黃 怡,喬延國(guó),陳金宏,張東方侍曉云審校
綜述
GLP-1受體激動(dòng)藥對(duì)心血管的保護(hù)作用
黃 怡1,喬延國(guó)1,陳金宏2,張東方1侍曉云3審校
GLP-1受體激動(dòng)藥;心血管疾??;2型糖尿病;
2型糖尿病是一種以胰島素抵抗和胰島素分泌不足為特征的慢性疾病。與非糖尿病患者相比,糖尿病患者罹患心血管疾病的風(fēng)險(xiǎn)可增加數(shù)倍[1]。研究表明,2型糖尿病患者的心血管疾病風(fēng)險(xiǎn)與發(fā)生過(guò)心肌梗死的非糖尿病患者相似,糖尿病患者的心血管疾病死亡率是非糖尿病患者的2~4倍[2]。盡管降糖領(lǐng)域已經(jīng)取得很大進(jìn)展,但大血管并發(fā)癥仍然是2型糖尿病患者的最常見(jiàn)死因。
20世紀(jì)60年代,McIntyre等[3]發(fā)現(xiàn),口服葡萄糖對(duì)胰島素分泌的促進(jìn)作用明顯高于靜脈注射,這種額外的效應(yīng)被稱(chēng)為腸促胰素效應(yīng) 。胰高血糖素樣肽-1(glucagon like peptide-1,GLP-1)是小腸L細(xì)胞分泌的一種腸促胰素,體內(nèi)的內(nèi)源性活性GLP-1在體內(nèi)無(wú)法達(dá)到治療濃度[4]。GLP-1通過(guò)與其相應(yīng)的受體結(jié)合發(fā)揮作用,GLP-1受體存在于全身多個(gè)器官,如胃、十二指腸、胰腺外分泌部分、腦干、丘腦、下丘腦、海馬體、心臟、肺和腎臟,此外,在肌細(xì)胞、脂肪細(xì)胞、血管和肝臟也有表達(dá)[5]。許多研究報(bào)告發(fā)現(xiàn),GLP-1作用涉及神經(jīng)調(diào)制和外周脂肪分解作用,能增加飽腹感和靜息能量消耗,降低血漿游離脂肪酸濃度[6-8]。
目前,已經(jīng)發(fā)現(xiàn)GLP-1類(lèi)似物在體內(nèi)可以抑制被分解而較持久地發(fā)揮作用,GLP-1受體激動(dòng)藥作為一種GLP-1類(lèi)似物,能模擬GLP-1 的生理作用,并能對(duì)抗DPP-4的降解,可以改善胰島β細(xì)胞的功能,抑制胰高血糖素分泌,改善胰島素抵抗,增加飽腹感而減少能量攝入。因此,外源性GLP-1受體激動(dòng)藥成為糖尿病患者降糖治療的良好選擇。在發(fā)揮降糖作用的同時(shí),GLP-1受體激動(dòng)藥的心血管保護(hù)作用日益受到重視。筆者將就GLP-1受體激動(dòng)藥對(duì)心血管的保護(hù)作用作一綜述。
GLP-1受體在心肌細(xì)胞、血管內(nèi)皮細(xì)胞和平滑肌細(xì)胞等均有表達(dá),GLP-1受體激動(dòng)藥的心臟保護(hù)作用機(jī)制,主要是通過(guò)增加內(nèi)源性抗氧化防御物質(zhì)、抑制心肌細(xì)胞凋亡,來(lái)清除心肌細(xì)胞活性氧、減輕氧化應(yīng)激損傷、保護(hù)心肌細(xì)胞、減輕缺血再灌注損傷[9]。
研究發(fā)現(xiàn),GLP-1可降低成年大鼠原代培養(yǎng)心肌細(xì)胞以及離體大鼠心臟的收縮力[10]。在狗的動(dòng)物模型中,研究發(fā)現(xiàn)GLP-1可增加高胰島素正常血糖鉗夾實(shí)驗(yàn)時(shí)心肌細(xì)胞對(duì)葡萄糖的攝取[11]。此外,肥胖以及2型糖尿病患者GLP-1的心肌代謝作用減低,可能機(jī)制是p38 MAPK信號(hào)轉(zhuǎn)導(dǎo)受損。Moberly等[12]進(jìn)一步證實(shí),GLP-1可以顯著增加低體重人群在基礎(chǔ)狀態(tài)下的心肌葡萄糖攝取,而2型糖尿病患者的這一機(jī)制受損。GLP-1不增加普通人群以及豬在體實(shí)驗(yàn)?zāi)P偷男募『难趿炕蜓髁?,但能增加p38 MAPK的活性,而這一現(xiàn)象不包括肥胖人群的心臟組織[13]。
動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),腸促胰素可以保護(hù)心肌細(xì)胞的存活力,提高代謝效率,抑制心肌梗死后心臟結(jié)構(gòu)和功能的重塑[14]。研究證實(shí),對(duì)心肌梗死后伴有左心功能不全的患者輸注GLP-1(7-36) 72 h ,劑量為1.5 pmol/ (kg·min),可以改善左心室壁運(yùn)動(dòng)評(píng)分,減少住院日期和降低住院死亡率[15,16]。
GLP-1對(duì)血壓和心率的影響具有復(fù)雜性和物種特異性。將合成人GLP-1注射入雄性大鼠的頸靜脈,會(huì)引起收縮壓、舒張壓的急劇升高及心率增快,停止輸注GLP-1后25 min血壓及心率可恢復(fù)至基礎(chǔ)水平。而預(yù)先給予普萘洛爾或酚妥拉明,并不能阻止大鼠血壓和心率的增加[17]。給健康受試者靜脈輸注GLP-1 48 h,可以增加肌肉交感神經(jīng)活性,但對(duì)血壓、血漿去甲腎上腺素濃度或心率變化(交感/副交感神經(jīng)平衡)無(wú)明顯影響,表明交感神經(jīng)興奮的增加至少部分被副交感神經(jīng)激活所代償[18]。另外,快速皮下注射GLP-1可引起健康受試者心率和血壓短暫增加,并在注射后50~60 min回到正常范圍[19]。近期研究表明,在心血管系統(tǒng),腸促胰素可增強(qiáng)內(nèi)源性抗氧化防御系統(tǒng),抑制心肌細(xì)胞凋亡,減輕血管內(nèi)皮炎性反應(yīng)和功能障礙[20]。
GLP-1對(duì)心血管系統(tǒng)具有多效性。GLP-1受體激動(dòng)藥利拉魯肽可增加內(nèi)皮一氧化氮合酶磷酸化,并通過(guò)腺苷酸活化蛋白激酶(5-AMP-activated protein kinase,AMPK)依賴(lài)途徑增加一氧化氮(nitric oxide,NO)的合成[21,22]。GLP-1能對(duì)抗氧化應(yīng)激、細(xì)胞凋亡及糖尿病產(chǎn)生的微血管屏障功能障礙,保護(hù)心臟微血管,從而改善心臟功能和心肌葡萄糖代謝[23]。Batchuluun等[24]發(fā)現(xiàn),二甲雙胍和利拉魯肽通過(guò)抑制人主動(dòng)脈內(nèi)皮細(xì)胞的PKC-NADPH氧化酶通路,可改善高血糖導(dǎo)致的氧化應(yīng)激。當(dāng)兩藥合用時(shí),這些獲益更加顯著,表明藥物聯(lián)合應(yīng)用可能降低高血糖誘導(dǎo)的內(nèi)皮細(xì)胞損傷。Kelly及其團(tuán)隊(duì)發(fā)現(xiàn),對(duì)于肥胖和糖尿病前期患者,GLP-1受體激動(dòng)藥艾塞那肽在改善血管內(nèi)皮功能、炎性因子及氧化應(yīng)激標(biāo)志物、血管活化等方面,作用與二甲雙胍相當(dāng)。他們認(rèn)為,GLP-1受體激動(dòng)藥改善血管內(nèi)皮功能可能存在于餐后,特別是高脂飲食[25]。
在動(dòng)物模型和細(xì)胞模型中,GLP-1已被證實(shí)可影響動(dòng)脈粥樣硬化斑塊的發(fā)生和(或)進(jìn)展。GLP-1受體在小鼠主動(dòng)脈平滑肌細(xì)胞、內(nèi)皮細(xì)胞、單核細(xì)胞和巨噬細(xì)胞被免疫細(xì)胞化學(xué)定位,表明GLP-1可能直接或間接參與減少動(dòng)脈粥樣化形成。給非糖尿病C57BL/6和ApoE-/-小鼠持續(xù)輸注重組醋酸艾塞那肽40 d,可減少小鼠單核細(xì)胞黏附于血管內(nèi)皮細(xì)胞的概率。經(jīng)過(guò)重組醋酸艾塞那肽治療后,小鼠腹腔巨噬細(xì)胞炎性因子單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein-1,MCP-1)和腫瘤壞死因子(tumor necrosis factor α,TNF-α)減少[26]。然而,在一個(gè)完全校正模型中發(fā)現(xiàn),循環(huán)GLP-1與人類(lèi)冠狀動(dòng)脈總負(fù)荷呈正相關(guān)[OR:2.53 (95%CI:1.12~6.08;P= 0.03)][27],但需要進(jìn)一步的研究來(lái)證實(shí)這些結(jié)果。在C57BL/6小鼠連續(xù)輸注4周重組醋酸艾塞那肽,可減少股動(dòng)脈內(nèi)皮剝脫術(shù)后新生內(nèi)膜形成[28]。Nagashima等[27]研究發(fā)現(xiàn),連續(xù)輸注GLP-1可減少ApoE-/-小鼠泡沫細(xì)胞的形成和動(dòng)脈粥樣硬化病變的進(jìn)展。近日,有研究表明給ApoE-/-小鼠注射利拉魯肽后可以產(chǎn)生類(lèi)似效果[29]。
GLP-1受體激動(dòng)藥潛在臨床獲益的首要證據(jù),是它可減少主要心血管不良事件(major adverse cardiovascular and cerebrovascular events,MACCE)的發(fā)生,即可減少中風(fēng)、心肌梗死、心源性死亡、急性冠脈綜合征的發(fā)生和有利于血運(yùn)重建。一項(xiàng)關(guān)于糖尿病患者接受艾塞那肽(n=39 275)和其他降糖治療(n=381 218)的回顧性分析顯示,GLP-1受體激動(dòng)藥可降低19%的MACCE發(fā)生率和12%的心血管住院率[30]。在糖尿病和非糖尿病合并Ⅱ/Ⅳ級(jí)心力衰竭患者,輸注GLP-1可改善左心室射血分?jǐn)?shù)、心肌耗氧量、6 min步行距離和生活質(zhì)量[15]。一項(xiàng)研究發(fā)現(xiàn),向合并慢性心力衰竭的2型糖尿病患者輸注艾塞那肽,可降低肺毛細(xì)血管楔壓,增加正性肌力和正性變時(shí)作用[31]。這些結(jié)果需要進(jìn)一步的臨床試驗(yàn),以闡明這些影響是否會(huì)降低以上患者病死率。
在一個(gè)非隨機(jī)對(duì)照試驗(yàn)研究中,Nikolaidis等[32]收集10例急性心梗且左室射血分?jǐn)?shù)低于40%并成功進(jìn)行早期血運(yùn)重建的患者,與11例對(duì)照組患者分別輸注72 h天然GLP-1,用以研究其安全性和有效性。此研究證實(shí),GLP-1治療不僅安全性高,還可顯著改善左室射血分?jǐn)?shù)。58例ST段抬高型心肌梗死溶栓的患者隨機(jī)接受生理鹽水或艾塞那肽治療,以評(píng)估GLP-1受體激動(dòng)藥是否可以減少心肌梗死的壞死區(qū)面積。結(jié)果發(fā)現(xiàn),艾塞那肽可顯著降低CK-MB和肌鈣蛋白釋放率,1個(gè)月后行心臟核磁共振發(fā)現(xiàn)梗死面積減少[33]。
利拉魯肽是2009年上市的新型降糖藥,它是一種GLP-1受體激動(dòng)藥,其心血管結(jié)果研究LEADER于2010年9月正式啟動(dòng)。研究設(shè)計(jì)為國(guó)際性、多中心、隨機(jī)、雙盲、安慰劑對(duì)照的長(zhǎng)期隨訪3B期臨床研究,旨在伴有心血管疾病高風(fēng)險(xiǎn)的成年2型糖尿病患者中,評(píng)估標(biāo)準(zhǔn)治療聯(lián)合利拉魯肽或安慰劑治療的心血管事件發(fā)生率情況。結(jié)果顯示,利拉魯肽顯著降低MACE風(fēng)險(xiǎn)達(dá)13%、降低心血管死亡風(fēng)險(xiǎn)22%、降低擴(kuò)展的MACE風(fēng)險(xiǎn)12%、降低全因死亡風(fēng)險(xiǎn)15%;在臨床和代謝結(jié)局、微血管結(jié)局方面,利拉魯肽可給2型糖尿病患者帶來(lái)全面獲益,且利拉魯肽總體安全性和耐受性良好[34]。
心血管疾病是2型糖尿病患者的主要死因。2008年,美國(guó)FDA發(fā)布了降糖新藥與心血管風(fēng)險(xiǎn)評(píng)估指導(dǎo),明確要求所有申請(qǐng)上市的降糖藥物必須進(jìn)行心血管風(fēng)險(xiǎn)評(píng)估研究。GLP-1受體激動(dòng)藥作為新型降糖藥物,目前相關(guān)基礎(chǔ)研究及臨床證據(jù)都表明GLP-1受體激動(dòng)藥可為2型糖尿病患者的心血管疾病帶來(lái)臨床獲益,為治療帶來(lái)新的希望。
[1] Booth G L, Kapral M K, Fung K,etal. Recent trends in cardiovascularcomplications among men and women with and without diabetes [J]. Diabetes Care, 2006, 29(1): 32-37.
[2] Haffner S J, Cassells H. Hyperglycemia as a cardiovascular risk factor [J]. Am J Med, 2003, 115(Suppl 8A): 6S-11S.
[3] McIntyre N, Holsworth D C, Turner D S. New interpretation of oral glucose tolerance [J]. Lancet, 1964, 2(7349): 20-21.
[4] Gautier J F, Fetita S, Sobngwi E,etal. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes[J]. Diabetes Metab, 2005, 31(3 Pt 1) : 233-242.
[5] 梁 霞, 閆振成. 胰高血糖素樣肽-1在代謝性心血管病中的作用研究進(jìn)展[J]. 解放軍醫(yī)學(xué), 2014, 39(5): 425-428.
[6] Dailey M J, Moran T H. Glucagon-like peptide 1 and appetite [J].Trends Endocrinol Metab, 2013, 24: 85-91.
[7] ?rskov C, Poulsen S S, M?ller M,etal. Glucagon-like peptide I receptorsin the subfornical organ and the area postrema are accessible tocirculating glucagon-like peptide I[J]. Diabetes, 1996, 45: 832-835.
[8] Pannacciulli N, Bunt J C, Koska J,etal. Higher fastingplasma concentrations of glucagon-like peptide 1 are associated withhigher resting energy expenditure and fat oxidation rates in humans [J]. Am J Clin Nutr, 2006, 84: 556-560.
[9] Chang G, Zhang D, Yu H,etal. Cardioprotective effects of exenatide against oxidative stress-inducedinjury [J]. Int J Mol Med, 2013, 32(5):1011-1120.[10] Saraiva F K, Sposito A C. Cardiovascular effects of Glucagon-like peptide 1(GLP-1) receptor agonists[J]. Cardiovasc Diabetol, 2014, 13:142-149.
[11] Moberly S P, Mather K J, Berwick Z C,etal. Impaired cardiometabolic responses to glucagon-likepeptide 1 in obesity and type 2 diabetes mellitus[J]. Basic Res Cardiol, 2013, 108(4): 365-369.
[12] Moberly S P, Berwick Z C, Kohr M,etal. Intracoronary glucagon-like peptide 1 preferentially augments glucoseuptake in ischemic myocardium independent of changes in coronary flow[J]. Exp Biol Med, 2012, 237(3): 334-342.
[13] Zhao T C. Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection [J]. Cardiovasc Diabetol, 2013, 12: 90.
[14] Sokos G G, Nikolaidis L A, Mankad S,etal. Glucagon-likepeptide-1 infusion improves left ventricular ejection fraction and functionalstatus in patients with chronic heart failure[J]. J Card Fail, 2006, 12(9): 694-699.
[15] Sokos G G, Bolukoglu H, German J,etal. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting [J]. Am J Cardiol, 2007, 100(5): 824-829.
[16] Barragán J M, Rodríguez R E, Blázquez E. Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36 amide) in rats[J]. Am J Physiol, 1994, 266(3): E459-E466.
[17] Robinson L E, Holt T A, Rees K,etal. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis [J]. BMJ Open, 2013, 3(1): 1986.
[18] Edwards C M, Todd J F, Ghatei M A,etal. Subcutaneous glucagon-likepeptide-1 (7-36) amide is insulinotropic and can cause hypoglycaemiain fasted healthy subjects[J]. ClinSci, 1998, 95(6): 719-724.
[19] Ceriello A, Novials A, Canivell S,etal. Simultaneous GLP-1 and insulin administration acutely enhances their vasodilatory, antiinflammatory, and antioxidant action in type 2 diabetes[J]. Diabetes Care, 2014, 37(7): 1938-1943.
[20] Erdogdu O, Nathanson D. Holm A,etal. Exendin-4stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requiresGLP-1 receptor[J]. Mol Cell Endocrinol, 2010, 325: 26-35.
[21] Wang D, Luo P, Wang Y,etal. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism[J]. Diabetes, 2013, 62(5):1697-1708.
[22] Batchuluun B, Inoguchi T, Sonoda N,etal. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway inhuman aortic endothelial cells[J]. Atherosclerosis, 2014, 232(1):156-164.
[23] Kelly A S, Richard M, Bergenstal R M,etal. Effects of Exenatide vs. Metformin on endothelial function in obese patients with pre-diabetes: a randomized trial[J]. Cardiovasc Diabetol, 2012, 11: 64.
[24] Basu A, Charkoudian N, Schrage W,etal. Beneficial effects of GLP-1 on endothelial function in humans: dampening byglyburide but not by glimepiride[J]. Am J Physiol Endocrinol Metab, 2007, 293: E1289-E1295.
[25] Ceriello A, Esposito K, Testa R,etal. Thepossible protective role of glucagon-like peptide 1 on endotheliumduring the meal and evidence for an “endothelial resistance” toglucagon-like peptide 1 in diabetes[J]. Diabetes Care, 2011, 34: 697-702.
[26] Goto H, Nomiyama T, Mita T,etal. Exendin-4,a glucagon-like peptide-1 receptor agonist, reduces intimal thickeningafter vascular injury[J]. Biochem Biophys Res Commun, 2011, 405:79-84.
[27] Nagashima M, Watanabe T, Terasaki M,etal. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice[J]. Diabetologia, 2011, 54: 2649-2659.
[28] Tashiro Y, Sato K, Watanabe T,etal. A glucagon-like peptide-1 analog liraglutide suppressesmacrophage foam cell formation and atherosclerosis [J]. Peptides, 2014, 54: 19-26.
[29] Best J H, Hoogwerf B J, Herman W H,etal. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospectiveanalysis of the life link database[J]. Diabetes Care, 2011, 34(1): 90-95.
[30] Nathanson D, Ullman B, L?fstr?m U,etal. Effects of intravenous exenatide in type 2 diabetic patients with congestive heart failure: a double-blind, randomised controlledclinical trial of efficacy and safety [J]. Diabetologia, 2012, 55(4): 926-935.
[31] Woo J S, Kim W, Ha S J,etal. Cardioprotective effects of exenatide in patients with ST-segment- elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study[J]. Arterioscler Thromb Vasc Biol, 2013, 33(9): 2252-2260.
[32] Hermansen K, B?kdal T A, Düring M,etal. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial [J]. Diab Obesity Metabol, 2013, 15: 1040-1048.
[33] Baggio L L, Drucker D J. Biology of incretins: GLP-1 and GIP [J]. Gastroenterology, 2007, 132(6): 2131-2157.
[34] Marso S P, Daniels G H, Frandsen K B,etal. Liraglutide and cardiovascular outcomesin type 2 diabetes[J]. New Engl J Med, 2016,375(4):311-322.
(2016-07-10收稿 2016-09-05修回)
(責(zé)任編輯 武建虎)
黃 怡,碩士,主治醫(yī)師。
100039 北京,武警總醫(yī)院:1.南二科,2.科訓(xùn)科,3.內(nèi)分泌科
R587.1