国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

圍產(chǎn)期奶牛炎癥反應(yīng)及其與免疫和能量代謝的關(guān)系

2016-03-10 01:55
關(guān)鍵詞:亞急性圍產(chǎn)期病原

弓 劍 曉 敏

(內(nèi)蒙古師范大學(xué)生命科學(xué)與技術(shù)學(xué)院,呼和浩特010022)

?

圍產(chǎn)期奶牛炎癥反應(yīng)及其與免疫和能量代謝的關(guān)系

弓劍曉敏

(內(nèi)蒙古師范大學(xué)生命科學(xué)與技術(shù)學(xué)院,呼和浩特010022)

炎癥是由于機(jī)體受到病原微生物刺激或代謝功能改變而引發(fā)的一種免疫反應(yīng)。病原微生物的刺激會(huì)引發(fā)急性炎癥反應(yīng),在正常情況下,急性炎癥通過(guò)激活免疫系統(tǒng)可有效清除病原微生物,并從炎癥狀態(tài)自我恢復(fù)到正常狀態(tài)。與急性炎癥不同的是,亞急性炎癥的引發(fā)往往與機(jī)體組織代謝功能的改變有關(guān),亞急性炎癥一旦產(chǎn)生,很難自我恢復(fù)。對(duì)于圍產(chǎn)期奶牛,特別是產(chǎn)后幾周內(nèi),由于機(jī)體生理狀況和物質(zhì)代謝的劇烈變化以及免疫功能的改變,炎癥反應(yīng),特別是亞急性炎癥的發(fā)生往往比較普遍,大大提高了該階段各種感染性和代謝性疾病的發(fā)病風(fēng)險(xiǎn)。了解圍產(chǎn)期奶牛炎癥反應(yīng)的發(fā)生,以及免疫和物質(zhì)代謝如何相互作用影響炎癥反應(yīng),對(duì)于提早采取措施控制產(chǎn)后疾病的發(fā)生以及改善圍產(chǎn)期奶牛健康具有重要的理論和現(xiàn)實(shí)意義。鑒此,本文綜述了圍產(chǎn)期奶牛炎癥反應(yīng)的發(fā)生及其與免疫和能量代謝的關(guān)系。

奶牛;圍產(chǎn)期;炎癥;免疫;能量代謝

在奶牛的整個(gè)生產(chǎn)周期中,圍產(chǎn)期(產(chǎn)前3周到產(chǎn)后3周)是一個(gè)特殊的生理時(shí)期。這一時(shí)期奶牛的健康問(wèn)題一直以來(lái)是制約和影響奶牛養(yǎng)殖業(yè)和乳品加工業(yè)健康發(fā)展的首要因素。據(jù)統(tǒng)計(jì),大約75%的疾病(包括感染性疾病和代謝性疾病)發(fā)生在圍產(chǎn)期,特別是產(chǎn)犢后的第1個(gè)月內(nèi)[1]。過(guò)去,人們常把感染性疾病和代謝性疾病看作是獨(dú)立的事件,之間沒(méi)有必然的聯(lián)系,事實(shí)上,泌乳早期奶牛疾病的發(fā)生往往不止一個(gè)。例如,患有酮病的奶牛與健康奶牛相比,患乳房炎的幾率提高2倍[2];產(chǎn)后胎衣不下大大提高了奶?;既榉垦椎娘L(fēng)險(xiǎn)[3]。從炎癥反應(yīng)的角度講,無(wú)論是代謝性疾病還是感染性疾病,均表現(xiàn)為不同程度的炎癥反應(yīng)。病原微生物侵染往往會(huì)引發(fā)急性炎癥反應(yīng),當(dāng)免疫功能正常時(shí),機(jī)體通過(guò)急性炎癥反應(yīng)可以有效清除病原微生物,并從炎癥狀態(tài)自我恢復(fù)到正常狀態(tài)。而代謝應(yīng)激會(huì)引發(fā)亞急性炎癥反應(yīng),亞急性炎癥產(chǎn)生后很難自我恢復(fù)。圍產(chǎn)期奶牛,特別是早期泌乳階段的奶牛,炎癥反應(yīng)的發(fā)生往往比較普遍,而且往往表現(xiàn)為自我恢復(fù)速度慢或難以自我恢復(fù),因而大大提高了該階段感染性(乳房炎、子宮炎)和代謝性疾病(脂肪肝、酮病、胎衣不下)的發(fā)病風(fēng)險(xiǎn)。目前,關(guān)于圍產(chǎn)期奶牛炎癥反應(yīng)的發(fā)生原因還不是完全明白,圍產(chǎn)期奶牛免疫功能的障礙、營(yíng)養(yǎng)物質(zhì)代謝的劇烈變化引起的代謝應(yīng)激和氧化應(yīng)激可能是主要的誘因[4]。本文就圍產(chǎn)期奶牛炎癥反應(yīng)的發(fā)生及其與免疫和能量代謝的關(guān)系作一綜述。

1 圍產(chǎn)期奶牛急性炎癥及其與免疫的關(guān)系

1.1急性炎癥

當(dāng)機(jī)體受到病原微生物入侵時(shí),免疫細(xì)胞中一些與炎癥相關(guān)的調(diào)節(jié)物質(zhì)的基因表達(dá)和釋放明顯提高[5]。典型的炎癥調(diào)節(jié)物質(zhì)包括細(xì)胞因子、趨化因子、黏附分子、類花生酸以及一些血漿蛋白。這些分子形成復(fù)雜的調(diào)控網(wǎng)絡(luò),通過(guò)提高向受感染組織的血流量、增強(qiáng)免疫細(xì)胞的活化以及向受感染組織的趨化性遷移,實(shí)現(xiàn)對(duì)病原微生物的清除[6]。這種由于病原微生物刺激而引起的炎癥反應(yīng)通常為急性反應(yīng),如果不能及時(shí)控制,往往會(huì)引發(fā)發(fā)熱、紅腫、疼痛、心率加快、采食量降低等全身性的炎癥反應(yīng)癥狀。

1.2急性炎癥與免疫的關(guān)系

對(duì)于奶牛而言,與經(jīng)典的炎癥反應(yīng)相關(guān)的疾病首先是乳房炎。盡管關(guān)于如何控制和預(yù)防奶牛乳房炎的發(fā)生已取得了顯著的成效,但乳房炎仍然是制約和影響奶牛養(yǎng)殖業(yè)和乳品加工業(yè)健康發(fā)展的主要因素。乳房炎是奶牛乳腺組織受到病原微生物侵染并積累而引發(fā)的一種炎癥反應(yīng),在早期泌乳階段發(fā)病率較高[7]。如果乳腺組織被革蘭氏陰性細(xì)菌侵染,則細(xì)菌外膜會(huì)釋放一種叫脂多糖(lipopolysaccharide,LPS)的細(xì)菌毒素[8],LPS可誘導(dǎo)細(xì)胞分泌腫瘤壞死因子α(tumor necrosis factor α,TNFα)、白細(xì)胞介素(interleukin,IL)-1β、IL-6等促炎細(xì)胞因子,促炎細(xì)胞因子的大量產(chǎn)生引起淋巴細(xì)胞(主要是中性粒細(xì)胞)向受感染部位迅速遷移[9],當(dāng)?shù)竭_(dá)侵染部位后,中性粒細(xì)胞被激活并釋放活性氧、活性氮、蛋白酶等殺菌物質(zhì),從而實(shí)現(xiàn)對(duì)病原微生物的清除。

急性炎癥反應(yīng)激活免疫系統(tǒng)能否有效清除病原微生物取決于免疫功能是否正常,而免疫功能正常與否又決定著受感染組織能否從炎癥狀態(tài)恢復(fù)到正常狀態(tài)。當(dāng)機(jī)體的免疫功能正常時(shí),對(duì)病原微生物的清除效率高,從炎癥狀態(tài)向正常狀態(tài)的恢復(fù)速度就快;相反,當(dāng)機(jī)體的免疫功能低下時(shí),炎癥反應(yīng)的持續(xù)時(shí)間和強(qiáng)度就會(huì)加大,很可能難以自我恢復(fù)到正常狀態(tài)。因此,對(duì)于經(jīng)典的炎癥反應(yīng),并不是如何完全避免其發(fā)生,而是如何通過(guò)提高免疫功能(即提高免疫細(xì)胞的殺菌能力)降低炎癥反應(yīng)的持續(xù)時(shí)間,提高從炎癥狀態(tài)向正常狀態(tài)的恢復(fù)速度[10]。遺憾的是,圍產(chǎn)期奶牛的免疫系統(tǒng)通常處于抑制狀態(tài),因而大大提高了乳房炎的發(fā)病風(fēng)險(xiǎn)。圍產(chǎn)期奶牛免疫抑制一方面表現(xiàn)為免疫細(xì)胞對(duì)病原微生物刺激的敏感度和反應(yīng)性降低。研究發(fā)現(xiàn),與泌乳中期相比,早期泌乳階段奶牛的乳腺組織對(duì)低劑量的LPS灌注無(wú)明顯反應(yīng),而乳腺中細(xì)菌的增長(zhǎng)速度和濃度卻持續(xù)增高,當(dāng)加大灌注劑量時(shí),奶牛的體溫、初乳中促炎細(xì)胞因子的含量明顯提高,同時(shí)伴有乳腺組織中大腸桿菌含量的明顯提高[11-12]。另一方面表現(xiàn)為免疫細(xì)胞功能降低。研究表明,與泌乳中期和產(chǎn)前12 d相比,產(chǎn)后7 d奶牛外周血中性粒細(xì)胞胞內(nèi)、胞外以及總活性氧的含量明顯降低[13],提示中性粒細(xì)胞的殺菌能力降低,而且產(chǎn)后外周血中性粒細(xì)胞的趨化活性和黏附分子的基因表達(dá)也顯著降低[12],提示中性粒細(xì)胞的趨化性遷移能力也降低。

2 圍產(chǎn)期奶牛亞急性炎癥及其與能量代謝的關(guān)系

2.1亞急性炎癥

與經(jīng)典的急性炎癥反應(yīng)相比,亞急性炎癥反應(yīng)相對(duì)比較溫和,雖然也表現(xiàn)為促炎細(xì)胞因子等炎癥調(diào)節(jié)物質(zhì)的提高,但提高幅度相對(duì)較小,而且炎癥反應(yīng)通常局限在特定的組織。對(duì)肥胖病人的研究發(fā)現(xiàn),亞急性炎癥反應(yīng)的發(fā)生與組織能量代謝功能發(fā)生改變有關(guān),通常也被稱為代謝性炎癥[14]。盡管亞急性炎癥反應(yīng)相對(duì)比較溫和,但往往會(huì)持續(xù)存在,而持續(xù)存在的炎癥狀態(tài)又會(huì)破壞代謝平衡,進(jìn)一步加重代謝應(yīng)激[15]。

2.2亞急性炎癥與能量代謝的關(guān)系

圍產(chǎn)期奶牛,特別是從懷孕末期到早期泌乳階段,亞急性炎癥的發(fā)生往往比較普遍。研究表明,產(chǎn)后奶牛血清中結(jié)合珠蛋白(一種炎癥指示劑)的含量明顯提高,進(jìn)一步的研究發(fā)現(xiàn),產(chǎn)后肝臟和脂肪組織中結(jié)合珠蛋白的mRNA和蛋白表達(dá)量也明顯提高[16]。而且,在沒(méi)有病原微生物侵染的情況下,這種炎癥反應(yīng)在產(chǎn)后也會(huì)發(fā)生[17]。更直接的證據(jù)表明,患有輕度或重度脂肪肝(體脂大量分解所致)的奶牛血清淀粉樣A蛋白、結(jié)合珠蛋白、促炎細(xì)胞因子TNFα的含量顯著提高,而且產(chǎn)前血清TNFα含量與產(chǎn)后肝臟脂肪含量具有顯著的正相關(guān)關(guān)系[18-19]。

盡管關(guān)于圍產(chǎn)期奶牛亞急性炎癥的產(chǎn)生原因還不是很清楚,但在圍產(chǎn)期,特別是早期泌乳階段,奶牛對(duì)能量的需要量急劇增加,而此時(shí)干物質(zhì)采食量卻不能同步提高,因此,機(jī)體不得不通過(guò)脂肪動(dòng)員以滿足產(chǎn)奶對(duì)能量的需要,由此而引發(fā)的能量代謝應(yīng)激可能是圍產(chǎn)期奶牛亞急性炎癥產(chǎn)生的主要原因。此外,由對(duì)肥胖病人的研究提示,奶牛在圍產(chǎn)期由于能量代謝應(yīng)激誘導(dǎo)產(chǎn)生的亞急性炎癥也可能反饋性地加重代謝應(yīng)激。

2.2.1脂肪動(dòng)員導(dǎo)致血液中非酯化脂肪酸(non-esterified fatty acids,NEFA)的組成改變進(jìn)而引發(fā)亞急性炎癥

由于產(chǎn)后脂肪動(dòng)員活動(dòng)的加強(qiáng),奶牛血液中NEFA的含量明顯提高,脂肪酸的組成也發(fā)生了改變,可能是引發(fā)圍產(chǎn)期奶牛亞急性炎癥反應(yīng)的原因[4]。研究表明,產(chǎn)后奶牛血液中NEFA的組成與肥胖病人血液中NEFA的組成極其相似[20]。而肥胖病人的脂肪組織處于持續(xù)的亞急性炎癥狀態(tài),這是不爭(zhēng)的事實(shí)。產(chǎn)后奶牛血液中NEFA中飽和脂肪酸(棕櫚酸、硬脂酸)和單不飽和油酸的比例明顯提高,而二十碳五烯酸(eicosapentaenoic acid,EPA)、二十二碳六烯酸(docosahexaenoic acid,DHA)等ω-3多不飽和脂肪酸的比例顯著降低,血液中NEFA組成反映著參與炎癥反應(yīng)的免疫細(xì)胞的脂肪酸組成,因而也必然會(huì)影響到炎癥反應(yīng)[20]。例如,細(xì)菌毒素LPS可以與參與炎癥反應(yīng)的免疫細(xì)胞的Toll樣受體4(toll-like receptor 4,TLR4)結(jié)合,結(jié)合后激活其下游的核因子-κB(nuclear factor-κB,NF-κB)信號(hào)通路,進(jìn)而啟動(dòng)促炎細(xì)胞因子的基因表達(dá)。一些脂肪酸,如月桂酸、棕櫚酸和油酸,可通過(guò)與TLR4相互作用激活NF-κB信號(hào)通路[21],而EPA和DHA可通過(guò)與TLR4相互作用抑制NF-κB信號(hào)通路的活化[22]。過(guò)氧化物酶體增殖物激活受體(peroxisome proliferator-activated receptors,PPAR)是核激素受體家族中的配體激活受體,許多脂肪酸是該類受體的配體。α-亞麻酸和DHA與該受體結(jié)合后可下調(diào)炎癥反應(yīng),而棕櫚酸和硬脂酸與該受體結(jié)合后可通過(guò)激活NF-κB信號(hào)通路增強(qiáng)炎癥反應(yīng)[23]。上述研究表明,血液中NEFA組成的改變確實(shí)會(huì)影響炎癥反應(yīng),然而,針對(duì)圍產(chǎn)期奶牛,相關(guān)的研究極其罕見(jiàn)。Contreras等[20]對(duì)牛血管內(nèi)皮細(xì)胞的體外培養(yǎng)研究發(fā)現(xiàn),添加類似于圍產(chǎn)期奶牛血液中NEFA含量和組成的脂肪酸混合物,細(xì)胞中促炎細(xì)胞因子的基因表達(dá)顯著提高,而提高混合物中ω-3多不飽和脂肪酸的含量可明顯減緩促炎反應(yīng),究其原因,可能與脂肪酸衍生生成的脂質(zhì)素(oxylipids)的不同有關(guān)。ω-3脂肪酸可衍生生成保護(hù)素(protectins)和消退素(resolvins)2類脂質(zhì)素,具有很強(qiáng)的抗炎和炎癥修復(fù)活性,而ω-6脂肪酸則衍生產(chǎn)生前列腺素、白三烯、血栓素等脂質(zhì)素,具有很強(qiáng)的促炎活性[24]。

2.2.2脂肪動(dòng)員導(dǎo)致血液中NEFA的積累進(jìn)而引發(fā)亞急性炎癥

脂肪動(dòng)員導(dǎo)致的血液中NEFA的積累與亞急性炎癥的引發(fā)并無(wú)直接的關(guān)系,但過(guò)量NEFA在被氧化利用的過(guò)程中極易形成脂質(zhì)氫過(guò)氧化物,同時(shí)也伴有活性氧的生成。例如,從細(xì)胞膜磷脂池中釋放出來(lái)的花生四烯酸(ω-6多不飽和脂肪酸)在脂氧合酶的氧化催化下可生成過(guò)氧羥基二十碳四烯酸等脂質(zhì)過(guò)氧化物(liydroperoxyeicosatetraenoic acids,HPETE,依據(jù)氧化碳位的不同,HPETE可分為5-,12-和15-HPETE)[25],在脂質(zhì)過(guò)氧化過(guò)程中同時(shí)也產(chǎn)生了大量的超氧陰離子[26]。大量活性氧以及脂質(zhì)氫過(guò)氧化物的生成可誘導(dǎo)機(jī)體產(chǎn)生氧化應(yīng)激,進(jìn)而引發(fā)炎癥反應(yīng)。此外,血液中NEFA的積累增加了肝臟的代謝負(fù)荷,進(jìn)而引起肝臟中脂肪的積累和血液中β-羥丁酸含量的提高,β-羥丁酸可通過(guò)提高誘導(dǎo)型一氧化氮合酶活性以及一氧化氮等活性氮的生成誘導(dǎo)氧化應(yīng)激產(chǎn)生,進(jìn)而引發(fā)炎癥反應(yīng)[27]。氧化應(yīng)激一方面通過(guò)激活NF-κB信號(hào)通路增強(qiáng)炎癥反應(yīng),另一方面通過(guò)激活絲裂原活化蛋白激酶信號(hào)通路誘導(dǎo)炎癥反應(yīng),關(guān)于這方面的報(bào)道較多,詳細(xì)可參考Mittal等[28]的綜述文章,這里不再詳述。

2.2.3持續(xù)的亞急性炎癥反饋性地加強(qiáng)脂肪動(dòng)員進(jìn)而加重代謝應(yīng)激

研究表明,產(chǎn)前最后2周口服低劑量的干擾素-α顯著提高了產(chǎn)后奶牛血漿中炎癥指示劑結(jié)合珠蛋白的含量以及NEFA和β-羥丁酸的含量[29];連續(xù)7 d皮下注射低劑量的TNFα顯著提高了泌乳末期奶牛肝臟中TNFα的mRNA及其蛋白表達(dá)量以及甘油三酯的含量[30];近年的研究表明,在泌乳第1周連續(xù)7 d皮下注射低劑量的TNFα顯著提高了血漿中結(jié)合珠蛋白的含量,盡管TNFα注射對(duì)血漿NEFA和β-羥丁酸的含量無(wú)顯著影響,但注射組與對(duì)照組相比,奶牛酮病的發(fā)生率提高了3倍[15]。上述研究暗示,亞急性炎癥確實(shí)誘導(dǎo)并加重了代謝應(yīng)激。究其原因,可能與炎癥誘導(dǎo)了胰島素耐受有關(guān)。正常情況下,當(dāng)能量需要量提高時(shí),血液中葡萄糖的含量降低,隨之胰島素的分泌降低,血液中胰島素含量的降低會(huì)刺激脂肪分解,進(jìn)而提高血液中NEFA的含量,而NEFA含量的提高作為一種信號(hào)會(huì)反饋性地刺激胰島素分泌,從而降低脂肪的分解。當(dāng)胰島素功能正常時(shí),通過(guò)這種反饋調(diào)節(jié),血液中NEFA的含量不會(huì)升太高,而且能夠被肝臟完全氧化利用。然而,圍產(chǎn)期奶牛由于脂肪的大量動(dòng)員,NEFA的生成速度往往超過(guò)了肝臟的利用能力,血液中NEFA呈持續(xù)的積累狀態(tài),這種狀態(tài)引發(fā)了亞急性炎癥反應(yīng)。炎癥信號(hào)可直接誘導(dǎo)胰島素耐受,主要是由于免疫活動(dòng)加強(qiáng),競(jìng)爭(zhēng)用于維持產(chǎn)奶和正常生理功能的葡萄糖供應(yīng)所致[31]。胰島素耐受進(jìn)一步加強(qiáng)了脂肪動(dòng)員,進(jìn)而加重了代謝應(yīng)激[32]。極其有限的研究表明,產(chǎn)后奶牛血液中TNFα的含量與胰島素的含量呈顯著的負(fù)相關(guān)關(guān)系,而與血液中NEFA的含量呈顯著的正相關(guān)關(guān)系[19]。胰島素的分泌依賴于胰島素受體底物(insulin receptor substrate,IRS)酪氨酸殘基的磷酸化[33],促炎細(xì)胞因子,如TNFα、IL-1β、IL-6、干擾素γ等,可以使IRS發(fā)生磷酸化,但作用部位不是酪氨酸,而是絲氨酸,IRS絲氨酸的磷酸化會(huì)抑制酪氨酸磷酸化,導(dǎo)致IRS與胰島素受體的結(jié)合松散以及激活下游底物的能力下降,從而減弱了胰島素信號(hào)傳導(dǎo),引發(fā)胰島素耐受[34]。

3 小 結(jié)

適度的炎癥可以保護(hù)奶牛免受病原體感染和組織損傷,也有利于適應(yīng)特定時(shí)期內(nèi)奶牛生理狀況和物質(zhì)代謝的變化。但是,如果這種炎癥狀態(tài)不可修復(fù)的話,則會(huì)對(duì)機(jī)體造成破壞性的后果。圍產(chǎn)期奶牛由于免疫功能的障礙以及能量代謝紊亂,往往呈現(xiàn)一種不可修復(fù)的持續(xù)的炎癥狀態(tài),這種炎癥狀態(tài)大大提高了各種代謝性和感染性疾病的發(fā)病風(fēng)險(xiǎn)。生產(chǎn)實(shí)踐中,應(yīng)該從提高圍產(chǎn)期奶牛免疫功能和調(diào)節(jié)能量代謝平衡入手,使得圍產(chǎn)期奶牛這種不可避免的炎癥反應(yīng)朝著有利于奶牛健康和生產(chǎn)的方向發(fā)展,或至少降低其對(duì)奶牛健康和生產(chǎn)的不利影響。

[1]LEBLANC S J,LISSEMORE K D,KELTON D F,et al.Major advances in disease prevention in dairy cattle[J].Journal of Dairy Science,2006,89(4):1267-1279.

[2]OLTENACU P A,EKESBO I.Epidemiological study of clinical mastitis in dairy cattle[J].Veterinary Research,1994,25(2/3):208-212.

[3]EMANUELSON U,OLTENACU P A,GR?HN Y T.Nonlinear mixed model analyses of five production disorders of dairy cattle[J].Journal of Dairy Science,1993,76(9):2765-2772.

[4]SORDILLO L M,RAPHAEL W.Significance of metabolic stress,lipid mobilization,and inflammation on transition cow disorders[J].Veterinary Clinics of North America:Food Animal Practice,2013,29:267-278.

[5]NEWTON K,DIXIT V M.Signaling in innate immunity and inflammation[J].Cold Spring Harbor Perspectives in Biology,2012,4(3):a006049.

[6]DANTZER R,KELLEY K W.Twenty years of research on cytokine-induced sickness behavior[J].Brain,Behavior,and Immunity,2007,21(2):153-160.

[7]BANNERMAN D D,RINALDI M,VINYARD B T,et al.Effects of intramammary infusion of cis-urocanic acid on mastitis-associated inflammation and tissue injury in dairy cows[J].American Journal of Veterinary Research,2009,70(3):373-382.

[8]HOGAN J,SMITH K L.Coliform mastitis[J].Veterinary Research,2003,34:507-519.

[9]SCHUKKEN Y H,GUNTHER J,FITZPATRICK J,et al.Host-response patterns of intramammary infections in dairy cows[J].Veterinary Immunology and Immunopathology,2011,144(3/4):270-289.

[10]MEDZHITOV R.Review article origin and physiological roles of inflammation[J].Nature,2008,454(7203):428-435.

[11]GROMMERS F J,VAN DE GEER D,VAN DER VLIET H,et al.Polymorphonuclear leucocyte function:relationship between induced migration into the bovine mammary gland and in vitro cell activity[J].Veterinary Immunology and Immunopathology,1989,23(1/2):75-83.

[12]SHUSTER D E,LEE E K,KEHRLI M E,Jr.Bacterial growth,inflammatory cytokine production,and neutrophil recruitment during coliform mastitis in cows within ten days after calving,compared with cows at midlactation[J].American Journal of Veterinary Research,1996,57(11):1569-1575.

[13]DOSOGNE H,VANGROENWEGHE F,BARRIO B,et al.Decreased number and bactericidal activity against Staphylococcus aureus of the resident cells in milk of dairy cows during early lactation[J].The Journal of Dairy Research,2001,68(1):539-549.

[14]HOTAMISLIGIL G S,ERBAY E.Nutrient sensing and inflammation in metabolic diseases[J].Nature Reviews Immunology,2008,8(12):923-934.

[15]YUAN K.Metabolic inflammation and immunomodulation in dairy cows[D].Ph.D.Thesis.Kansas:Kansas State University,2014:7-56.

[16]SAREMI B,AL-DAWOOD A,WINAND S,et al.Bovine haptoglobin as an adipokine:serum concentrations and tissue expression in dairy cows receiving a conjugated linoleic acids supplement throughout lactation[J].Veterinary Immunology and Immunopathology,2012,146(3/4):201-211.

[17]BERTONI G,TREVISI E,HAN X,et al.Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows[J].Journal of Dairy Science,2008,91(9):3300-3310.

[18]AMETAJ B N,BRADFORD B J,BOBE G,et al.Strong relationships between mediators of the acute phase response and fatty liver in dairy cows[J].Canadian Journal of Animal Science,2005,85(2):165-175.

[19]OHTSUKA H,KOIWA M,HATSUGAYA A,et al.Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver[J].Journal of Veterinary Medical Science,2001,63(9):1021-1025.

[20]CONTRERAS G A,O’BOYLE N J,HERDT T H,et al.Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids[J].Journal of Dairy Science,2010,93(6):2508-2516.

[21]LEE J Y,SOHN K H,RHEE S H,et al.Saturated fatty acids,but not unsaturated fatty acids,induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4[J].The Journal of Biological Chemistry,2001,276(20):16683-16689.

[22]LEE J Y,PLAKIDAS A,LEE W H,et al.Differential modulation of Toll-like receptors by fatty acids:preferential inhibition by n-3 polyunsaturated fatty acids[J].The Journal of Lipid Research,2003,44(3):479-486.

[23]DE HEREDIA F P,GMEZ-MARTNEZ S,MARCOS A.Obesity,inflammation and the immune system[J].Proceedings of the Nutrition Society,2012,71(2):332-338.

[24]SERHAN C N.Systems approach to inflammation resolution:identification of novel anti-inflammatory and pro-resolving mediators[J].Journal of Thrombosis and Haemostasis,2009,7(Suppl.1):44-48.

[25]ASTUDILLO A M,BALGOMA D,BALBOA M A,et al.Dynamics of arachidonic acid mobilization by inflammatory cells[J].Biochimica et Biophysica Acta BBA:Molecular and Cell Biology of Lipids,2012,1821(2):249-256.

[26]RAPHAEL W,SORDILLO L M.Dietary Polyunsaturated Fatty Acids and Inflammation:the role of phospholipid biosynthesis[J].International Journal of Molecular Sciences,2013,14(10):21167-21188.

[27]SHI X,LI X,LI D,et al.β-hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes[J].Cellular Physiology and Biochemistry,2014,33(4):920-932.

[28]MITTAL M,SIDDIQUI M R,TRAN K,et al.Reactive oxygen species in inflammation and tissue injury[J].Antioxidants & Redox Signaling,2014,20(7):1126-1167.

[29]TREVISI E,AMADORI M,BAKUDILA A M,et al.Metabolic changes in dairy cows induced by oral,low-dose interferon-alpha treatment[J].Journal of Animal Science,2009,87(9):3020-3029.

[30]BRADFORD B J,MAMEDOVA L K,MINTON J E,et al.Daily injection of tumor necrosis factor-α increases hepatic triglycerides and alters transcript abundance of metabolic genes in lactating dairy cattle[J].The Journal of Nutrition,2009,139(8):1451-1456.

[31]ODEGAARD J I,CHAWLA A.Leukocyte set points in metabolic disease[J].F1000 Biology Reports,2012,4:13.

[32]ZACHUT M,HONIG H,STRIEM S,et al.Periparturient dairy cows do not exhibit hepatic insulin resistance,yet adipose-specific insulin resistance occurs in cows prone to high weight loss[J].Journal of Dairy Science,2013,96(9):5656-5669.

[33]BODEN G.Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver[J].Current Diabetes Reports,2006,6(3):177-181.

[34]LE MARCHAND-BRUSTEL Y,GUAL P,GRéMEAUX T,et al.Fatty acid-induced insulin resistance:role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling[J].Biochemical Society Transactions,2003,31(6):1152-1156.

Author, GONG Jian, lecturer, E-mail: gongjian3021@sina.com

(責(zé)任編輯王智航)

Inflammation in Periparturient Dairy Cows and Its Relationship with Immunity and Energy Metabolism

GONG JianXIAO Min

(College of Life Science and Technology, Inner Mongolia Normal University, Huhhot 010022, China)

Inflammation is an immune response induced by microbial infection or metabolic disorders. Acute inflammation is initiated by microbial infection. Normally, acute inflammation can effectively eliminate microbial pathogen by activing immune system, and the body can self-recover to normal from inflammation. Unlike acute inflammation, subacute inflammation is associated with metabolic disorders in tissue and leads to an unresolved tissue inflammatory state. With the physiological stress and metabolic and immune changes, inflammation, especially subacute inflammation, is common in cows during the perinatal period, especially in the first few weeks at postpartum period. This may results in the increased incidence of both metabolic and infectious diseases at this time. Therefore, better understandings of inflammation occurrence and how immunity and nutrient metabolism interact to influence inflammation will facilitate the development of control strategies early enough to decrease postpartum incidence of diseases and improve transition cow health. This paper provided a brief overview of inflammation in periparturient cows and its relationship with immunity and energy metabolism.[ChineseJournalofAnimalNutrition, 2016, 28(9):2667-2672]

dairy cows; periparturient period; inflammation; immunity; energy metabolism

10.3969/j.issn.1006-267x.2016.09.001

2016-03-22

國(guó)家自然科學(xué)基金(31560644);內(nèi)蒙古自然科學(xué)基金(2015MS0367);引進(jìn)高層次人才科研啟動(dòng)經(jīng)費(fèi)項(xiàng)目(2015YJRC005)

弓劍(1975—),男,內(nèi)蒙古涼城人,講師,博士,主要從事反芻動(dòng)物微量元素營(yíng)養(yǎng)與飼料資源開(kāi)發(fā)利用研究。E-mail: gongjian3021@sina.com

S823

A

1006-267X(2016)09-2667-06

猜你喜歡
亞急性圍產(chǎn)期病原
長(zhǎng)絲鱸潰爛癥病原分離鑒定和耐藥性分析
圍產(chǎn)期預(yù)防保健干預(yù)對(duì)高危孕婦妊娠并發(fā)癥發(fā)生率的影響觀察
從病證結(jié)合角度探析亞急性甲狀腺炎的治療
豬繁殖與呼吸綜合征病原流行病學(xué)調(diào)查
補(bǔ)血生乳顆粒對(duì)SD大鼠圍產(chǎn)期毒性
圍產(chǎn)期時(shí)間定義
圍產(chǎn)期胎膜早破與生殖道病原菌感染的分析
中蒙藥內(nèi)外結(jié)合治療亞急性甲狀腺炎30例
食源性病原微生物的危害
中醫(yī)藥治療早期亞急性甲狀腺炎驗(yàn)案1則