楊 帥, 蔡寧寧
(中國(guó)礦業(yè)大學(xué)(北京) 理學(xué)院, 北京 100083)
?
一類Caputo分?jǐn)?shù)階微分方程初值問(wèn)題解的存在性
楊帥, 蔡寧寧
(中國(guó)礦業(yè)大學(xué)(北京) 理學(xué)院, 北京 100083)
摘要:將一類Caputo分?jǐn)?shù)階微分方程初值問(wèn)題轉(zhuǎn)化為等價(jià)的Volterra積分方程,通過(guò)構(gòu)造一個(gè)特殊的Banach空間,在此Banach空間上定義算子,將求解Volterra積分方程轉(zhuǎn)化為求算子的不動(dòng)點(diǎn)問(wèn)題,應(yīng)用Schauder 不動(dòng)點(diǎn)定理證明了其解的存在性.
關(guān)鍵詞:Caputo分?jǐn)?shù)階微分方程; 初值問(wèn)題; Volterra積分方程
近年來(lái),隨著相關(guān)理論的不斷拓展和完善,分?jǐn)?shù)階微分方程已廣泛應(yīng)用于分?jǐn)?shù)物理學(xué)、粘彈性力學(xué)、自動(dòng)控制、混沌與湍流、生物化學(xué)、非牛頓流體力學(xué)、隨機(jī)過(guò)程等諸多科學(xué)領(lǐng)域[1]. 關(guān)于分?jǐn)?shù)階微分方程解的存在性及其求解也取得了豐碩的成果[2-5]. 分?jǐn)?shù)階微分方程初值問(wèn)題是非線性微分方程的一個(gè)重要研究課題,許多學(xué)者都獨(dú)立地探討了各類分?jǐn)?shù)階微分方程初值問(wèn)題[6-9].
本文主要討論如下一類Caputo分?jǐn)?shù)階微分方程邊值問(wèn)題
(1)
1預(yù)備知識(shí)
首先,介紹幾個(gè)基本概念和一些Caputo分?jǐn)?shù)階導(dǎo)數(shù)的性質(zhì)以及相關(guān)引理.
性質(zhì)1常數(shù)的Caputo分?jǐn)?shù)階導(dǎo)數(shù)為0,即
2主要結(jié)果
定理1設(shè)f(x,y(x))在[0,1]×R上連續(xù),則Caputo分?jǐn)?shù)階微分方程邊值問(wèn)題(1)等價(jià)于下面的第二類非線性Volterra積分方程
(2)
即
等式兩邊積分可得
y(x)=y(0)+
另一方面,設(shè)y(x)是Volterra積分方程(2)的解,即
且在(2)中令x=0可得y(0)=y0,則y(x)是Caputo分?jǐn)?shù)階微分方程邊值問(wèn)題(1)的解.
綜上兩個(gè)方面,得到(1)與(2)等價(jià).
證明由定理1知道,Caputo分?jǐn)?shù)階微分方程邊值問(wèn)題(1)與Volterra積分方程(2)等價(jià),定義算子A:
Ay(x)=y0+
則方程的解轉(zhuǎn)化為算子A的不動(dòng)點(diǎn)問(wèn)題.
接下來(lái), 分以下幾步來(lái)證明:
第1步,任取y∈U,可以得到
即Ay(x)∈U,于是算子A:U→U.
?x∈[0,1]
那么
則A:U→U連續(xù).
即A(U)中諸函數(shù)一致有界.
第4步,討論A(U)中諸函數(shù)的等度連續(xù)性.
由于 0<α<1,則
可知A(U)中諸函數(shù)等度連續(xù).
由Ascoli-Arzela定理知A(U)是B相對(duì)緊集. 因此A:U→U全連續(xù). 根據(jù)Schauder 不動(dòng)點(diǎn)定理知A在U中必有不動(dòng)點(diǎn).
綜上,證明了Caputo分?jǐn)?shù)階微分初值問(wèn)題(1)解的存在性,即(1)必有連續(xù)解y∈C[0,1].
參考文獻(xiàn):
[1] Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equations [M]. Amsterdam: Elsevier, 2006.
[2]Diethelm K. The analysis of fractional differential equations[M]. Heidelberg: Springer, 2010.
[3]Sabatier J, Agrawal O P, Tenreiro Machado J A. Advances in fractional calculus[M].Nether-Lands: Springer, 2007.
[4]Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations [M]. New York: Wiley, 1993.
[5] Podlubny I. Fractional differential equations [M]. London: Academic Press,1999.
[6] Zhang S Q. Positive solutions to singular boundary value problem for nonlinear fractional differential equation[J]. Computers and Mathematics with Applications,2009,59 (3):1 300-1 309.
[7] Zhang S Q. Positive solution of singular boundary value problem for nonlinear fractional differential equation with nonlinearity that changes sign[J]. Positivity,2012,16(1): 177-193.
[8] Su X W. Boundary value problem for a coupled system of nonlinear fractional differential equations.[J]. Appl. Math. Lett.,2009,22: 64-69.
[9] Su X W . Positive solutions to singular boundary value problems for fractional functional differential equations with changing sign nonlinearity[J]. Computers and Mathematics with Applications,2012, 64 (10):3 425-3 435.
(編輯:郝秀清)
Existence of solutions of initial value problem for a Caputo fractional differential equation
YANG Shuai, CAI Ning-ning
(College of Science, China University of Mining and Technology, Beijing 100083, China)
Abstract:The initial value problem of a class of Caputo fractional differential equations is transformed into an equivalent Volterra integral equation. By defining a operator on a special Banach space, the solvability of the Volterra integral equation is transformed to a fixed point problem. The existence of its solution is proved by employing Schauder′s fixed point theorem.
Key words:Caputo fractional differential equation; initial value problem; Volterra integral equation
中圖分類號(hào):0175.14
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-6197(2016)03-0029-04
作者簡(jiǎn)介:楊帥,男, haotianwuji2@sina.com
收稿日期:2015-07-07