,可以推測道路揚(yáng)塵也可能對(duì)農(nóng)田土壤中黑碳的積累有一定貢獻(xiàn)。char/soot比值大于2.5的樣品占所有樣品的8%左右,除了化石燃料燃燒的貢獻(xiàn)以外,可能與農(nóng)田秸稈焚燒還田及草木灰等農(nóng)家肥的施加有關(guān)。因?yàn)榻斩挿贌龤堅(jiān)约安菽净抑泻谔嫉闹饕问绞墙固浚虼送寥乐衏har/soot比值較大??傮w來說,對(duì)于城市地區(qū)而言,土壤黑碳的來源與人類活動(dòng)密切相關(guān)。
(1)黑碳、焦炭和煙炱在農(nóng)田土壤中均有分布,且呈現(xiàn)較大的變化特征。黑碳含量變化范圍為0.17—3.18 g·kg-1,平均值為0.85 g·kg-1,變異系數(shù)為73.97%。水稻土中黑碳、焦炭和煙炱平均含量最大,其次為紅壤,而潮土最低。說明不同類型黑碳在水稻土中富集明顯。黑碳占有機(jī)碳的比例變化范圍在1.45%—26.4%,平均值為6.76%。
圖3 char/soot比值頻數(shù)分布直方圖Fig.3 Frequency histograms of char/soot ratio
(2)黑碳與有機(jī)碳含量之間呈現(xiàn)顯著的正相關(guān)性,說明農(nóng)田土壤黑碳含量的增加有助于有機(jī)碳的積累,也間接地說明黑碳在有機(jī)碳積累過程中發(fā)揮著重要的作用。黑碳與焦炭、煙炱含量之間也顯著正相關(guān),說明焦炭與煙炱是農(nóng)田土壤黑碳的重要組成部分。
(3)土壤中黑碳的來源可以用焦炭/煙炱比值進(jìn)行判定,焦炭/煙炱比值的變化范圍為0.02—3.44,平均值為1.18,說明農(nóng)田土壤中的黑碳主要來源于化石燃料燃燒,如工業(yè)燃煤排放及機(jī)動(dòng)車尾氣等,這與陽新縣礦產(chǎn)資源開采及冶煉有關(guān)。道路揚(yáng)塵、農(nóng)田秸稈焚燒及農(nóng)家肥的施用也可能對(duì)農(nóng)田土壤黑碳的積累有一定貢獻(xiàn)。
戴 婷, 李艾芬, 章明奎. 2009. 浙北平原農(nóng)業(yè)土壤中黑碳分布特征的研究[J].土壤通報(bào), 40(6): 1321 – 1324. [Dai T, Li A F, Zhang M K. 2009. Distribution characteristics of black carbon in agricultural soils of northern Zhejiang plain [J].Chinese Journal of Soil Science, 40(6): 1321 – 1324.]
鄧正偉, 方鳳滿, 江培龍, 等. 2014. 蕪湖市區(qū)地表灰塵中黑碳含量分布特征[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版, 37(1): 58 – 62. [Deng Z W, Fang F M, Jiang P L, et al. 2014. Black carbon concentration distribution characteristics in urban surface dust of Wuhu city [J].Journal of Anhui Normal University: Natural Science, 37(1): 58 – 62.]
韓力慧, 莊國順, 程水源, 等. 2009. 北京地面揚(yáng)塵的理化特性及其對(duì)大氣顆粒物污染的影響[J].環(huán)境科學(xué), 30(1):1 – 8. [Han L H, Zhuang G S, Cheng S Y, et al. 2009. Charactersitcs of re-suspended road dust and its signi fi cant effect on the airbone particulate pollution in Beijing [J].Environmental Science, 30(1): 1 – 8.]
胡衛(wèi)國, 曹軍驥, 韓永明. 2010. 青海湖流域六類土壤表土有機(jī)碳黑碳含量特征及其儲(chǔ)量[J].地球環(huán)境學(xué)報(bào), 1(3): 213 – 218. [Hu W G, Cao J J, Han Y M. 2010. The characteristic of organic carbon and black carbon content and its storage in six types topsoil of Qinghai Lake basin of China [J].Journal of Earth Environment, 1(3): 213 – 218.]
黃佳鳴, 王曉旭, 王 陽, 等. 2012. 地表灰塵中黑碳含量的研究[J].浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 38(1): 91 – 96. [Huang J M, Wang X X, Wang Y, et al. 2012. Contents of black carbon in some surface dusts from Zhejiang province [J].Journal of Zhejiang University (Agriculture & Life Science), 38(1): 91 – 96.]
劉兆云, 章明奎. 2009. 林地土壤中黑碳的出現(xiàn)及分布特點(diǎn)[J].浙江林學(xué)院學(xué)報(bào), 26(3): 341 – 345. [Liu Z Y, Zhang M K. 2009. Black carbon occurrence and distribution of forest soils in Zhejiang province, China [J].Journal of Zhejiang Forestry College, 26(3): 341 – 345.]
潘蘇紅, 張 干, 孫亞莉, 等. 2012. 中國與印度典型城市道路街塵中多環(huán)芳烴與黑碳的對(duì)比研究[J].環(huán)境科學(xué), 33(4): 1204 – 1208. [Pan S H, Zhang G, Sun Y L, et al. 2012. Distribution characteristics of polycyclic aromatic hydrocarbons and black carbon in road dusts from typical cities of China and India [J].Envirenmental Science, 33(4): 1204 – 1208.]
涂夏明, 曹軍驥, 韓永明, 等. 2010. 黃土高原表土焦炭和煙炱的含量分布與意義[J].地球環(huán)境學(xué)報(bào), 1(2): 126 – 132. [Tu X M, Cao J J, Han Y M, et al. 2010. Variations and implication of Char-BC and Soot-BC in the surface soil of Loess Plateau, China [J].Journal of Earth Environment, 1(2): 126 – 132.]
王俊霞, 俞元春, 張雪蓮. 2009. 高速公路沿線土壤黑碳含量特征[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 33(1): 155 – 157. [Wang J X, Yu Y C, Zhang X L. 2009. Characteristics of soil black carbon along the highway [J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2009, 33(1): 155 – 157.]
王 曦. 2012. 城市林業(yè)土壤黑碳含量及對(duì)多環(huán)芳烴分布的影響[D]. 南京: 南京林業(yè)大學(xué)碩士學(xué)位論文. [Wang X. 2012. Black carbon content of urban forest soil and its impact on distribution of polycyclic aromatic hydrocarbons (PAHs) [D]. Nanjing: Master dissertation of Nanjing Forestry University.]
徐福銀, 包 兵, 方海蘭. 2014. 上海市城市綠地土壤中黑碳分布特征[J].土壤通報(bào), 45(2): 457 – 461. [Xu F Y, Bao B, Fang H L, et al. 2014. Distribution characteristics of black carbon in greenbelt soils of Shanghai [J].Chinese Journal of Soil Science, 45(2): 457 – 461.]
尹云鋒, 楊玉盛, 高 人, 等. 2009. 黑碳在杉木人工林土壤不同組分中的分配規(guī)律研究[J].土壤, 41(4): 625 – 629. [Yin Y F, Yang Y S, Gao R, et al. 2009. Distribution of black carbon from soil different fractions in Chinese fir plantation [J].Soils, 41(4): 625 – 629.]
張國盛, 黃高寶, Chan Y. 2005. 農(nóng)田土壤有機(jī)碳固定潛力研究進(jìn)展[J].生態(tài)學(xué)報(bào), 25(2): 351 – 357. [Zhang G S, Huang G B, Chan Y. 2005. Soil organic carbon sequestration potential in cropland[J].Acta Ecologica Sinica, 25(2): 351 – 357.]
Cao J J, Lee S C, Ho K F, et al. 2003. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period [J].Atmospheric Environment, 37(11): 1451 – 1460.
Cao J J, Chow J C, Lee S C, et al. 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China [J].Atmospheric Chemistry and Physics, 5(3): 3127 – 3137.
Chen L-W A, Moosmüller H, Arnott W P, et al. 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source pro fi les [J].Environmental Science & Technology, 41(12): 4317 – 4325.
Chow J C, Watson J G, Kuhns H, et al. 2004. Source pro fi les for industrial, mobile, and area sources in the Big Bend Regional aerosol visibility and observational study [J].Chemosphere, 54(2): 185 – 208.
Czimczik C I, Preston C M, Schmidt M W I, et al. 2003. How surface fi re in Siberian Scots pine forests affects soil organic carbon in the forest fl oor: Stocks, molecular structure, and conversion to black carbon (charcoal) [J].Global Biogeochemical Cycles, 17(1): 1020, doi:1010.1029/2002GB001956.
Czimczik C I, Schmidt M W I, Schulze E. 2005. Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests [J].European Journal of Soil Science, 56(3): 417 – 428.
Czimczik C I, Masiello C A. 2007. Controls on black carbon storage in soils [J].Global Biogeochemical Cycles, 21: GB3005, doi:3010.1029/2006GB002798.
Edmondson J L, Stott I, Potter J, et al. 2015. Black carbon contribution to organic carbon stocks in urban soil [J].Environmental Science & Technology, 49(14): 8339 – 8346.
一杭想在樓下一個(gè)早餐點(diǎn)前喝碗豆?jié){,卻見兩個(gè)戴墨鏡的男子一邊狼吞虎咽地吃著包子,一邊偷偷地看他,見一杭有所察覺,立即低下頭吃東西。一杭的心提了起來,范堅(jiān)強(qiáng)不會(huì)在路上對(duì)我下手吧?他迅速走過去,到前面一家早餐店買了兩根油條,邊走邊回頭,那兩個(gè)人似乎并沒有再注意他。一杭這才放下心來,看來是自己太多疑了,弄得草木皆兵。
Hammes K, Torn M S, Lapenas A G, et al. 2008. Centennial black carbon turnover observed in a Russian steppe soil [J].Biogeosciences, 5(5): 1339 – 1350.
Han Y M, Cao J J, Chow J C, et al. 2007a. Evaluation of the thermal/optical re fl ectance method for discrimination between char-and soot-EC [J].Chemosphere, 69(4): 569 – 574.
Han Y M, Cao J J, An Z S, et al. 2007b. Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments [J].Chemosphere, 69(4): 526 – 533.
Han Y M, Cao J J, Chow J C, et al. 2009. Elemental carbon in urban soils and road dusts in Xi’an, China and its implication for air pollution [J].Atmospheric Environment, 43(15): 2464 – 2470.
Han Y M, Cao J J, Lee S C, et al. 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China [J].Atmospheric Chemistry and Physics, 10(2): 595 – 607.
Han Y M, Wei C, Bandowe B A, et al. 2015. Elemental carbon and polycyclic aromatic compounds in a 150-yr sediment core from Lake Qinghai, Tibetan Plateau, China: Influence of regional and local sources and transport pathways [J].Environmental Science & Technology, 49(7): 4176 – 4183.
He Y, Zhang G L. 2009. Historical record of black carbon in urban soils and its environmental implications [J].Environmental Pollution, 157(10): 2684 – 2688.
Kuhlbusch T. 1998. Black carbon and the carbon cycle [J].Science, 280(5371): 1903 – 1904.
Lehmann J. 2007. Bio-energy in the black [J].Frontiers in Ecology and the Environment, 5(7): 381 – 387.
Lehndorff E, Brodowski S, Schmidt L, et al. 2015. Industrial carbon input to arable soil since 1958 [J].Organic Geochemistry, 80: 46 – 52.
Lim S, Lee M, Lee G, et al. 2012. Ionic and carbonaceous compositions of PM10, PM2.5and PM1.0at Gosan ABC superstation and their ratios as source signature [J].Atmospheric Chemistry and Physics, 12: 2007 – 2024.
Liu S D, Xia X H, Zhai Y W, et al. 2011. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs) [J].Chemosphere, 82(2): 223 – 228.
Lorenz K, Preston C M, Kandeler E. 2006. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solidstate13C nuclear magnetic resonance (NMR) spectroscopy [J].Geoderma, 130(3 / 4): 312 – 323.
Masiello C A. 2004. New directions in black carbon organic geochemistry [J].Marine Chemistry, 92(1/2/3/4): 201 – 213.
Pan G X, Li L Q, Wu L S, et al. 2004. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils [J].Global Change Biology, 10(1): 79 – 92.
Ramanathan V, Carmichael G. 2008. Global and regional climate changes due to black carbon [J].Nature Geoscience, 1(4): 221 – 227.
Schmidt M W I, Skjemstad J O, Gehrt E, et al. 1999. Charred organic carbon in German chernozemic soils [J].European Journal of Soil Science, 50(2): 351 – 365.
Schmidt M W I, Noack A G. 2000. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges [J].Global Biogeochemical Cycles, 14(3): 777 – 793.
Schmidt M W I, Skjemstad J O, Czimczik CI, et al. 2001. Comparative analysis of black carbon in soils [J].Global Biogeochemical Cycles, 15(1): 163 – 167.
Shrestha G, Traina S J, Swanston C W. 2010. Black carbon’s properties and role in the environment: A comprehensive review [J].Sustainability, 2(1): 294 – 320.
Six J, Conant R, Paul E A, et al. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils [J].Plant and Soil, 241(2): 155 – 176.
Skjemstad J O, Reicosky D C, Wilts A R, et al. 2002. Charcoal carbon in US agricultural soils [J].Soil Science Society of America Journal, 66(4): 1249 – 1255.
West T O, Post W M. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis [J].Soil Science Society of America Journal, 66(6): 1930 – 1946.
Zhan C L, Cao J J, Han Y M, et al. 2013. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese Loess Plateau [J].Science of the Total Environment, 465: 255 – 266.
Zhan C L, Cao J J, Han Y M, et al. 2015. Spatial patterns, storages and sources of black carbon in soils from the catchment of Qinghai Lake, China [J].European Journal of Soil Science, 66(3): 525 – 534.
Characteristics and sources of black carbon in agricultural soils from a county in central China
ZHAN Changlin1,2, WAN Dejun3, WANG Ping2, HAN Yongming2, ZHANG Jiaquan1, LIU Hongxia1, XIAO Wensheng1, LIU Xianli1
(1. School of Environmental Science and Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 3. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China)
Background, aim, and scopeBlack carbon (BC) is a continuum of thermally altered materials produced by incomplete combustion of biomass, biofuels, and fossil fuels. It is found globally in the water, atmosphere, snow, ice, sediments, and soils. BC generally resides in the soil for a long time acting as a long-term C sink, with a potential negative feedback on climate warming. BC is composed of charand soot corresponding to combusted solid residues and clusters of carbon particles formed by gas-phase processes, respectively. Many studies have focused on BC in urban and forestland soils, while little attention is paid to agricultural soils in China. Furthermore, many previous studies did not differentiate between different BC fractions (char and soot) in soils, thereby much important information regarding the sources and environmental behavior of these two major components is missing. In this paper, the variation characteristics of BC, char and soot concentrations in agricultural soils were studied. The impact factor and potential sources of BC were also studied.Materials and methodsA total of fortysix topsoil samples (0—20 cm) were collected with steel shovel in farmland from Yangxin County of Hubei Province, central China. The soil types can be classi fi ed into three categories: paddy soil, red soil, and fl uvo-aquic soil, and the number of soil samples is twenty-three, eighteen, and fi ve, respectively. The concentrations of BC, char and soot in soils were analyzed by thermal optical re fl ectance method following the IMPROVE_A protocol. Total organic carbon (TOC) content was determined using potassium dichromate oxidation method.ResultsBC, char and soot concentrations in the agricultural soils varied from 0.17 g·kg-1to 3.18 g·kg-1, 0.03 g·kg-1to 2.37 g·kg-1and 0.09 g·kg-1to 1.50 g·kg-1, with average value of 0.17 g·kg-1, 0.03 g·kg-1, and 0.09 g·kg-1, respectively. The average contents of BC, char and soot in three different types of soils ranked as follows: paddy soil > red soil > fl uvoaquic soil. The variation coefficient of char was higher than 100%, while those coefficients of BC and soot were 73.97% and 68.59%, respectively. BC fraction in the agricultural soils contributed to 1.45%—26.43% of TOC, with a mean value of 6.76%. The highest proportional contribution of BC to TOC was found in fl uvo-aquic soil (8.67%), followed by red soil (7.68%), while the smallest was in paddy soil (5.62%). Char/soot ratios varied from 0.02 to 3.44, averaging 1.18. The average char/soot ratios in the three types of soils ranked as follows: red soil > fl uvo-aquic soil > paddy soil. Strong positive correlation was found between BC, char and soot conentrations. Close correlations between the concentrations of BC and TOC and BC/TOC.DiscussionThe measured BC concentrations in our study were lower than some background soils in the world and urban soils in China. One possible reason for the variability in BC distribution is due to the source contribution in different regions. Moreover, different BC analytical methods in various studies may lead to these differences. The average proportion of BC to TOC was lower than agricultural soils in other regions, which is likely attribute to the differences in land cultivation methods or application content of farmyard manure (plant ash). The identi fi cation of char/soot ratios showed that fossil fuels combustion, such as industrial coal combustion and vehicle exhaust emissions, might be the main source of soil BC in the county.ConclusionsThe results show that BC, char and soot were inhomogeneously distributed in agricultural soils. The positive close correlation between BC and TOC suggested that BC plays an important role in the accumulation of TOC. Fossil fuel combustion is possibly the main source of soil BC. Road fugitive dust, farmland straw burning, and applications of farmyard manure (plant ash) may be other contributed source to BC.Recommendations and perspectivesThe data provide scientific basis for different BC fractions in soils and their signi fi cant roles in global carbon cycle and climatic effect. BC in agricultural soils were signi fi cantly in fl uenced by human activities, especially industrial dust and vehicle exhaust.
agricultural soil; black carbon; char; soot; organic carbon; sources
HAN Yongming, E-mail: yongming@ieecas.cn
10.7515/JEE201601007
2015-10-20;錄用日期:2015-11-13
Received Date:2015-10-20;Accepted Date:2015-11-13
湖北省教育廳科學(xué)技術(shù)研究計(jì)劃青年人才項(xiàng)目(Q20144401);黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室開放基金(SKLLQG1228,1326);礦區(qū)環(huán)境污染控制與修復(fù)湖北省重點(diǎn)實(shí)驗(yàn)室開放基金(2013106);湖北理工學(xué)院優(yōu)秀青年科技創(chuàng)新團(tuán)隊(duì)資助計(jì)劃項(xiàng)目(13xtz07)
Foundation Item:Foundation of Hubei Educational Committee for Youths (Q20144401); State Key Laboratory of Loess and Quaternary Geology Foundation (SKLLQG1228, 1326); Open Foundation of Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation (2013106); Foundation of Collaborative Innovation of Hubei Polytechnic University (13xtz07)
韓永明,E-mail: yongming@ieecas.cn