国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

拱的靜動(dòng)力穩(wěn)定性研究進(jìn)展

2016-03-09 01:24:10劉愛(ài)榮黃永輝
關(guān)鍵詞:彈塑性拱橋圓弧

劉愛(ài)榮, 李 晶, 黃永輝

(廣州大學(xué)-淡江大學(xué) 工程結(jié)構(gòu)災(zāi)害與控制聯(lián)合研究中心, 廣東 廣州 510006)

拱的靜動(dòng)力穩(wěn)定性研究進(jìn)展

劉愛(ài)榮, 李 晶, 黃永輝

(廣州大學(xué)-淡江大學(xué) 工程結(jié)構(gòu)災(zāi)害與控制聯(lián)合研究中心, 廣東 廣州 510006)

拱是一種以受壓為主的結(jié)構(gòu)體系,當(dāng)其所承受的荷載達(dá)到某個(gè)臨界值時(shí),整個(gè)結(jié)構(gòu)隨即失去平衡,通??杀憩F(xiàn)為面內(nèi)或面外失穩(wěn).拱的失穩(wěn)具有類(lèi)似于脆性斷裂的特征,往往無(wú)明顯征兆、突然發(fā)生,且一旦失去穩(wěn)定,即會(huì)造成災(zāi)難性的破壞,危及生命財(cái)產(chǎn)安全.因此,從深層次探究拱的穩(wěn)定性,分析拱的失穩(wěn)機(jī)理顯得尤為重要.文章分別從拱的靜、動(dòng)力穩(wěn)定性角度系統(tǒng)地回顧了單拱、拱橋的面內(nèi)外穩(wěn)定性研究進(jìn)展,綜述拱靜動(dòng)力穩(wěn)定理論與實(shí)驗(yàn)研究概況,指出目前關(guān)于拱的穩(wěn)定性分析和研究方法存在的不足,展望拱的穩(wěn)定性研究發(fā)展趨勢(shì),為今后拱的穩(wěn)定性研究提供指導(dǎo)性建議.

拱; 拱橋; 靜力失穩(wěn); 動(dòng)力失穩(wěn); 面內(nèi)失穩(wěn); 面外失穩(wěn)

在飛速發(fā)展的現(xiàn)代結(jié)構(gòu)工程中,拱以其跨越能力強(qiáng)、承載能力高、結(jié)構(gòu)輕盈美觀和制作施工方便等優(yōu)勢(shì)在國(guó)內(nèi)外土木工程、水利工程、機(jī)械工程和航天工程等領(lǐng)域都得到了廣泛的應(yīng)用.拱在荷載作用下,拱腳產(chǎn)生水平推力,利用其拱軸將外荷載產(chǎn)生的彎矩轉(zhuǎn)化為軸向壓力,易喪失穩(wěn)定性.拱的失穩(wěn)具有突發(fā)性,事先無(wú)明顯征兆,一旦發(fā)生,后果非常嚴(yán)重.因此,拱的穩(wěn)定性往往成為設(shè)計(jì)中的關(guān)鍵問(wèn)題,其在靜、動(dòng)力荷載作用下的穩(wěn)定性問(wèn)題一直是被國(guó)內(nèi)外工程與學(xué)術(shù)界廣泛關(guān)注的前沿課題.

多年來(lái),國(guó)內(nèi)外學(xué)者們針對(duì)拱的各類(lèi)穩(wěn)定性問(wèn)題開(kāi)展了一系列理論與實(shí)驗(yàn)研究.本文系統(tǒng)地回顧了拱的穩(wěn)定性研究概況,闡述了單拱、拱橋的面內(nèi)、面外失穩(wěn)的分析方法及存在的不足,展望了拱的穩(wěn)定性研究發(fā)展趨勢(shì),為今后拱的研究提供指導(dǎo)性建議.

1 拱的靜力穩(wěn)定性研究進(jìn)展

1.1 拱的面內(nèi)靜力穩(wěn)定性

拱的面內(nèi)失穩(wěn)通??煞譃榉植媸Х€(wěn)、極值點(diǎn)失穩(wěn)和跳躍失穩(wěn)3種;常見(jiàn)的研究方法有解析法、有限元數(shù)值解法和實(shí)驗(yàn)方法,以下著重介紹相關(guān)的代表性研究成果.

(1)解析法.解析法通常只適用于結(jié)構(gòu)簡(jiǎn)單、受力明確的線(xiàn)性或非線(xiàn)性彈性拱,常見(jiàn)求解方法有平衡法、能量法和虛位移法.

TIMOSHENKO[1]從均勻受壓兩端鉸支圓弧拱的平衡微分方程推導(dǎo)出了面內(nèi)失穩(wěn)臨界荷載特征值計(jì)算公式,為拱的平面失穩(wěn)理論奠定了堅(jiān)實(shí)的基礎(chǔ).但以上研究假設(shè)拱在失穩(wěn)前處于線(xiàn)性狀態(tài),臨界荷載值較實(shí)際值偏大.PI和BRADFORD[2-10]對(duì)集中力及均布力作用下兩端鉸接、兩端固接、一端鉸接一端固接以及彈性支撐圓弧拱的平面內(nèi)非線(xiàn)性彈性穩(wěn)定性進(jìn)行了分析,針對(duì)經(jīng)典理論前屈曲分析中未考慮屈曲前變形的影響,重新建立了拱結(jié)構(gòu)非線(xiàn)性平衡條件及屈曲平衡方程,求得了淺拱正對(duì)稱(chēng)失穩(wěn)荷載和反對(duì)稱(chēng)失穩(wěn)荷載解析解,并與有限元數(shù)值解進(jìn)行了對(duì)比,驗(yàn)證了解析解的正確性,但該解析解只適用于淺拱,對(duì)于大矢跨比深拱則誤差較大.BRADFORD等[11]為簡(jiǎn)化拋物線(xiàn)拱的非線(xiàn)性彈性的屈曲和后屈曲解析解的推導(dǎo)過(guò)程,假設(shè)豎向坐標(biāo)對(duì)水平坐標(biāo)導(dǎo)數(shù)的平方遠(yuǎn)遠(yuǎn)小于1.研究表明,基于近似假設(shè)的解析解具有局限性,該假設(shè)僅適用于矢跨比小于0.08的極淺的拋物線(xiàn)拱,而對(duì)大部分拋物線(xiàn)拱無(wú)效.此外,PI等[12]指出三鉸圓弧鋼拱經(jīng)典線(xiàn)性分析所得到的面內(nèi)彈性失穩(wěn)荷載是不準(zhǔn)確的,有必要對(duì)其進(jìn)行非線(xiàn)性分析,以獲取更為精準(zhǔn)的結(jié)構(gòu)響應(yīng)和失穩(wěn)結(jié)果.

HODGES[13]考慮大變形的影響,研究了靜水壓力作用下(隨動(dòng)荷載,荷載始終垂直于拱軸線(xiàn))深拱的面內(nèi)失穩(wěn).TONG等[14]利用有限位移理論中非線(xiàn)性應(yīng)變與位移的關(guān)系,引入剪切應(yīng)力和橫向應(yīng)力的影響,提出了均布徑向荷載作用下圓弧拱非線(xiàn)性分析方法,證明了深拱在長(zhǎng)細(xì)比大于50的情況下,剪力、彎矩及其屈曲前變形均對(duì)拱的屈曲荷載影響較小.易壯鵬等[15]針對(duì)考慮幾何缺陷的圓弧拱的穩(wěn)定性進(jìn)行了理論分析,研究了幾何缺陷對(duì)不同邊界條件圓弧拱的影響,但所考慮的缺陷類(lèi)型比較有限.

PI等[16-18]基于理論分析,研究了幾何非線(xiàn)性及溫度場(chǎng)對(duì)均布徑向荷載作用下兩端鉸接和固接圓弧鋼拱面內(nèi)彈性失穩(wěn)行為的影響.此外,還對(duì)拱頂鉸接圓弧淺拱在線(xiàn)性溫度梯度場(chǎng)作用下的非線(xiàn)性熱屈曲進(jìn)行了分析.研究表明,大多數(shù)淺拱在線(xiàn)性溫度梯度場(chǎng)作用下的主要失穩(wěn)模式為反對(duì)稱(chēng)分岔失穩(wěn).BRADFORD,LUO,PI等[19-24]考慮了混凝土的收縮和徐變長(zhǎng)期時(shí)變行為,對(duì)鋼管混凝土圓弧拱的面內(nèi)長(zhǎng)期非線(xiàn)性彈性分岔失穩(wěn)與極值點(diǎn)失穩(wěn)進(jìn)行了理論分析.

(2)有限元數(shù)值解方法.拱失穩(wěn)前往往材料已進(jìn)入塑性變形,為精確反應(yīng)材料和幾何雙重非線(xiàn)性行為通常只能借助于有限元數(shù)值方法.

PI等[25-26]發(fā)現(xiàn)變形曲率的高階項(xiàng)對(duì)拱的屈曲和后屈曲行為影響很大,經(jīng)典屈曲理論存在誤差,并指出誤差產(chǎn)生的原因是屈曲前路徑的線(xiàn)性化假定.另外,PI和BRADFORD等[27-31]綜合考慮了殘余變形、矢跨比、初始缺陷,系統(tǒng)研究了工字型鋼拱的面內(nèi)彈塑性失穩(wěn),并提出了不同荷載作用下拱的面內(nèi)失穩(wěn)強(qiáng)度設(shè)計(jì)的公式, 并論證了影響設(shè)計(jì)公式的主要因素是鋼拱的修正長(zhǎng)細(xì)比.

GUO等[32]基于有限元數(shù)值分析方法研究了兩端鉸接、腹板為正弦形波紋板的工字型圓弧鋼拱在豎向均布荷載或徑向均布荷載作用下的面內(nèi)彈塑性失穩(wěn)機(jī)理,并在大量計(jì)算分析的基礎(chǔ)上提出了簡(jiǎn)單實(shí)用的強(qiáng)度計(jì)算公式.

關(guān)于拱橋的面內(nèi)失穩(wěn)有限元數(shù)值分析大部分集中于國(guó)內(nèi).謝旭等[33]應(yīng)用彈塑性大變形計(jì)算理論,通過(guò)對(duì)兩座大跨度兩鉸鋼拱橋的面內(nèi)非線(xiàn)性分析,討論了結(jié)構(gòu)穩(wěn)定計(jì)算中加載方法的影響以及材料屈服與結(jié)構(gòu)失穩(wěn)間的關(guān)系.沈堯興等[34]以某鋼管混凝土拱橋?yàn)槔?,基于?shù)值分析方法對(duì)其成橋穩(wěn)定性進(jìn)行了分析,并進(jìn)一步探討了結(jié)構(gòu)的幾何非線(xiàn)性、材料非線(xiàn)性和初始缺陷對(duì)橋梁穩(wěn)定性的影響.

(3)實(shí)驗(yàn)方法.關(guān)于拱的面內(nèi)失穩(wěn)實(shí)驗(yàn)研究,相對(duì)于理論和數(shù)值方法要少一些.

GJELSVIK等[35]利用能量法研究集中荷載作用下矩形截面固端淺拱的穩(wěn)定性,并進(jìn)行了集中力作用下圓弧淺拱的面內(nèi)失穩(wěn)實(shí)驗(yàn),發(fā)現(xiàn)圓弧淺拱即使在對(duì)稱(chēng)荷載作用下亦會(huì)發(fā)生反對(duì)稱(chēng)失穩(wěn).

謝幼蕃等[36]利用模型實(shí)驗(yàn),進(jìn)行了拱結(jié)構(gòu)的幾何非線(xiàn)性與材料非線(xiàn)性分析,進(jìn)而提出了拱結(jié)構(gòu)面內(nèi)承載力的經(jīng)驗(yàn)計(jì)算公式.

VIRGIN等[37]考慮了溫度的影響,進(jìn)行了小跨徑淺拱實(shí)驗(yàn),研究了拱頂集中力下淺拱的穩(wěn)定性,證明了溫度對(duì)拱的失穩(wěn)極值點(diǎn)影響較大,但實(shí)驗(yàn)僅僅局限于結(jié)構(gòu)的整體溫升或溫降,未考慮局部溫度升降的影響.

GUO等[38]通過(guò)五點(diǎn)加載模型試驗(yàn)發(fā)現(xiàn)兩端鉸接、腹板為正弦形波紋板的工字型圓弧鋼拱在均布豎向荷載作用下呈面內(nèi)反對(duì)稱(chēng)彈塑性失穩(wěn).另外,實(shí)驗(yàn)表明波紋腹板對(duì)拱的面內(nèi)失穩(wěn)影響很大,拱除了發(fā)生整體面內(nèi)失穩(wěn)還伴隨腹板的剪切失穩(wěn)破壞.

以上介紹表明,在過(guò)去的100多年里,國(guó)內(nèi)外學(xué)者運(yùn)用解析法、數(shù)值方法及實(shí)驗(yàn)方法對(duì)拱的面內(nèi)靜力穩(wěn)定性展開(kāi)了一系列研究,考慮了幾何和材料非線(xiàn)性、溫度、時(shí)變效應(yīng),創(chuàng)立了大量經(jīng)典理論并提出了許多有效計(jì)算方法,從而奠定了拱的穩(wěn)定性研究基礎(chǔ),但研究成果均有不同程度的局限性,如對(duì)于解析方法,基本只適用于長(zhǎng)細(xì)比較小的彈性淺拱的穩(wěn)定分析,多不適用于深拱或長(zhǎng)細(xì)比較大的淺拱,并且關(guān)于考慮拱的材料和幾何雙重非線(xiàn)性行為的半解析解的理論計(jì)算方法尚比較少見(jiàn).

1.2 拱的面外靜力穩(wěn)定性

拱的面外失穩(wěn)或側(cè)傾失穩(wěn)是指當(dāng)作用于拱平面內(nèi)的荷載達(dá)到一定的臨界值時(shí),在繞拱縱軸的扭矩和側(cè)向彎矩的復(fù)合作用下, 拱可能會(huì)從原有的平面狀態(tài)過(guò)渡到空間彎扭形式的平衡狀態(tài).近些年來(lái),關(guān)于拱的面外失穩(wěn)研究方法同樣是集中于線(xiàn)性特征值法、非線(xiàn)性彈性解析法、有限元數(shù)值法和實(shí)驗(yàn)方法,代表性研究成果如下:

(1)解析解法.TIMOSHENKO[1]基于 SAINT VENAN的曲桿小變形理論,采用平衡法推導(dǎo)出了兩端受一對(duì)彎矩作用以及徑向均勻荷載作用下的圓弧形薄條側(cè)向失穩(wěn)臨界值,分析了荷載方向指向圓弧中心的非保向力效應(yīng)對(duì)提高拱側(cè)向穩(wěn)定性的作用,但未考慮拱屈曲前變形對(duì)失穩(wěn)的影響.

SAKIMOTO等[39]分析了橫撐的剛度、數(shù)量和位置對(duì)雙肋拱面外失穩(wěn)的影響,但未考慮非線(xiàn)性變形影響.

PI等[40]采用旋轉(zhuǎn)轉(zhuǎn)化矩陣給出均勻受壓下拱的應(yīng)變與位移的關(guān)系,考慮了拱失穩(wěn)前變形對(duì)失穩(wěn)臨界荷載的影響,利用能量法獲得了拱的臨界屈曲荷載.但分析引入了許多假設(shè),如失穩(wěn)前應(yīng)力和應(yīng)變與外荷載的變化呈線(xiàn)性關(guān)系、忽略拱的剪切和翹曲變形.LIM等[41]研究了薄壁拱結(jié)構(gòu)的彈性失穩(wěn)理論,基于最小勢(shì)能原理,得出了穩(wěn)定平衡方程,并進(jìn)行了曲率效應(yīng)近似解的推導(dǎo).MALEKZADEH等[42]提出DQM法,并將此方法應(yīng)用于各種邊界條件下圓弧拱的面外靜力失穩(wěn)分析.

PI 和BRADFORD[43-54]使用勢(shì)能駐值原理和Rayleigh-Ritz方法,先后求解了拱頂集中力作用下、均勻受壓以及均勻受彎下,拱腳兩端固接、鉸接、面內(nèi)彈性轉(zhuǎn)動(dòng)約束的鉸接圓弧拱的彈性彎扭屈曲荷載解析解,但基本上只適用于淺拱.

DOU等[55]首次提出桁架拱的剪切和扭轉(zhuǎn)剛度的求解方法,基于能量法推導(dǎo)出了兩端固接、均勻受壓和受彎桁架拱的側(cè)傾彎扭失穩(wěn)臨界荷載解析解,但該解析解并不適用于深拱和長(zhǎng)細(xì)比較大的桁架拱,另外還論證了等效長(zhǎng)度計(jì)算方法不適合計(jì)算拱的彎扭屈曲荷載.另外,DOU等[56]針對(duì)圓弧拱在發(fā)生側(cè)向特征值分叉失穩(wěn)時(shí)的變形函數(shù),提出了多三角函數(shù)項(xiàng)的位移函數(shù),但該方法只適合于受均布?jí)毫Α⒐拜S向壓力為恒定值的圓弧拱,若拱軸力不是恒定值則誤差較大.

PI等[57]以拱跨設(shè)置連續(xù)彈性支撐、均勻受壓和受彎拱工字型截面圓弧鋼拱為研究對(duì)象,研究了拱的面外失穩(wěn)問(wèn)題,指出彈性支撐對(duì)提高大圓心角拱的面外穩(wěn)定性?xún)?yōu)于小圓心拱.在此基礎(chǔ)上,GUO等[58-59]推導(dǎo)出橫向離散水平支撐下桁架拱和實(shí)腹式拱發(fā)生面外失穩(wěn)的彈性支撐剛度門(mén)檻值,此外,為便于結(jié)構(gòu)設(shè)計(jì),還應(yīng)用曲線(xiàn)擬合方法建立了拱平面外失穩(wěn)載荷的近似簡(jiǎn)化公式,并研究了面外幾何缺陷對(duì)橫向水平支撐彈性臨界剛度的影響,但并未考慮幾何和材料非線(xiàn)性的影響.

國(guó)內(nèi)關(guān)于拱橋的側(cè)傾失穩(wěn)解析解計(jì)算方法主要采用線(xiàn)彈性特征值法.李國(guó)豪[60]和項(xiàng)海帆等[61]系統(tǒng)歸納總結(jié)了拱橋側(cè)傾失穩(wěn)的臨界荷載理論計(jì)算方法,并提出了傳統(tǒng)系桿拱橋側(cè)傾失穩(wěn)的實(shí)用計(jì)算方法.楊永清[62]考慮非保向力的影響,提出了拱軸線(xiàn)為拋物線(xiàn)的下承式拱橋側(cè)向失穩(wěn)臨界荷載的解析解.劉愛(ài)榮等[63-68]建立了斜靠式拱橋發(fā)生側(cè)傾失穩(wěn)時(shí)主拱肋與穩(wěn)定拱肋間橫撐切向和徑向失穩(wěn)力學(xué)模型,推導(dǎo)了拱軸線(xiàn)為圓弧曲線(xiàn)、拋物線(xiàn)和懸鏈線(xiàn)斜靠式拱肋系和拱橋側(cè)傾失穩(wěn)臨界荷載解析解計(jì)算公式.以上分析基本上是基于特征值分析方法,適用于矢跨比較小的拱,計(jì)算結(jié)果偏大.

(2)有限元數(shù)值解法.KOMATSU 和SAKIMOTO[69-70]以均布荷載下矢跨比為0.1~0.2箱型截面拋物線(xiàn)拱為研究對(duì)象,考慮了殘余應(yīng)力和結(jié)構(gòu)初始幾何缺陷的影響,分析了拱面外彈塑性失穩(wěn)承載能力,引入等效長(zhǎng)細(xì)比概念,將拱比擬為軸心受壓柱,即可采用柱子穩(wěn)定曲線(xiàn)對(duì)均勻受壓拱的面外穩(wěn)承載能力進(jìn)行設(shè)計(jì).SAKIMOTO等[71]對(duì)設(shè)橫撐的兩鉸拋物線(xiàn)拱平行雙拱肋的平面外穩(wěn)定承載力進(jìn)行了研究,分析了垂直橋面的豎向荷載以及水平側(cè)向荷載對(duì)拱的承載能力的影響.

YABUKI等[72]建立了兩鉸拋物線(xiàn)、中間設(shè)橫撐的鋼拱的有限元模型,考慮了材料非線(xiàn)性的影響,分析了在豎向荷載、側(cè)向荷載以及各種荷載組合下拱橋的承載能力,指出傳統(tǒng)的鋼結(jié)構(gòu)拱橋可以采用擬平面分析方法,結(jié)果偏于保守.

PI 等[73]自主開(kāi)發(fā)了考慮曲率高階項(xiàng)、大位移、大轉(zhuǎn)動(dòng)、截面翹曲和剪應(yīng)力影響的三維大變形彈塑性梁?jiǎn)卧?,分析了拱頂集中力作用下,兩端鉸接和固接圓弧拱的彈塑性彎扭屈曲和后屈曲行為.研究結(jié)果表明,當(dāng)粗壯拱的圓心角較小時(shí)易發(fā)生彈塑性失穩(wěn),彈塑性失穩(wěn)荷載遠(yuǎn)小于彈性失穩(wěn)荷載;彈塑性后屈曲的承載能力隨著變形的增加而減小,相反彈性后屈曲的承載能力卻在增加;大圓心角兩鉸拱的彈塑性失穩(wěn)荷載基本與彈性失穩(wěn)荷載相當(dāng),而大圓心角固接拱的彈塑性失穩(wěn)荷載比彈性失穩(wěn)荷載??;細(xì)長(zhǎng)拱的彈塑性屈曲荷載等于彈性屈曲荷載.

PI等[74-76]研究了各種荷載作用下工字型截面鋼拱面外非彈性彎扭屈曲和后屈曲行為,引入正則化長(zhǎng)細(xì)比和澳洲規(guī)范中軸壓柱或純彎梁的穩(wěn)定系數(shù),提出了均勻受壓拱和均勻受彎拱的面外彈塑性承載能力計(jì)算公式.

BRADFORD 和PI[77-78]以拱頂設(shè)置側(cè)向彈性支撐以及拱跨設(shè)置離散彈性支撐、均勻受壓和受彎拱工字型截面圓弧鋼拱為研究對(duì)象,分析了支撐類(lèi)型、剛度和位置對(duì)側(cè)向失穩(wěn)的影響,并提出了側(cè)向支撐剛度的近似計(jì)算方法.研究表明,均勻彎曲約束梁的彈性彎扭失穩(wěn)解不能直接用于均勻彎曲約束拱,同樣的,均勻壓縮約束柱的彎曲或扭轉(zhuǎn)失穩(wěn)解也不能直接用于均勻受約束拱.

NAZMY[79]以中承式和上承式拱橋?yàn)槔?,采用有限元特征值求解方法,研究了橋面剛度、拱肋傾角、矢跨比、橫撐剛度、邊界條件和橋面位置等設(shè)計(jì)參數(shù)對(duì)大跨度鋼拱橋面外失穩(wěn)的影響,指出在主拱肋間設(shè)橫撐可以有效提高拱橋的面外失穩(wěn)臨界荷載,但未考慮非線(xiàn)性以及橫撐類(lèi)型對(duì)失穩(wěn)的影響.

劉愛(ài)榮等[80]基于所提出的斜靠式拱橋側(cè)傾失穩(wěn)臨界荷載解析解計(jì)算公式,考慮了結(jié)構(gòu)材料和幾何非線(xiàn)性影響,給出了斜靠式拱橋側(cè)傾臨界荷載的簡(jiǎn)化計(jì)算公式,但也不具普適性.

DOU等[81]研究了考慮剪切效應(yīng)的桁架拱平面外彈性失穩(wěn)荷載、均布受壓及受彎作用下的面外彈性彎扭失穩(wěn),以及豎向均布荷載作用下拋物線(xiàn)鋼拱的側(cè)向線(xiàn)彈性彎扭失穩(wěn),未考慮材料的塑性變形.此外,DOU等[82]引入正則化長(zhǎng)細(xì)比的概念,很大程度消除了結(jié)構(gòu)初始缺陷、尺寸、材料等參數(shù)的影響,提出了彈性支撐拱的彎扭側(cè)傾極限承載力的設(shè)計(jì)方法.

(3)實(shí)驗(yàn)方法

20世紀(jì)70年代以來(lái),有學(xué)者針對(duì)拱的彈塑性彎扭失穩(wěn)展開(kāi)了實(shí)驗(yàn)研究.SAKAT等[83]以11組不同矢跨比、拱軸線(xiàn)為圓弧曲線(xiàn)和拋物線(xiàn)的單拱、拱肋間設(shè)P型(抗扭)、L型(抗彎)和X型橫撐的組拼拱為研究對(duì)象,分析了拱軸線(xiàn)、橫撐類(lèi)型和長(zhǎng)度比、非保向力對(duì)工字截面拱側(cè)傾失穩(wěn)的影響,指出設(shè)X型橫撐較P型和L型橫撐更有助于提高拱肋的側(cè)傾承載能力,拱在平面均布荷載作用下的極限強(qiáng)度可用兩端固結(jié)的柱子的失穩(wěn)強(qiáng)度來(lái)模擬,但無(wú)法考慮扭轉(zhuǎn)剛度對(duì)極限承載能力的影響.LA等[84]對(duì)15組拱頂集中作用力下的圓弧鋼拱的面外彈塑性失穩(wěn)進(jìn)行了實(shí)驗(yàn)研究,拱的圓心角從90°變化到180°.

LIU等[85]完成了斜靠式拱肋系極限承載能力的模型實(shí)驗(yàn),闡明斜靠式拱橋結(jié)構(gòu)由開(kāi)始變形以至破壞的全部歷程,以及失穩(wěn)模態(tài)和破壞機(jī)理,揭示了穩(wěn)定拱肋對(duì)斜靠式拱肋系極限承載能力的影響規(guī)律.GUO等[86]通過(guò)實(shí)驗(yàn)研究對(duì)稱(chēng)及非對(duì)稱(chēng)荷載作用下固接圓弧鋼拱的面外非彈性失穩(wěn)強(qiáng)度.實(shí)驗(yàn)及有限元結(jié)果表明,面外初始幾何缺陷的大小和分布,面外失穩(wěn)模態(tài)和面內(nèi)加載模式均對(duì)強(qiáng)度有顯著影響.DOU等[87]以3組相同跨徑不同矢跨比、兩端鉸接的工字型截面圓弧拱為研究對(duì)象,研究了拱在3點(diǎn)對(duì)稱(chēng)和2點(diǎn)非對(duì)稱(chēng)加載下的面外失穩(wěn)承載能力,實(shí)驗(yàn)表明,由于拱腳處面外彎曲處于半約束狀態(tài),所以拱出現(xiàn)“S形”失穩(wěn)模態(tài),且3點(diǎn)加載狀態(tài)下拱的極限承載能力大于2點(diǎn)加載.

拱的面外穩(wěn)定性研究受到越來(lái)越多國(guó)內(nèi)外學(xué)者的關(guān)注,積累了一定的研究成果,但這些研究大都集中于拱的彈性穩(wěn)定性問(wèn)題,彈塑性穩(wěn)定分析相對(duì)較少,特別是關(guān)于組拼拱和斜靠式拱的彈塑性失穩(wěn)的研究則更少.

2 拱的動(dòng)力穩(wěn)定性研究進(jìn)展

2.1 拱的面內(nèi)動(dòng)力穩(wěn)定性

結(jié)構(gòu)動(dòng)力穩(wěn)定問(wèn)題是彈性體系穩(wěn)定理論與振動(dòng)理論的交叉領(lǐng)域,以下分別從理論和實(shí)驗(yàn)研究?jī)煞矫娼榻B拱的面內(nèi)動(dòng)力穩(wěn)定性研究進(jìn)展.

(1)理論研究.BOLOTIN[88]對(duì)圓弧單拱的面內(nèi)動(dòng)力穩(wěn)定問(wèn)題進(jìn)行了系統(tǒng)分析,利用Galerkin法求解動(dòng)力方程,將彎曲振動(dòng)微分方程轉(zhuǎn)化成馬奇耶方程組求解動(dòng)力不穩(wěn)定區(qū)域.HUMPHREYS[89-90]研究了圓弧拱在均布脈沖荷載下的動(dòng)力失穩(wěn)問(wèn)題,提出了動(dòng)力失穩(wěn)的能量判斷準(zhǔn)則,并探討了圓弧淺拱的動(dòng)力塑性變形行為.KOUNADIS等[91]對(duì)單自由度拱非線(xiàn)性動(dòng)力穩(wěn)定性進(jìn)行了分析,得到了沖擊荷載作用下的動(dòng)力失穩(wěn)方程.MATSUNAGA[92]利用位移能量持續(xù)膨脹法獲得了軸向動(dòng)力荷載下圓弧拱動(dòng)力失穩(wěn)荷載的近似解.

近年來(lái),對(duì)拱結(jié)構(gòu)動(dòng)力穩(wěn)定問(wèn)題的研究主要基于能量方法.SIMITSES[93]利用能量法推導(dǎo)了突加正弦荷載作用下的兩端鉸接或固接圓弧拱屈曲臨界荷載近似解.此外,他還提出了基于能量守恒原理的SIMITSES總勢(shì)能方法,以此求解躍階荷載作用下結(jié)構(gòu)的動(dòng)力穩(wěn)定問(wèn)題.KOUNADIS等[94-95]對(duì)能量法求解淺拱動(dòng)力穩(wěn)定問(wèn)題進(jìn)行了深入研究,利用總勢(shì)能原理解決了求解多自由度動(dòng)力穩(wěn)定方程的問(wèn)題.HSU[96-97]以圓弧拱為研究對(duì)象,最早建立了求解拱結(jié)構(gòu)在階躍荷載下的動(dòng)力穩(wěn)定判別準(zhǔn)則-Hsu能量準(zhǔn)則.LEVITAS等[98]基于HSU[99]對(duì)個(gè)體映射法在動(dòng)力穩(wěn)定問(wèn)題上的應(yīng)用進(jìn)行了探討,利用POINCARE單個(gè)體映射法研究了圓弧彈性拱在均布徑向荷載作用下的整體動(dòng)力穩(wěn)定性.PI等[100-104]將圓弧拱簡(jiǎn)化成單自由度或2自由度拱,通過(guò)能量法建立標(biāo)準(zhǔn)躍階荷載作用下,兩端固接、鉸接或彈性支持淺拱的平面動(dòng)力失穩(wěn)方程,并以SIMITSES的總勢(shì)能原理作為動(dòng)力穩(wěn)定判定準(zhǔn)則,通過(guò)改變不同的幾何參數(shù),討論了拱結(jié)構(gòu)動(dòng)力失穩(wěn)特征并考慮了非線(xiàn)性因素的影響,但未考慮阻尼的影響.此外,PI等[105]運(yùn)用能量守恒原理建立了彈塑性動(dòng)力失穩(wěn)準(zhǔn)則,得出了拱的彈塑性動(dòng)力失穩(wěn)臨界值解析解,分析了階躍荷載作用下鉸接淺拱的面內(nèi)彈塑性動(dòng)力失穩(wěn).結(jié)果顯示,階躍荷載作用下鉸接淺拱的彈塑性動(dòng)力失穩(wěn)臨界荷載小于相應(yīng)的彈塑性靜力失穩(wěn)臨界荷載.

王連華等[106]研究周期荷載頻率與幾何缺陷對(duì)拱動(dòng)力穩(wěn)定性的影響,表明與靜力屈曲模態(tài)相似的缺陷分布產(chǎn)生的影響最大,拱結(jié)構(gòu)在周期激勵(lì)下存在動(dòng)力失穩(wěn)域,但同樣未考慮阻尼的影響.

MALLON等[107]運(yùn)用數(shù)值法和多自由度半解析法對(duì)兩拱腳受沖擊荷載作用下的淺拱的動(dòng)力穩(wěn)定性進(jìn)行理論研究,結(jié)果表明,拱的形狀參數(shù)、阻尼比、幾何缺陷等因素對(duì)拱的動(dòng)力穩(wěn)定性有較大影響.

(2)實(shí)驗(yàn)研究.HUMPHREYS[108]通過(guò)實(shí)驗(yàn)探討了圓弧淺拱的動(dòng)力塑性變形問(wèn)題.CHEN等[109]通過(guò)實(shí)驗(yàn)探究了一端鉸接、另一端連接機(jī)電振動(dòng)器淺拱的動(dòng)力穩(wěn)定性,振動(dòng)器生成軸向周期激振力,當(dāng)將激振力頻率調(diào)整到拱的第一階自振頻率附近,拱將發(fā)生非線(xiàn)性共振,當(dāng)激振力的頻率為拱自振頻率的2倍時(shí),發(fā)生面內(nèi)參數(shù)振動(dòng),最終導(dǎo)致拱發(fā)生動(dòng)力失穩(wěn).

BENEDETTINI等[110]研究了圓弧淺拱、非淺拱在周期性集中荷載作用下,由共振引起的動(dòng)力失穩(wěn)問(wèn)題,分別采用矢跨比為1/10和1/2的兩組矩形截面、兩端鉸接的圓弧拱進(jìn)行了實(shí)驗(yàn),通過(guò)在拱頂施加微型激振器方式模擬拱頂?shù)闹芷谛约?lì),通過(guò)該實(shí)驗(yàn)得到了圓弧非淺拱、淺拱面內(nèi)非線(xiàn)性振動(dòng)規(guī)律.

將動(dòng)力穩(wěn)定性理論運(yùn)用到實(shí)際工程中是研究的最終目的.徐艷等[111]以某鋼管混凝土拱橋?yàn)檠芯繉?duì)象,以運(yùn)動(dòng)穩(wěn)定性理論為基礎(chǔ),利用改進(jìn)的時(shí)間凍結(jié)法(動(dòng)態(tài)特征值法)求得結(jié)構(gòu)在地震波作用下的動(dòng)態(tài)穩(wěn)定系數(shù)時(shí)間歷程,研究了阻尼比及輸入方向?qū)?dòng)力穩(wěn)定臨界系數(shù)的影響,并探討了地震波作用下拱橋的穩(wěn)定安全系數(shù),評(píng)估了鋼管混凝土拱橋的彈性動(dòng)力穩(wěn)定性能.此外,徐艷等[112]從結(jié)構(gòu)極限承載力的角度探討了地震作用下鋼管混凝土拱橋的動(dòng)力穩(wěn)定性能,采用B-R運(yùn)動(dòng)準(zhǔn)則結(jié)合動(dòng)態(tài)增量法(IDA)提出用特征響應(yīng)尋求鋼管混凝土拱橋動(dòng)力穩(wěn)定極限承載力的研究方法,分析了地震動(dòng)輸入方向、結(jié)構(gòu)幾何非線(xiàn)性、材料非線(xiàn)性及其結(jié)構(gòu)初始缺陷模式和大小對(duì)動(dòng)力穩(wěn)定極限承載力的影響.最后,通過(guò)對(duì)振動(dòng)臺(tái)實(shí)驗(yàn)驗(yàn)證該方法的正確性和適用性.

吳玉華[113]提出了結(jié)構(gòu)運(yùn)動(dòng)穩(wěn)定性實(shí)用判別準(zhǔn)則及具體實(shí)施步驟,研究了拱結(jié)構(gòu)在階躍荷載、周期荷載以及地震激勵(lì)下的失穩(wěn)特征,指出結(jié)構(gòu)整體剛度矩陣出現(xiàn)負(fù)特征值是結(jié)構(gòu)失穩(wěn)的必要條件,并指出位移時(shí)程曲線(xiàn)發(fā)散、運(yùn)動(dòng)狀態(tài)混沌、發(fā)生跳躍或性質(zhì)發(fā)生改變,皆可作為判斷結(jié)構(gòu)是否發(fā)生動(dòng)力失穩(wěn)的依據(jù).

以上對(duì)拱的面內(nèi)動(dòng)力穩(wěn)定性研究多適用于小矢跨比淺拱,而關(guān)于大矢跨比深拱的動(dòng)力穩(wěn)定性還有必要進(jìn)一步探討.此外,以往的研究多為拱在周期荷載、沖擊荷載、階躍荷載等確定荷載作用下的穩(wěn)定性分析,而鮮少針對(duì)隨機(jī)荷載作用下的穩(wěn)定性開(kāi)展研究.

2.2 拱的面外動(dòng)力穩(wěn)定性

近年來(lái),有學(xué)者針對(duì)拱的面外動(dòng)力穩(wěn)定性進(jìn)行了初步研究,但成果相對(duì)較少.

TAKAHASHI 等[114]采用Galerkin法和諧波平衡法對(duì)面內(nèi)呈正弦周期均布荷載作用下圓弧拱的面外動(dòng)力穩(wěn)定性進(jìn)行了理論研究,但未考慮阻尼和非線(xiàn)性的影響.

董寧娟等[115]基于Hamilton原理及能量法,推導(dǎo)了開(kāi)口薄壁截面圓弧拱在徑向均布周期荷載作用下的動(dòng)力穩(wěn)定偏微分方程,并運(yùn)用Galerkin方法將該方程轉(zhuǎn)化為Mathieu-Hill型二階常微分參數(shù)振動(dòng)方程,進(jìn)而求解得到了周期解所包圍的動(dòng)力不穩(wěn)定區(qū)域,但該研究基于理想化的圓弧拱結(jié)構(gòu),同樣未考慮實(shí)際結(jié)構(gòu)阻尼以及非線(xiàn)性等因素的影響,并且解析結(jié)果從理論上只適用于淺拱.趙洪金等[116]進(jìn)一步建立了考慮剪切變形的圓弧深拱的面內(nèi)動(dòng)力穩(wěn)定微分方程,但也僅局限于理論分析,未進(jìn)行實(shí)驗(yàn)驗(yàn)證.

劉愛(ài)榮等[117]以斜靠式拱橋?yàn)檠芯繉?duì)象,基于Lyapunov運(yùn)動(dòng)穩(wěn)定性理論,給出了斜靠式拱橋地震荷載作用下的動(dòng)力穩(wěn)定性判斷準(zhǔn)則,揭示了地震輸入方向及穩(wěn)定拱肋傾角對(duì)斜靠式拱橋動(dòng)力穩(wěn)定性的影響規(guī)律.邢帆等[118]以某下承式鋼管混凝土拱橋?yàn)楣こ瘫尘?,以某地區(qū)地震記錄作為橫向輸入,采用動(dòng)態(tài)增量分析(IDA)方法和高性能數(shù)值計(jì)算并行處理方法,研究了大跨度鋼管混凝土拱橋在近斷層地震作用下的動(dòng)力穩(wěn)定性能.

LIU等[119]考慮了阻尼和非線(xiàn)性的影響,對(duì)拱頂周期集中力作用下圓弧拱的面外參數(shù)共振引起的動(dòng)力失穩(wěn)問(wèn)題進(jìn)行了探討,利用Ronge-Kutta求解得出了淺拱動(dòng)力不穩(wěn)定區(qū)域,并通過(guò)周期激振實(shí)驗(yàn)驗(yàn)證了理論計(jì)算結(jié)果的正確性,但研究成果只適用于淺拱.

綜上所述,拱的面外動(dòng)力穩(wěn)定性研究成果相對(duì)不足,尤其是隨機(jī)荷載作用下的面外失穩(wěn)的研究,以及面外參數(shù)振動(dòng)的實(shí)驗(yàn)研究更是屈指可數(shù).這一研究方向尚有深遠(yuǎn)的挖掘空間與研究意義.

3 結(jié) 論

基于以上研究進(jìn)展,總結(jié)拱穩(wěn)定性研究存在的不足,并期待后續(xù)能在以下領(lǐng)域有進(jìn)一步的突破:

(1)拱的平面靜力穩(wěn)定性研究多集中于彈性穩(wěn)定性,關(guān)于拱的彈塑性穩(wěn)定性還有待進(jìn)一步挖掘.此外,從現(xiàn)有的文獻(xiàn)來(lái)看,針對(duì)組拼拱的面外彈塑性穩(wěn)定性的理論與試驗(yàn)研究相對(duì)匱乏,能為實(shí)際拱橋結(jié)構(gòu)設(shè)計(jì)提供有效參考建議比較有限.

(2)拱動(dòng)力失穩(wěn)形式具有多樣性,包括面內(nèi)正對(duì)稱(chēng)失穩(wěn)、面內(nèi)反對(duì)稱(chēng)失穩(wěn)、面外側(cè)傾失穩(wěn)、面外扭轉(zhuǎn)失穩(wěn)等,其破壞形態(tài)各異,失穩(wěn)機(jī)理亦不同.盡管已有學(xué)者初步探索了拱的穩(wěn)定性理論和試驗(yàn)研究,但尚有一定的局限性,有待建立簡(jiǎn)明、統(tǒng)一的穩(wěn)定性判別準(zhǔn)則,提出更為實(shí)用的計(jì)算方法.

(3)拱的隨機(jī)動(dòng)力穩(wěn)定性仍有待關(guān)注,尚需針對(duì)隨機(jī)荷載下拱的穩(wěn)定性開(kāi)展大量科研工作.以求解拱的隨機(jī)動(dòng)力穩(wěn)定性邊界條件,確定實(shí)用的隨機(jī)動(dòng)力穩(wěn)定判斷準(zhǔn)則,最終獲得準(zhǔn)確的隨機(jī)動(dòng)力穩(wěn)定性評(píng)價(jià)指標(biāo).

(4)對(duì)圓弧拱、拋物線(xiàn)拱、正弦拱等各種形式的拱結(jié)構(gòu)在集中力、均布力作用下的動(dòng)力穩(wěn)定性的理論做了較為詳盡的研究,然而結(jié)果大部分只適用于小矢跨比淺拱,對(duì)大矢跨比深拱的失穩(wěn)行為尚無(wú)法準(zhǔn)確預(yù)測(cè),并且荷載形式相對(duì)簡(jiǎn)單,如多為拱頂集中力、徑向局部荷載、兩端集中力矩.

(5)對(duì)拱結(jié)構(gòu)的動(dòng)力穩(wěn)定性研究大都集中在周期荷載、沖擊荷載、階躍荷載等的面內(nèi)失穩(wěn),關(guān)于面外動(dòng)力失穩(wěn)的研究甚少,在隨機(jī)荷載作用下的面外失穩(wěn)的研究更是鮮有報(bào)道.

[1] TIMOSHENKO S P, GERE J M. Theory elastic stability[M].2nd ed. New York: Mcgraw-Hill, 1961.

[2] PI Y L,BRADFORD M A, UY B. In-plane stability of arches[J]. Intern J Solids Struct, 2002, 39(1):105-125.

[3] BRADFORD M A, UY B, PI Y L. In-plane elastic stability of arches under a central concentrated load[J]. J Eng Mech, 2002, 128(7):710-719.

[4] PI Y L,BRADFORD M A, TIN-LOI F. Nonlinear analysis and buckling of elastically supported circular shallow arches[J]. Intern J Solids Struct, 2007, 44(7/8):2401-2425.

[5] PI Y L, BRADFORD M A, TIN-LOI F. Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load[J]. Intern J Non-linear Mech, 2008, 43(1):1-17.

[6] BRADFORD MA, PI YL, TINL F. In-plane elastic non-linear analysis of shallow circular arches with generic end restraints[J]. Archiv Civil Eng, 2008, 54(1):59-71.

[7] PI Y L, BRADFORD M A. Non-linear in-plane postbuckling of arches with rotational end restraints under uniform radial loading[J]. Intern J Non-linear Mech,2009, 44(9):975-989.

[8] PI Y L, BRADFORD M A. Non-linear in-plane analysis and buckling of pinned-fixed shallow arches subjected to a central concentrated load[J]. Intern J Non-linear Mech, 2012, 47(4):118-131.

[9] PI Y L,BRADFORD M A. Nonlinear elastic analysis and buckling of pinned-fixed arches[J]. Intern J Mech Sci, 2013, 68(3): 212-223.

[10]PI Y L,BRADFORD M A. Nonlinear analysis and buckling of shallow arches with unequal rotational end restraints[J]. Eng Struct,2013,46: 615-630.

[11]BRADFORD M A, PI Y L, YANG G, et al. Effects of approximations on non-linear in-plane elastic buckling and postbuckling analyses of shallow parabolic arches[J]. Eng Struct, 2015, 101: 58-67.

[12]PI Y L, BRADFORD M A. In-plane analyses of elastic three-pinned steel arches[J]. J Struct Eng, 2014, 141(2): 1-4.

[13]HODGES D H. Non-liner in-plane deformation and bucking of rings and high arches[J].Intern J Now-linear Mechanics,1999,34(4):723-737.

[14]TONG G, PI Y L, BRADFORD M A, et al. In-plane nonlinear buckling analysis of deep circular arches incorporating transverse stresses[J]. J Eng Mech, 2008, 134(5):362-373.

[15] 易壯鵬, 趙躍宇. 圓弧拱考慮一般缺陷的面內(nèi)屈曲[J]. 應(yīng)用力學(xué)學(xué)報(bào), 2009, 26(4):721-724.

YI Z P, ZHAO Y Y. The in-plane buckling of circular arches considering common defects[J]. Chin J Appl Mech, 2009, 26(4):721-724.

[16]PI Y L, BRADFORD M A. Nonlinear thermoelastic buckling of pin-ended shallow arches under temperature gradient[J]. J Eng Mech, 2010, 136(8): 960-968.

[17]PI Y L, BRADFORD M A. In-plane thermoelasticbehaviour and buckling of pin-ended and fixed circular arches[J]. Eng Struct, 2010, 32: 250-260.

[18]PI Y L, Bradford M A. Effects of nonlinearity and temperature field on in-plane behaviour and buckling of crown-pinned steel arches[J].Eng Struct, 2014,74: 1-12.

[19]BRADFORD M A, PI Y L, GILBERT R I. Nonlinear in-plane behaviour and buckling of concrete-filled steel tubular arches[J]. Weld World,2006,50:320-325.

[20]PI Y L, BRADFORD M A, QU W. Long-term non-linear behaviour and buckling of shallow concrete-filled steel tubular arches[J]. Intern J Non-linear Mech, 2011, 46: 1155-1166.

[21]BRADFORD M A, PI Y L, QU W. Time-dependent in-plane behaviour and buckling of concrete-filled steel tubular arches[J]. Eng Struct, 2011, 33: 1781-1795.

[22]LUO K, PI YL, GAO W, et al. Creep of concrete core and time-dependent non-linear behaviour and buckling of shallow concrete-filled steel tubular arches[J]. CMES Comput Model Eng Sci, 2013,95(1): 32-58.

[23]PI Y L, BRADFORD M A. Long-term analyses of concrete-filled steel tubular arches accounting for interval uncertainty[J].Comput Model Eng Sci, 2014,99(3): 233-253.

[24]LUO K, PI Y L, GAO W, et al. Investigation into long-term behaviour and stability of concrete-filled steel tubular arches[J].J Constr Steel Res,2015,104: 127-136.

[25]PI Y L, TRAHAIR N S. Three-dimensional nonlinear analysis of elastic arches[J]. Eng Struct, 1996, 18(1):49-63.

[26]PI Y L, TRAHAIR N S. Non-linear buckling and post-buckling of elastic arches[J]. Eng Struct, 1998, 20(7):571-579.

[27]PI Y L, TRAHAIR N S. In-plane inelastic buckling and strengths of steel arches[J]. J Struct Eng, 1996, 122(7):734-747.

[28]PI Y L, TRAHAIR N S. In-plane buckling and design of steel arches[J]. J Struct Eng,1999,125(11):1291-1298.

[29]PI Y L, BRADFORD M A. In-plane strength and design of fixed steel I-section arches[J]. Eng Struct,2004, 26(3):291-301.

[30]BRADFORD M A, PI Y L. Design of steel arches against in-plane instability[J]. Intern J Appl Mech Eng, 2004,9(1): 37-45.

[31]PI Y L, BRADFORD M A, TIN-LOI F. In-plane strength of steel arches[J]. Intern J Adv Steel Constr, 2008,4(4):306-322.

[32]GUO Y L, CHEN H, PI Y L, et al. In-plane failure mechanism and strength of pin-ended steel I-section circular arches with sinusoidal corrugated web[J]. J Struct Eng, 2016,142(2): 1-15.

[33]謝旭, 李輝, 黃劍源. 大跨度兩鉸鋼拱橋面內(nèi)穩(wěn)定分析[J]. 土木工程學(xué)報(bào), 2004, 37(8): 43-49.

XIE X, LI H, HUANG J Y. In-plane stability analysis of large span pined-pined steel arch bridge[J]. Chin Civil Eng J, 2004, 37(8): 43-49.

[34]沈堯興, 趙志軍, 華旭剛. 大跨度鋼管混凝土拱橋的穩(wěn)定性分析[J]. 西南交通大學(xué)學(xué)報(bào), 2003, 38(6): 655-657.

SHENG Y X, ZAO Z J, HUA X G. The stability analysis of large span concrete filled steel tubular arch bridge[J]. J SW Jiaotong Univ, 2003, 38(6): 655-657.

[35]GJELSVIKA, BODNERSR. The energy criterion and snap buckling of arches[J]. J Eng Mech Div, 1962, 88(5): 87-134.

[36]謝幼藩,陳克濟(jì). 拱橋面內(nèi)穩(wěn)定性計(jì)算的探討[J]. 西南交通大學(xué)學(xué)報(bào), 1982(1):1-11.

XIE Y F,CHEN K J. Discussion on in-plane stability calculation of arch[J]. J SW Jiaotong Univ, 1982(1):1-11.

[37]VIRGIN L N, WIEBE R, SPOTTSWOOD S M, et al. Sensitivity in the structural behavior of shallow arches[J]. Intern J Non-linear Mech, 2014, 58:212-221.

[38]GUO Y L, CHEN H, PI YL,et al. In-plane strength of steel arches with sinusoidal corrugated webunder a full-span uniform vertical load:Experimental and numerical[J].Eng Struct,2015, 110: 105-115.

[39]SAKIMOTO T, NAMITA H.Out-of-plane buckling of solid rib arches braced with transverse bars[J]. Proc JSCE, 1971,191:109-116.

[40]PI Y L,PAPANGELIS J P, TRAHAIR N S.Prebuckling deformations and flexural-torsional buckling of arches[J]. J Struct Eng,1995,121(9):1313-1322.

[41]LIM N H, KANG Y J. Out of plane stability of circular arches[J]. Intern J Mech Sci, 2004, 46(8): 1115-1137.

[42]MALEKZADEH P, KARAMI G. Out-of-plane static analysis of circular arches by DQM[J]. Intern J Solid Struct, 2003, 40(23): 6527-6545.

[43]PI Y L, BRADFORD M A. Elastic flexural-torsional buckling of fixed arches[J]. Quart J Mech Appl Math,2004,57(4):551-569.

[44]PI Y L, BRADFORD M A. Effects of prebuckling deformations on the flexural-torsional buckling of laterally fixed arches[J]. Intern J Mech Sci,2004, 46(2):321-342.

[45]PI Y L, BRADFORD M A, TRAHAIRNS, et al. A further study of flexural-torsional buckling of elastic arches[J]. Intern J Struct Stabil Dynam, 2005, 5(2):163-183.

[46]PI Y L, BRADFORD M A, CHEN Y Y. An equilibrium approach for flexural-torsional buckling of elastic arches[J]. Intern J Adv Steel Constr, 2005, 1(1):47-66.

[47]BRADFORD M A, PI Y L. Flexural-torsional buckling of fixed steel arches under uniform bending[J]. J Constr Steel Res, 2006, 62(1 2):20-26.

[48]BRADFORD M A, PI Y L. Elastic flexural-torsional buckling of circular arches under uniform compression and effects of load height[J]. Intern J Mech Sci, 2006,1(7): 1235-1256.

[49]PI Y L, BRADFORD M A, TIN-LOI F. Flexural-torsional buckling of shallow arches under uniform radial loads[J]. Thin-walled Struct, 2007, 45(3):352-362.

[50]BRADFORD M A, PI Y L. Elastic flexural-torsional instability of structural arches under hydrostatic pressure[J]. Intern J Mech Sci, 2008, 50(2):143-151.

[51]PI Y L, BRADFORD M A. TONG G S. Elastic lateral-torsional buckling of circular arches subjected to a central concentrated load[J]. Intern J Mech Sci, 2010, 52(6): 847-862.

[52]BRADFORD M A, PI Y L. A new analytical solution for lateral-torsional buckling of arches under axial uniform compression[J]. Eng Struct, 2012, 41: 14-23.

[53]PI Y L, BRADFORD M A. Lateral-torsional elastic buckling of rotationally restrained arches with a thin-walled section under a central concentrated load[J]. Thin-walled Struct, 2013, 73: 18-26.

[54]PI Y L, BRADFORD M A. Lateral-torsional buckling analysis of arches having in-plane rotational end restraints under uniform radial loading[J]. J Eng Mech, 2013,139(11): 1602-1609.

[55]DOU C, GUO Y L, ZHAO S Y, et al. Elastic out-of-plane buckling load of circular steel tubular truss arches incorporating shearing effects[J]. Eng Struct, 2013, 52: 697-706.

[56]DOU C, GUO Y L, PI Y L, et al. Effects of shape functions on flexural-torsional buckling of fixed circular arches[J]. Eng Struct, 2014, 59: 238-247.

[57]PI Y L, BRADFORD M A. Elastic flexural-torsional buckling of continuously restrained arches[J]. Intern J Solid Struct Eng, 2002, 39(8):2299-2322.

[58]GUO Y L, ZHAO S Y, BRADFORD M A, et al. Threshold stiffness of discrete lateral bracing for out-of-plane buckling of steel arches[J]. J Struct Eng, 2015, 141(10): 1-7.

[59]GUO Y L, ZHAO S Y, DOU C. Out-of-plane elastic buckling behavior of hinged planar truss arch with lateral bracings[J]. J Constr Steel Res, 2014, 95: 290-299.

[60]李國(guó)豪. 橋梁結(jié)構(gòu)穩(wěn)定與振動(dòng)(修訂版)[M]. 北京: 中國(guó)鐵道出版社, 2003.

LI G H. Stability and vibration of bridge structures[M]. Beijing: China Railway Publishing House,2003.

[61]項(xiàng)海帆, 劉光棟. 拱結(jié)構(gòu)的穩(wěn)定與振動(dòng)[M]. 北京: 人民交通出版社, 1991.

XIANG H F, LIU G D. Stability and vibration of arch structures[M]. Beijing: China Communication Press, 1991.

[62]楊永清. 鋼管混凝土拱橋橫向穩(wěn)定性分析[D].成都: 西南交通大學(xué), 1998.

YANG Y Q. Lateral stability analysis of concrete filled steel tube arch bridge[D].Chengdu: Southwest Jiaotong University, 1998.

[63]劉愛(ài)榮,申富林,張俊平,等.斜靠式拱橋側(cè)傾失穩(wěn)臨界荷載解析解[J].土木工程學(xué)報(bào),2012,45(4):107-115.

LIU A R, SHEN F L, ZHANG J P, et al. An analytic solution for lateral buckling critical load of leaning type arch bridge[J]. Chin Civil Eng J,2012,45(4):107-115.

[64]劉愛(ài)榮,汪荷玲,禹奇才,等. 斜靠式拱橋側(cè)傾失穩(wěn)極限承載能力簡(jiǎn)化計(jì)算方法[J].土木工程學(xué)報(bào),2013,46(4):93-102.

LIU A R, WANG H L, YU Q C, et al. A simplified calculation method for lateral buckling ultimate bearing capacity of leaning type arch bridge[J]. Chin Civil Eng J,2013,46(4):93-102.

[65]LIU A R, HUANG Y Q, YU Q C, et al. An analytical solution for lateral buckling critical load calculation of leaning-type arch bridge[J]. Mathl Probl Eng, 2014(3):1-14.

[66]劉愛(ài)榮,申富林,鄺鉅滔,等. 斜靠式拱肋系側(cè)傾失穩(wěn)臨界荷載計(jì)算方法[J].工程力學(xué),2011,28(12):166-172.

LIU A R, SHEN F L, KUANG J T, et al. A calculation method for lateral buckling critical load of leaning type arch ribs[J]. Eng Mech,2011,28(12):166-172.

[67]劉愛(ài)榮,汪荷玲,禹奇才,等.斜靠式拱橋結(jié)構(gòu)側(cè)傾失穩(wěn)分析的Ritz法[J].計(jì)算力學(xué)學(xué)報(bào),2013,30(1):81-87.

LIU A R, WANG H L, YU Q C, et al. The Ritz method for lateral buckling analysis of the leaning type arch bridge structure[J].Chin J Comput Mech,2013,30(1):81-87.

[68]劉愛(ài)榮,汪荷玲,禹奇才,等. 懸鏈線(xiàn)斜靠式拱肋系側(cè)傾失穩(wěn)臨界荷載[J].工程力學(xué),2013,30(10):161-170.

LIU A R, WANG H L, YU Q C, et al. The lateral buckling critical load of catenary leaning type arch ribs[J].Eng Mech,2013,30(10):161-170.

[69]KOMATSU S, SAKIMOTO T. Ultimate load carrying capacity of steel arches[J]. J Struct Divis,1977, 103(ST12):2323-2336.

[70]SAKIMOTO T, KOMATSU S. Ultimate strength formula for steel arches[J]. J Struct Eng,1983, 109(3):613-627.

[71]SAKIMOTOT,YAMAOT, KOMATSU S. Ultimate strength formula for central-arch-girder-bridge[J]. Proc JSCE, 1983, 333:183-186.

[72]YABUKI T, VINNAKOTA S. Lateral load effect on load carrying capacity of steel arch bridge structures[J]. J Struct Divis, ASCE, 1983, 109(10):2434-2449.

[73]PI Y L, BRADFORD M A. Elasto-plastic buckling and postbuckling of arches subjected to a central load[J]. Comput Struct, 2003, 81(18): 1811-1825.

[74]PI Y L, TRAHAIR N S. Out-of-plane inelastic buckling and strength of steel arches[J]. J Struct Eng, 1998, 124(2): 174-183.

[75]PI Y L,TRAHAIRNS. Lateral inelastic buckling strength and design of steel arches[J]. Eng Struct, 2000, 22(8):993-1005.

[76]PI Y L, BRADFORD M A. Out-of-plane strength design of fixed steel I-section arches[J]. J Struct Eng, 2005, 131(4): 560-568.

[77]BRADFORD M A, PI Y L. Elastic flexural-torsional buckling of discretely restrained arches[J]. J Struct Eng-ASCE 2002, 128(6):719-727.

[78]PI Y L, BRADFORD M A. Inelastic buckling and strength of steel I section arches with a central torsional restraint[J]. Thin-walled Struct, 2003, 41:663-689.

[79]NAZMY A S. Stability and load-carrying capacity of three-dimensional long-span steel arch bridges[J]. Comput Struct, 1997, 65(6): 857-868.

[80]劉愛(ài)榮,郭玉柱,禹奇才. 斜靠式拱肋系極限承載能力研究[J]. 廣州大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,11(5):46-50.

LIU A R, GUO Y Z, YU Q C. Research on ultimate load bearing capacity of oblique arch rib system[J]. J Guangzhou Univ(Nat Sci Edi),2012,11(5):46-50.

[81]DOU C, GUO Y L, PI Y L, et al. Flexural-torsional buckling and ultimate resistance of parabolic steel arches subjected to uniformly distributed vertical load[J]. J Struct Eng, 2014, 140(10):890-914.

[82]DOU C, PI Y L. Flexural-torsional buckling resistance design of circular arches with elastic end restraints[J]. J Struct Eng, 2016, 142(2): 04015104-1-10.

[83]SAKATA T, SAKIMOTOT. Experimental study on the out-of-plane buckling strength of steel arches with open cross section[J]. Proc Civil Soc, 1990 (416): 101-112.

[84]LA P D B, SPOORENBERG R C, SNIJDER H H, et al. Out-of-plane stability of roller bent steel arches—An experimental investigation[J]. J Constr Steel Res, 2013, 81: 20-34.

[85]LIU A R, HUANG Y H, FU J Y, et al. Experimental research on stable ultimate bearing capacity of leaning-type arch rib systems[J]. J Constr Steel Res, 2015, 114: 281-292.

[86]GUO Y L, ZHAO S Y, PI Y L, et al. An experimental study on out-of-plane inelastic buckling strength of fixed steel arches[J]. Eng Struct, 2015, 98: 118-127.

[87]DOU C, GUO Y L, ZHAO S Y, et al. Experimental investigation into flexural-torsional ultimate resistance of steel circular arches[J]. J Struct Eng, 2015, 141(10): 1-12.

[88]BOLOTIN. Dynamic stability of elastic systems[M]. Beijing: Higher and Education Press,1960.

[89]HUMPHREY J S. On dynamic snap buckling of shallow arches[J]. AIAA J, 1966, 4: 878-886.

[90]HUMPHREY J S.On the adequacy of energy criteria for dynamic buckling of arches[J]. AIAA J, 1966, 4: 921-923.

[91]KOUNADIS A N, RAFTOYIANNIS J, MALLIS J. Dynamic buckling of an arch model under impact loading[J]. J Sound Vibrat, 1989,134(2): 193-20.

[92]MATSUNAGA H. In-plane vibration and stability of shallow circular arches subjected to axial forces[J].Intern J Solid Struct,1996,33(4):469-482.

[93]SIMITSES G J. Dynamic stability of suddenly loaded structures[M]. New York:Springer-Verlag, 1990.

[94]KOUNADIS A N, GANTES C J, BOLOTIN V V.Dynamic buckling loads of autonomous potential system based on the geometry of the energy surface[J]. Intern J Eng Sci, 1999, 37: 1611-1628.

[95]KOUNADIS A N, GANTES C J, RAFTOYIANNIS I G. A geometric approach for establishing dynamic buckling load of autonomous potential N-degree-of-freedom systems[J]. Intern J Non-linear Mech, 2004, 39: 1635-1646.

[96]HSU C S. On dynamic stability of elastic bodies with prescribed initial conditions[J]. Intern J Eng Sci, 1966, 4(1): 1-21.

[97]HSU C S. Stability of shallow arches against snap-through under timewise step loads[J]. J Appl Mech, 1968, 35(1):31-39.

[98]LEVITAS J, SINGER J, WELLER T. Global dynamic stability of a shallow arch by Poincare-like simple cell mapping[J].Intern J Non-linear Mechs, 1997,32(2):411-424.

[99]HSU C S, GUTTALU R S.An unravelling algorithm for global analysis of dynamical systems: An application of cell-to-cell mapping[J]. J Appl Mech, 1980, 47(4): 940-948.

[100]PI Y L, BRADFORD M A.Dynamic buckling of shallow pin-ended arches under a sudden central concentrated load[J]. J Sound Vibrat, 2008, 317(3/5): 898-917.

[101]PI Y L, BRADFORD M A, LIANG S. Elasto-dynamic instability of shallow pin-ended steel arches under central step loading[J]. Intern J Adv Steel Constr, 2009, 4(4): 306-322.

[102]PI Y L, BRADFORD M A, QU W L. Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration[J]. Struct Eng Mech, 2010, 35 (5): 555-570.

[103]PI Y L,BRADFORD M A. Nonlinear dynamic buckling of pinned-fixed shallow arches[J]. Nonlin Dynam, 2013,73(3): 1289-1306.

[104]PI Y L, BRADFORD M A. In-plane stability of preloaded shallow arches against dynamic snap-through accounting for rotational end restraints[J]. Eng Struct, 2013, 56: 1496-1510.

[105]PI Y L, BRADFORD M A.Multiple unstable equilibrium branches and non-linear dynamic buckling of shallow arches[J]. Intern J Non-linear Mech, 2014, 60: 33-45.

[106]王連華, 易壯鵬, 張輝. 周期荷載作用下幾何缺陷拱的動(dòng)力穩(wěn)定性[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2007, 34(11): 16-19.

WANG L H, YI Z P, ZHANG H. Dynamic stability of arch with geometrical imperfections under periodic loads[J]. J Hunan Univ(Nat Sci),2007, 34(11): 16-19.

[107]MALLON N J, FEY R H B, NIJMEIJER H, et al. Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape[J]. Intern J Non-linear Mech, 2006, 41(9):1057-1067.

[108]HUMPHREYS J S. Experiments on dynamic plastic deformation of shallow circular arches[J]. AIAA J, 1966, 4: 926-928.

[109]CHEN J S, YANG C H. Experiment and theory on the nonlinear vibration of a shallow arch under harmonic excitation at the end[J].J Appl Mech, 2007, 74(6):1061-1070.

[110]BENEDETTINI F, ALAGGIO R, ZULLI D. Nonlinear coupling and instability in the forced dynamics of a non-shallow arch: theory and experiments[J]. Nonlin Dynam, 2011, 68(4):125-127.

[111]徐艷,胡世德.鋼管混凝土模型拱的彈性動(dòng)力穩(wěn)定性研究[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,33(2):9-15.

XU Y, HU S D. Study on elastic dynamic stability of concrete filled steel tube arch[J]. J Tongji Univ(Nat Sci),2005,33(2):9-15.

[112]徐艷,胡世德.鋼管混凝土拱橋的動(dòng)力穩(wěn)定極限承載力研究[J]. 土木工程學(xué)報(bào),2006,39(9):68-73.

XU Y, HU S D. Dynamic stability ultimate bearing capacity of concrete-filled steel tube arch bridge[J]. Chin Civil Eng J,2006,39(9):68-73.

[113]吳玉華.大跨度鋼管混凝土拱橋抗震性能及動(dòng)力穩(wěn)定研究[D]. 杭州:浙江大學(xué),2009.

WU Y H. Study on seismic performance and dynamic stability of long span steel tube concrete arch bridge[D]. Hangzhou:Zhejiang University,2009.

[114]TAKAHASHI K, NATSUAKI Y, KONISHI Y. Dynamic stability of a circular arch subjected to distributed in-plane dynamic force[J]. J Sound Vibrat, 1991, 146(2): 211-221.

[115]董寧娟, 趙洪金. 開(kāi)口薄壁截面圓弧拱空間動(dòng)力穩(wěn)定性分析[J]. 科學(xué)技術(shù)與工程, 2012, 12(32): 8569-8573.

DONG N J, ZHAO H J. Spatial dynamic stability analysis of open thin walled circular arch[J].Sci Tech Eng, 2012, 12(32): 8569-8573.

[116]趙洪金, 劉超. 考慮剪切變形的圓弧深拱參數(shù)共振穩(wěn)定性分析[J]. 振動(dòng)與沖擊, 2012, 31(2): 119-122.

ZHAO H J, LIU C. Stability analysis for parametric resonance of a circular deep arch considering influence of shear deformation[J]. J Vibrat Shock, 2012,31(2):119-122

[117]劉愛(ài)榮, 宋瑞, 禹奇才, 等. 地震作用下斜靠式拱橋的動(dòng)力穩(wěn)定性[J]. 深圳大學(xué)學(xué)報(bào)理工版, 2010, 27(3):286-290.

LIU A R, SONG R, YU Q C, et al. Dynamic stability of leaning type arch bridge under earthquake[J]. Shenzhen Univ Sci Eng, 2010, 27(3):286-290.

[118]邢帆, 祝兵, 趙燦暉. 近斷層地震作用下大跨 CFST 拱橋的動(dòng)力穩(wěn)定性[J]. 西南交通大學(xué)學(xué)報(bào), 2012, 47(3): 367-372.

XING F, ZHU B, ZHAO C H. Dynamic stability of long-span CFST arch bridge under action of near-fault ground motions[J]. J SW Jiaotong Univ, 2012, 47(3): 367-372.

[119]LIU A R, LU H W, FU J Y, et al. Analytical and experimental studies on out-of-plane dynamic instability of shallow circular arch based on parametric resonance[J].Nonlin Dyn, 2016,86(2):1-18.

【責(zé)任編輯: 周 全】

Research progress on static and dynamic stability of arches

LIUAi-rong,LIJing,HUANGYong-hui

(Guangzhou University-Tamkang University joint Research Center for Engineering Structure Disaster Prevention and Control, Guangzhou 510006, China)

Arches are structures mainly subjected to compressive loads which will be out of balance in-plane or out-of-plane owing to the load reaching its critical value. The instability of arches always occurs suddenly without any omen, which is similar to brittle fracture. There will be disastrous consequences once these structures lose stability, which will endanger the life and property safety. Hence, it is particularly important to explore the stability of the arch from a deeper perspective. In this paper, the research progress of in-plane and out-of-plane static and dynamic stability of single arch and arch bridges are systematically reviewed, the theoretical and experimental research on static and dynamic stability of single arch and arch bridge are summed up, the limitation of arch stability analytical methods are summarized, the development trend of research on stability of arch is forwarded, and the guidance for the future arch research is given.

arch; arch bridge; static instability; dynamic instability; in-plane instability; out-of-plane instability

2016-07-18;

2016-09-04

國(guó)家自然科學(xué)基金資助項(xiàng)目(51578166);廣州市羊城學(xué)者資助項(xiàng)目(1201541551);廣東省科技計(jì)劃資助項(xiàng)目(2016B050501004)

劉愛(ài)榮(1972-),女,教授,博士.E-mail: liu-a-r@163.com.

1671- 4229(2016)05-0001-12

U 448.22

A

猜你喜歡
彈塑性拱橋圓弧
淺析圓弧段高大模板支撐體系設(shè)計(jì)與應(yīng)用
矮塔斜拉橋彈塑性地震響應(yīng)分析
外圓弧面銑削刀具
水里的“小拱橋”
彈塑性分析在超高層結(jié)構(gòu)設(shè)計(jì)中的應(yīng)用研究
江西建材(2018年4期)2018-04-10 12:36:52
水里的“小拱橋”
動(dòng)載荷作用下冪硬化彈塑性彎曲裂紋塑性區(qū)
數(shù)控車(chē)削圓弧螺紋程序編制與加工
等截面圓弧無(wú)鉸板拱技術(shù)狀況評(píng)價(jià)
蛋殼與拱橋
辽宁省| 阳信县| 鄂尔多斯市| 潍坊市| 黎平县| 淮滨县| 潜江市| 灵璧县| 沙河市| 怀集县| 长乐市| 多伦县| 昭觉县| 乳山市| 浮山县| 察隅县| 青阳县| 昌宁县| 红桥区| 澳门| 蓝田县| 金乡县| 安化县| 中西区| 介休市| 勃利县| 交城县| 建平县| 衡水市| 黔西| 永嘉县| 岳普湖县| 江陵县| 棋牌| 宁乡县| 武功县| 石景山区| 昌乐县| 饶河县| 鲁山县| 通海县|