倪玉華
[摘要]在傳統(tǒng)的數(shù)學(xué)課堂教學(xué)模式中,師生的地位有著明顯的差別,教師在課堂中占著絕對(duì)主導(dǎo)的地位,隨著新課改對(duì)初中數(shù)學(xué)教學(xué)也提出了更高的要求,不同于傳統(tǒng)教學(xué)模式的“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)逐漸被引入初中數(shù)學(xué)的課堂,這有利于改變傳統(tǒng)教學(xué)模式中師生地位的巨大落差,實(shí)現(xiàn)初中數(shù)學(xué)教學(xué)中“教”與“學(xué)”關(guān)系的平衡.對(duì)“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)相關(guān)的探索和實(shí)踐有利于廣大教師從中獲得教學(xué)的靈感,為教學(xué)實(shí)踐活動(dòng)提供有益的借鑒,應(yīng)該引起師生的關(guān)注和思考.
[關(guān)鍵詞]“說(shuō)數(shù)學(xué)”;初中教學(xué);“教”與“學(xué)”
新課改的深化對(duì)初中數(shù)學(xué)課堂教學(xué)活動(dòng)提出了更高的要求,傳統(tǒng)的以教師為“獨(dú)角”的教學(xué)模式已經(jīng)不能適應(yīng)時(shí)代變化的要求,因?yàn)檫@種教學(xué)模式很難調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,不利于提高學(xué)生的學(xué)習(xí)效率.為了改變傳統(tǒng)教學(xué)模式的弊端,實(shí)現(xiàn)師生間“教”和“學(xué)”關(guān)系的平衡,教師在教學(xué)實(shí)踐的活動(dòng)中開始注重對(duì)學(xué)生自主學(xué)習(xí)能動(dòng)性的挖掘,于是在初中數(shù)學(xué)教學(xué)的實(shí)踐中“說(shuō)數(shù)學(xué)”的教學(xué)活動(dòng)開始成為教師關(guān)注的焦點(diǎn)之一,
“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)的概念和可行性分析
1.“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)的內(nèi)涵
“說(shuō)數(shù)學(xué)”是一種對(duì)學(xué)生內(nèi)在數(shù)學(xué)思維能力和外在數(shù)學(xué)語(yǔ)言表達(dá)都有很好的鍛煉作用的教學(xué)模式,學(xué)生在教師的指導(dǎo)下通過(guò)普通語(yǔ)言與數(shù)學(xué)語(yǔ)言的集合將自己內(nèi)在的數(shù)學(xué)思維表達(dá)出來(lái),這種內(nèi)在的數(shù)學(xué)思維能力通常是指對(duì)數(shù)學(xué)思想、方法、概念、定理、問(wèn)題等數(shù)學(xué)內(nèi)容的理解,“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)鼓勵(lì)師生、學(xué)生之間的討論和互動(dòng),具有廣泛參與性、較強(qiáng)互動(dòng)性的特質(zhì),能夠充分調(diào)動(dòng)學(xué)生在課堂學(xué)習(xí)中的主動(dòng)性,鼓勵(lì)學(xué)生在課堂上積極地討論.當(dāng)學(xué)生在“說(shuō)數(shù)學(xué)”活動(dòng)中時(shí)教師要鼓勵(lì)他們將問(wèn)題的思考方法、過(guò)程、關(guān)鍵和體會(huì)說(shuō)出來(lái),在師生之間的互動(dòng)和討論中加深對(duì)問(wèn)題的理解和認(rèn)識(shí),這有利于改變傳統(tǒng)教學(xué)模式中學(xué)生被動(dòng)接受的地位,培養(yǎng)學(xué)生的創(chuàng)新、發(fā)散思維能力,提高學(xué)生的數(shù)學(xué)成績(jī).
2.“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)開展的可行性
和其他學(xué)科相比,數(shù)學(xué)是一門抽象且自成體系的邏輯學(xué)科,在這個(gè)體系內(nèi)部它有著一套獨(dú)特的數(shù)學(xué)語(yǔ)言和邏輯概念來(lái)表達(dá)自己,所以在數(shù)學(xué)學(xué)科的學(xué)習(xí)中嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)語(yǔ)言和邏輯思維能力的培養(yǎng)是學(xué)好數(shù)學(xué)的關(guān)鍵因素,而“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)的開展就是通過(guò)使數(shù)學(xué)思維能力在內(nèi)化和外化的反復(fù)過(guò)程中來(lái)鍛煉學(xué)生數(shù)學(xué)語(yǔ)言的運(yùn)用,以實(shí)現(xiàn)數(shù)學(xué)成績(jī)的提高,外化,是在普通文字語(yǔ)言與數(shù)學(xué)邏輯語(yǔ)言的結(jié)合中實(shí)現(xiàn)學(xué)生內(nèi)在思維的外在表達(dá),引導(dǎo)學(xué)生發(fā)散思維、挖掘潛力;內(nèi)化,是在討論過(guò)程中豐富學(xué)生的對(duì)數(shù)學(xué)問(wèn)題的認(rèn)識(shí),并將其內(nèi)化于心,以實(shí)現(xiàn)數(shù)學(xué)思維能力的提高和完善,于是“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)在啟發(fā)學(xué)生主動(dòng)學(xué)習(xí)的教育中達(dá)到了師生“教”與“學(xué)”的平衡和統(tǒng)一.
“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)的探索與實(shí)踐
1.小組討論模式中的“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)
小組討論式的“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)需要教師按照區(qū)域?qū)嗉?jí)內(nèi)的同學(xué)劃分為幾個(gè)討論小組,在每組指定一個(gè)組長(zhǎng)負(fù)責(zé)本小組內(nèi)的討論計(jì)劃和程序,然后由組長(zhǎng)負(fù)責(zé)總結(jié)本小組內(nèi)的“說(shuō)數(shù)學(xué)”討論情況,最后以小組為代表在全班范圍內(nèi)進(jìn)行討論,這種小組討論式的數(shù)學(xué)教學(xué)方法有利于實(shí)現(xiàn)每個(gè)學(xué)生的主動(dòng)參與,并在教師輔助和指導(dǎo)下防止小組討論的主題偏離本節(jié)課堂的教學(xué)主題,在這個(gè)討論的過(guò)程中學(xué)生能夠?qū)忸}的過(guò)程、思路、關(guān)鍵點(diǎn)和體會(huì)等進(jìn)行總結(jié),實(shí)現(xiàn)對(duì)問(wèn)題的全面認(rèn)識(shí)和思維能力的提高.
如教師在教學(xué)求解方程 的問(wèn)題時(shí),可事先將全班學(xué)生按區(qū)域劃分為五個(gè)小組,然后讓各小組分別討論求解,并回答之后教師提問(wèn)的相關(guān)問(wèn)題.
教師:現(xiàn)在問(wèn)題已經(jīng)給出,按照之前分好的小組,由組長(zhǎng)負(fù)責(zé)本小組內(nèi)的討論計(jì)劃和程序,進(jìn)行十分鐘的組內(nèi)討論,討論結(jié)束之后由組長(zhǎng)代表本組進(jìn)行總結(jié)陳述,現(xiàn)在討論開始.
十分鐘之后.
教師:現(xiàn)在討論結(jié)束,下面請(qǐng)組1陳述你們討論的解題方法,
小組1:我們?cè)诮忸}的過(guò)程中主要運(yùn)用的數(shù)學(xué)思想是化歸法,過(guò)程如下:
原方程可變形為 ,
等式兩邊平方后得
整理后得x2-18x+80=0,
解方程得x1=8,X2=10.
將x1=8代人原方程的左右兩邊可得,左邊= ;右邊=8,由上可知,左邊≠右邊,所以x1=8為原方程的增根.
將X2=10代入原方程的左右兩邊可得,左邊 ;右邊=10,由上可知,左邊=右邊,所以x2=10是原方程的根.
所以原方程的解為x=10.
教師:有沒有哪一組的解題思路和組1不同?
小組2:我們小組和組1的解題思路不同,我們是從二次根式的意義這個(gè)解題點(diǎn)來(lái)考慮的,其解題過(guò)程如下: 原方程可變形為 ,因?yàn)?解得 所以x=10.
在將主要的解題過(guò)程談?wù)撨^(guò)之后教師發(fā)現(xiàn)有著兩種主要的解題方法,于是可以進(jìn)一步向?qū)W生提出問(wèn)題,
教師:這道題在小組談?wù)摻忸}過(guò)程中是否都完全正確?
小組3:基本上都做對(duì)了,但是有個(gè)別同學(xué)的檢驗(yàn)過(guò)程沒有寫,
教師:你們認(rèn)為這道題應(yīng)該以哪種數(shù)學(xué)思想為解題指導(dǎo)?
小組4:我們小組比較贊同組1的解題思路,所以我們覺得應(yīng)該以化歸思想為解題指導(dǎo),
教師:有誰(shuí)來(lái)回答一下哪些數(shù)學(xué)知識(shí)被用在了這道題的解題過(guò)程中?
小組5:這道題的解題過(guò)程中運(yùn)用了完全平方式、二次根式的性質(zhì)和求解一元二次方程.
由此可以看出,在小組討論式的“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)中學(xué)生積極而活躍地參與了課堂的談?wù)?,成為討論的主體力量,學(xué)生在民主、平等的氛圍中,踴躍發(fā)言和討論,在認(rèn)真聽取他人意見的過(guò)程中豐富了自己對(duì)問(wèn)題的認(rèn)識(shí).而教師只是在思路引導(dǎo)方面為學(xué)生的討論把握方向.endprint
2.實(shí)踐探究模式中的“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)
這種實(shí)踐探究式的“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)就是指在初中數(shù)學(xué)課堂教學(xué)的活動(dòng)中指導(dǎo)學(xué)生一步步完成對(duì)課堂問(wèn)題或者理論的探究,這種方法里教師在其中是作為引導(dǎo)者的角色出現(xiàn),其目的就是使學(xué)生自己主動(dòng)地一步步在教師的指導(dǎo)下完成對(duì)問(wèn)題的探索,從而實(shí)現(xiàn)預(yù)設(shè)的課堂教學(xué)目標(biāo).教師在這個(gè)探究過(guò)程中要做好引導(dǎo),將相關(guān)的探究方法和數(shù)學(xué)思想傳授給學(xué)生,
如教師在講授一元二次方程求根公式的推導(dǎo)中就可以采用這種探究式的引導(dǎo)方法:
教師:下面請(qǐng)同學(xué)們求解一元一次方程ax+b=0(a,b是已知數(shù),且a≠0).
學(xué)生1:老師,我算出來(lái)方程的解為 .
教師:那么同學(xué)們誰(shuí)來(lái)回答一下,一元一次方程和一元二次方程分別有幾個(gè)根?
學(xué)生2:老師,一元一次方程有一個(gè)根,一元二次方程有兩個(gè)根.
教師:好,那么誰(shuí)又能告訴我在一元一次方程中,它的根和它的一次項(xiàng)系數(shù)、常數(shù)項(xiàng)是什么關(guān)系呢?
學(xué)生3:老師,一元一次方程的根是它的常數(shù)項(xiàng)與一次項(xiàng)系數(shù)商的相反數(shù),
教師:那么同學(xué)們想想,對(duì)于一元二次方程來(lái)講,我們可以用它的系數(shù)表示它的根嗎?同學(xué)們可以用一元二次方程的一般式推導(dǎo)一下,你們可以按照我之前分好的小組進(jìn)行談?wù)?,也可以幾個(gè)人之間自由討論,還可以自己求解,現(xiàn)在開始吧,
經(jīng)過(guò)一段時(shí)間的討論,
學(xué)生4:老師,我自己把它的根求解出來(lái)了,是
教師:很好,能不能給大家講解一下你的解題過(guò)程和思路?
學(xué)生4:好的,老師!
移常數(shù)項(xiàng)可得ax2+bx=-c,
化簡(jiǎn)方程,在方程兩邊同時(shí)除以a,得
于是方程可變形為
將其轉(zhuǎn)化為(x+m)2=n的形式,可得
兩邊開平方,得
教師:有沒有同學(xué)補(bǔ)充?對(duì)于他的推導(dǎo)過(guò)程有沒有其他的看法?
學(xué)生5:老師,我認(rèn)為他的求解有問(wèn)題的,如果 中的 是負(fù)數(shù)的話,那么該方程就無(wú)解了,
學(xué)生6:我同意學(xué)生5的看法,盡管a≠0的情況下,4a2是正值,但是這并不能保證b2_4ac是正值,其也有可能是負(fù)值,所以我們必須保證b2-4ac≥0方程才會(huì)有解.所以當(dāng)b2-4ac≥0時(shí),才能得出 時(shí),原方程就沒有實(shí)數(shù)解,
學(xué)生7:老師,我覺得學(xué)生6說(shuō)得還不夠詳細(xì),我還可以將學(xué)生6的求解過(guò)程補(bǔ)充得更詳細(xì)一些:當(dāng)b2_4ac >0時(shí),我們可得出原方程有兩個(gè)不相等的實(shí)數(shù)解, ;當(dāng)b2-4ac=o時(shí),原方程的兩個(gè)實(shí)數(shù)解相等, ;當(dāng)b2-4ac<0時(shí),原方程無(wú)實(shí)數(shù)解.
在這個(gè)過(guò)程中,教師充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生將對(duì)公式的理解用數(shù)學(xué)語(yǔ)言的形式表達(dá)出來(lái),然后經(jīng)過(guò)不同學(xué)生的補(bǔ)充,逐漸將學(xué)生沒有注意到的問(wèn)題顯現(xiàn)出來(lái),不僅加深了學(xué)生對(duì)于一元二次方程求根公式的理解,還同時(shí)培養(yǎng)了學(xué)生主動(dòng)探究問(wèn)題的能力.
“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)的開展使原本傳統(tǒng)教學(xué)模式中枯燥單調(diào)的數(shù)學(xué)課堂變?yōu)檎n堂活躍、討論熱烈的辯論式課堂,學(xué)生在問(wèn)題的爭(zhēng)論中將原本儲(chǔ)存在思想中的數(shù)學(xué)思維能力轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言和普通語(yǔ)言相結(jié)合的形式,并且在這個(gè)過(guò)程中實(shí)現(xiàn)了對(duì)自身知識(shí)系統(tǒng)的深層檢查和理解.學(xué)生在集體的討論中豐富了對(duì)問(wèn)題的理解,在有選擇地吸收他人見解的基礎(chǔ)上,完善了自身的觀點(diǎn)和思路.學(xué)生將這個(gè)結(jié)果內(nèi)化為自身數(shù)學(xué)思維結(jié)構(gòu)中的一部分,從而提高其數(shù)學(xué)思維能力和素養(yǎng).但是我們也不能忽視教師在“說(shuō)數(shù)學(xué)”教學(xué)活動(dòng)中的作用,教師是活動(dòng)的指導(dǎo)者和規(guī)劃者,只有實(shí)現(xiàn)兩者的互動(dòng)和結(jié)合,才能實(shí)現(xiàn)初中數(shù)學(xué)課堂中“教”與“學(xué)”關(guān)系的平衡.endprint