謝小麗
摘 要: 高中數(shù)學(xué)習(xí)題教學(xué)對(duì)學(xué)生的抽象概括能力,空間想象能力,基本運(yùn)算能力,以及邏輯思維能力都有著良好的培養(yǎng)作用,所以在教學(xué)過程中教師應(yīng)嚴(yán)格遵循習(xí)題教學(xué)的原則,能夠避免教學(xué)中出現(xiàn)的弊端和不足。本文對(duì)高中數(shù)學(xué)習(xí)題教學(xué)的原則,從啟發(fā)性和層次性,常規(guī)性和新穎性,針對(duì)性和目的性,典型性和示范性,以及全面性和選擇性這五項(xiàng)原則做了論述。
關(guān)鍵詞: 高中數(shù)學(xué) 習(xí)題教學(xué) 五項(xiàng)原則
學(xué)生學(xué)習(xí)的主戰(zhàn)場(chǎng)是課堂,而高中數(shù)學(xué)課堂教學(xué)中習(xí)題教學(xué)占據(jù)了大部分,學(xué)生在習(xí)題教學(xué)中能夠開發(fā)思維,鍛煉規(guī)范答題的好習(xí)慣,培養(yǎng)抽象思維能力、綜合分析能力,在解題過程中又鍛煉了基本的運(yùn)算能力和空間想象能力,學(xué)生能夠和教師建立良好的反饋系統(tǒng)。但是由于在現(xiàn)代的習(xí)題教學(xué)中還存在著一些弊端,例如教師在習(xí)題教學(xué)中過于浮躁,不認(rèn)真寫解題步驟,這就失去了習(xí)題教學(xué)的意義。又例如教師在選擇例題時(shí)傾向于難題,盲目拔高,導(dǎo)致學(xué)生接受不了解題的基本思路。對(duì)于這些存在的問題,教師必須認(rèn)真思考,努力解決,嚴(yán)格遵守習(xí)題教學(xué)的五項(xiàng)原則,達(dá)到教學(xué)的最佳效果。
一、啟發(fā)性和層次性原則
習(xí)題教學(xué)能夠幫助學(xué)生鍛煉思維的靈活性、敏捷性、深刻性,幫助學(xué)生形成良好的思維品質(zhì),所以在習(xí)題教學(xué)中選擇例題和習(xí)題時(shí)要選取對(duì)學(xué)生有啟發(fā)性的題目,這樣可以使學(xué)生在練習(xí)的過程中受到感悟,同時(shí)選擇題目要具有層次性,所謂的層次性就是題目不宜過難,也不宜過易,要難易適中;思維的跨度不宜過大也不宜過小,要大小適合,因?yàn)轭}目過難、思維跨度過大,會(huì)打擊學(xué)生學(xué)習(xí)的自信心,對(duì)學(xué)生思考問題造成一些障礙;而題目太簡(jiǎn)單,思維跨度過小,使學(xué)生輕而易舉地就能夠得到問題的答案,這樣就達(dá)不到要開發(fā)學(xué)生思維的目的,起不到培養(yǎng)學(xué)生的作用。所以,在教學(xué)過程中,教師將啟發(fā)性和層次性相結(jié)合,能夠?qū)W(xué)生的學(xué)習(xí)打下扎實(shí)的基礎(chǔ)。例如,教師在講解數(shù)列求和這樣的問題時(shí),選用的題目不要只是簡(jiǎn)單求和,還可以選用由數(shù)和數(shù)列相乘的題目,在講解時(shí)要循序漸進(jìn),一步步由淺入深地講解,這樣學(xué)生就能夠深入掌握題目的解題步驟、思維和方法。
二、常規(guī)性和新穎性原則
在教學(xué)過程中,常規(guī)性的題目可以培養(yǎng)學(xué)生的基本思維能力和預(yù)算能力,但是學(xué)生長(zhǎng)時(shí)間地做常規(guī)性的題目會(huì)導(dǎo)致審美疲勞,容易產(chǎn)生厭學(xué)情緒,于是需要教師將常規(guī)題改編變成新穎題。結(jié)構(gòu)獨(dú)特、形式新穎的題目可以提高學(xué)生的學(xué)習(xí)興趣,教師也可以在解題思路上加強(qiáng)新穎性,這樣學(xué)生就會(huì)發(fā)現(xiàn)數(shù)學(xué)的魅力,提高學(xué)習(xí)的積極性。但是教師不能一味地追求題目的新穎性而忽視常規(guī)性題目的訓(xùn)練,因?yàn)樵诳荚囍薪忸}用得最多的還是常規(guī)的題目和常規(guī)的解題思路。所以在習(xí)題教學(xué)過程中教師要將常規(guī)性和新穎性相結(jié)合,正確對(duì)待常規(guī)型和新穎性的原則[1]。
三、針對(duì)性和目的性原則
因?yàn)檎n堂時(shí)間有限,所以教師在選擇例題和習(xí)題時(shí)要有針對(duì)性,在上課前提前備好課,想好學(xué)生學(xué)習(xí)這節(jié)課需要掌握的學(xué)習(xí)方法和思路,這樣有針對(duì)性、有目的性地選擇題目,不僅能夠提高教學(xué)效率,而且能夠使學(xué)生明白這節(jié)課所學(xué)的具體內(nèi)容,有利于學(xué)生建立自己的知識(shí)框架和思維體系。例如在學(xué)習(xí)圓與函數(shù)時(shí),教師可以針對(duì)學(xué)生是否對(duì)解析式已經(jīng)徹底掌握,是否理解解析式的內(nèi)涵,本著這樣的目的多出一些能夠鞏固學(xué)生基礎(chǔ)知識(shí)的題目,使學(xué)生能夠扎實(shí)地掌握基本的知識(shí),才能夠?yàn)橐院蟮纳钊雽W(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)[2]。
四、典型性和示范性原則
教師在選擇例題時(shí)要具有典型性,能夠代表大多數(shù)題目的解題思路,可以教導(dǎo)學(xué)生基本的解題思路,解題方法,以及題目規(guī)律,可以使學(xué)生在解決其他題目時(shí)能夠從教師所講的例題中受到啟發(fā),這樣就到達(dá)了習(xí)題教學(xué)的典型性原則。教師在課堂上講課時(shí),對(duì)例題的演算就是對(duì)學(xué)生的示范,在這個(gè)過程中教師的解題步驟就是對(duì)學(xué)生的規(guī)范,學(xué)生會(huì)模仿教師的解題步驟,以此作為自己的解題步驟。所以教師在示范的時(shí)候不能潦草,更不能漏寫解題步驟,教師的解題規(guī)范了就能夠幫助學(xué)生的答題步驟進(jìn)行規(guī)范,這對(duì)學(xué)生今后學(xué)習(xí)數(shù)學(xué)、考試都有一定的幫助[3]。
五、全面性和選擇性原則
全面性指的是教師在選擇習(xí)題上要選擇形式多樣,知識(shí)涉及豐富,解題技巧多樣的題目,在這么多題目的面前,教師就要做出選擇,選擇那些適合學(xué)生的、適合教學(xué)大綱的,能夠啟發(fā)學(xué)生又不是很難的,所以習(xí)題教學(xué)的最后一個(gè)原則就是全面性與選擇性相結(jié)合。教師在選擇能夠設(shè)計(jì)多樣、全面的題目的同時(shí)又要選擇能夠有利于學(xué)生學(xué)習(xí),能夠有效培養(yǎng)學(xué)生解題能力的例題、習(xí)題,嚴(yán)格遵守全面性和選擇性的原則。
綜上所述,高中數(shù)學(xué)教學(xué)要重視習(xí)題的教學(xué),在習(xí)題教學(xué)過程中可以激發(fā)學(xué)生的學(xué)習(xí)熱情和學(xué)習(xí)積極性,培養(yǎng)學(xué)生的思維能力,構(gòu)建完整的數(shù)學(xué)框架體系。習(xí)題教學(xué)對(duì)高中數(shù)學(xué)有著重要的作用,所以在教學(xué)過程中,教師要嚴(yán)格遵守習(xí)題教學(xué)的這五項(xiàng)原則,有效提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。
參考文獻(xiàn):
[1]李軍生.談高中數(shù)學(xué)習(xí)題教學(xué)的五項(xiàng)原則[J].教育探索,2008,05:32-33.
[2]張志勇.談高中數(shù)學(xué)習(xí)題教學(xué)的五項(xiàng)原則[J].中華少年,2015,18:131.
[3]林文.高中數(shù)學(xué)習(xí)題教學(xué)的五項(xiàng)原則[J].新課程研究(下旬刊),2013,09:102-103.