任滔,吳國(guó)明,丁國(guó)良,鄭永新,高屹峰,宋吉
(1-上海交通大學(xué)制冷與低溫工程研究所,上海 200240;2-國(guó)際銅業(yè)協(xié)會(huì)(中國(guó)),上海 200020)
基于房間空調(diào)器全年性能系數(shù)的室外機(jī)翅片設(shè)計(jì)
任滔*1,吳國(guó)明1,丁國(guó)良1,鄭永新2,高屹峰2,宋吉2
(1-上海交通大學(xué)制冷與低溫工程研究所,上海 200240;2-國(guó)際銅業(yè)協(xié)會(huì)(中國(guó)),上海 200020)
為了提高房間空調(diào)器的全年性能系數(shù)(APF),室外機(jī)翅片在結(jié)霜工況和非結(jié)霜工況下的性能均需要提高,傳統(tǒng)的開(kāi)縫翅片只適用于非結(jié)霜工況的傳熱強(qiáng)化。本文提出一種采用鏤空的強(qiáng)化結(jié)構(gòu),能同時(shí)強(qiáng)化結(jié)霜工況下和非結(jié)霜工況下翅片的傳熱性能。本文通過(guò)單片翅片的排水性實(shí)驗(yàn)驗(yàn)證鏤空區(qū)域和鏤空方向,并通過(guò)CFD優(yōu)化鏤空位置和鏤空長(zhǎng)度、寬度和間距。排水實(shí)驗(yàn)表明,豎直方向鏤空結(jié)構(gòu)的排水性最好。本文將新型鏤空翅片與熱泵型空調(diào)室外機(jī)中使用最廣泛的波紋翅片進(jìn)行比較。在非結(jié)霜工況下,優(yōu)化后的鏤空翅片的換熱量比波紋翅片高7.5%;在結(jié)霜工況下,優(yōu)化后的鏤空翅片的換熱量比波紋翅片高3.4%。
空調(diào)室外機(jī);鏤空翅片;強(qiáng)化傳熱;結(jié)霜
越來(lái)越多的國(guó)家將全年性能系數(shù)(APF)指標(biāo)替代額定制冷能效比(EER)指標(biāo),作為空調(diào)器新的性能評(píng)價(jià)指標(biāo)[1-2]。APF指標(biāo)考核的全年運(yùn)行工況分為非結(jié)霜工況和結(jié)霜工況兩大類(lèi)。提高空調(diào)器性能的方法主要有改善分配器性能[3-5]和優(yōu)化換熱器翅片結(jié)構(gòu)兩種[6-9]。由于分配器對(duì)每個(gè)APF測(cè)試工況具有相同的影響,無(wú)法使得空調(diào)器系統(tǒng)匹配達(dá)到APF最優(yōu),故本文主要通過(guò)優(yōu)化換熱器翅片結(jié)構(gòu)改善空調(diào)器APF性能。
非結(jié)霜工況要求室外機(jī)翅片表面設(shè)計(jì)凸起或狹縫等局部復(fù)雜的結(jié)構(gòu),來(lái)提高翅片換熱性能[10-11]。凸起和狹縫結(jié)構(gòu)包括橋縫和百葉窗。狹縫結(jié)構(gòu)能夠切斷翅片表面的空氣邊界層,使得邊界層在狹縫后緣的翅片表面重新開(kāi)始發(fā)展,從而減薄邊界層。
2.4 APF性能比較
熱泵型空調(diào)器的APF性能仿真采用了一種結(jié)合分布參數(shù)模型和分相參數(shù)模型的穩(wěn)態(tài)系統(tǒng)仿真軟件[16-17]。該軟件不僅能夠計(jì)算出換熱器的換熱量、能效等參數(shù),而且能夠計(jì)算換熱器局部換熱系數(shù)和壓降。
通過(guò)系統(tǒng)仿真軟件可以計(jì)算得到3種不同室外機(jī)翅片的熱泵型空調(diào)器的系統(tǒng)性能,包括波紋翅片、條縫翅片和新型鏤空翅片,如圖8所示。
仿真結(jié)果表明,使用新型鏤空翅片的空調(diào)器APF比波紋翅片的空調(diào)器APF高4%,比條縫翅片的空調(diào)器APF高2.1%。仿真結(jié)果表明,新型鏤空翅片是最佳的室外機(jī)翅片類(lèi)型。
圖8 不同熱泵型空調(diào)器的APF性能
1)在結(jié)霜工況和非結(jié)霜工況下,新型鏤空翅片的換熱系數(shù)均比波紋翅片高。
2)新型鏤空翅片的換熱量比波紋翅片在結(jié)霜和非結(jié)霜工況分別高7.5%和3.5%。
3)新型鏤空翅片優(yōu)于傳統(tǒng)的波紋翅片,新型鏤空翅片的空調(diào)器的全年性能系數(shù)(APF)比波紋翅片的空調(diào)器高4%。
[1] MADONNA F, BAZZOCCHI F. Annual performances of reversible air-to-water heat pumps in small residential buildings[J]. Energy and Buildings, 2013, 65: 299-309.
[2] KANG E C, RIEDERER P, YOO S Y, et al. New approach to evaluate the seasonal performance of building integrated geothermal heat pump system[J]. Renewable Energy, 2013, 54: 51-54.
[3] 翁建霆, 張利敏. 制冷用氟利昂液體分配器性能的實(shí)驗(yàn)研究[J]. 制冷技術(shù), 1997, 17(2): 3-6.
[4] 黃曉清, 吳俊鴻, 楊杰, 等. 家用空調(diào)機(jī)組蒸發(fā)器優(yōu)化設(shè)計(jì)[J]. 制冷技術(shù), 2013, 33(2): 66-68.
[5] 高揚(yáng), 翁曉敏, 丁國(guó)良, 等. 全年能效消耗效率指標(biāo)下的分配器分配特性分析及結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J]. 制冷技術(shù), 2015, 35(4): 22-27.
[6] 施駿業(yè), 陳曉寧, 陸冰清, 等. 家用空調(diào)室外機(jī)波紋型翅片管換熱器空氣側(cè)傳熱與壓降性能研究[J]. 制冷技術(shù), 2015, 35(6): 13-17.
[7] 王繼穩(wěn). 翅片式換熱器翅片傳熱與壓降特性實(shí)驗(yàn)研究與分析[D]. 北京: 華北電力大學(xué), 2011.
[8] 王厚華, 方趙嵩, 鄭爽英. 圓孔翅片管式制冷換熱器的節(jié)能性能試驗(yàn)[J]. 西南交通大學(xué)學(xué)報(bào), 2009, 44(3): 455-460.
[9] 劉建, 魏文建, 丁國(guó)良, 等. 翅片管式換熱器換熱與壓降特性的實(shí)驗(yàn)研究進(jìn)展——實(shí)驗(yàn)研究[J]. 制冷學(xué)報(bào), 2003, 24(3): 25-30.
[10] 田麗亭, 何雅玲, 楚攀, 等. 不同排列方式下三角翼波紋翅片管換熱器的換熱性能比較[J]. 動(dòng)力工程, 2009, 29(1): 78-83.
[11] WEBB R L, KIM N H. Principle of enhanced heat transfer[M]. 2ndedition. Boca Raton, USA: Taylor Francis, 2005: 673-695.
[12] YE H Y, LEE K S. Performance prediction of a fin-and-tube heat exchanger considering air-flow reduction due to the frost accumulation[J]. International Journal of Heat and Mass Transfer, 2013, 67: 225-233.
[13] PARK J S, KIM D R, LEE K S. Frosting behaviors and thermal performance of louvered fins with unequal louver pitch[J]. International Journal of Heat and Mass Transfer, 2016, 95: 499-505.
[14] 黃東, 劉小玉, 王彥魯. 翅片類(lèi)型對(duì)熱泵空調(diào)結(jié)霜特性的影響[J]. 制冷學(xué)報(bào), 2012, 33(2): 12-17.
[15] LENIC K, TRP A, FRANKOVIC B. Transient two-dimensional model of frost formation on a fin-and-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2009, 52(1): 22-32.
[16] HWANG J, CHO K. Numerical prediction of frost properties and performance of fin-tube heat exchanger with plain fin under frosting[J]. International Journal of Refrigeration, 2014, 46: 59-68.
[17] SUN H R, REN T, DING G L, et al. A general steady state mathematical model for multi-unit air conditioner system based on graph theory[C]. The 24th IIR International Congress of Refrigeration (ICR), Yokohama, Japan, 2015.
Fin Design for Outdoor Unit based on Annual Performance Factor of Room Air Conditioner
REN Tao*1, WU Guo-ming1, DING Guo-liang1, ZHENG Yong-xin2, GAO Yi-feng2, SONG Ji2
(1-Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China; 2-International Copper Association Shanghai Office, Shanghai 200020, China)
To achieve high performance of annual performance factor (APF) of room air conditioner, it requires high heat transfer performance of outdoor unit fin under both frost and non-frost conditions, but traditional slit and louver fins only work well under non-frost conditions. A perforated fin to enhance heat transfer under both frost and non-frost working conditions was presented. In this paper, a drainage experiment for single piece of fin was carried out to figure out the best perforated zone and direction firstly; and then a CFD based optimization was processed to obtain perforated position, perforated length, width and pitch. The drainage experiment shows that the short vertical rectangle perforated multiple-hole has best performance. The designed fin was compared with the wavy fin, which is the most widely used in outdoor unit of heat pump air conditioner. The simulations result shows that the capacity of perforated fin is 7.5% higher than that of wavy fin under non-frosting condition and 3.4% higher than that of wavy fin under frosting condition.
Outdoor unit of air conditioner; Perforated fin; Enhanced heat transfer; Frost
10.3969/j.issn.2095-4468.2016.06.101
*任滔(1985-),男,博士后。研究方向:換熱器仿真和設(shè)計(jì)。聯(lián)系地址:上海市閔行區(qū)東川路800號(hào)機(jī)械與動(dòng)力工程學(xué)院C樓263室。郵編:200240。聯(lián)系電話(huà):13764148238。E-mail:Tren@sjtu.edu.cn。