潘若雷,楊淑雯,江敏,2,*
1. 上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306 2. 上海市水產(chǎn)養(yǎng)殖工程技術(shù)研究中心,上海 201306
全氟辛烷磺酸(PFOS)對(duì)三角帆蚌肝胰腺的氧化性損傷
潘若雷1,楊淑雯1,江敏1,2,*
1. 上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306 2. 上海市水產(chǎn)養(yǎng)殖工程技術(shù)研究中心,上海 201306
PFOS是典型的持久性有機(jī)污染物,遷移能力強(qiáng),具有較高的生物可利用性和蓄積能力,且具有廣泛的生物毒性。為探究PFOS對(duì)淡水底棲生物的毒性作用機(jī)制,以三角帆蚌為研究對(duì)象,進(jìn)行了不同劑量(0.1、1.0、5.0 mg·L-1)的PFOS脅迫和凈水恢復(fù)實(shí)驗(yàn),期間對(duì)受試生物肝胰腺中的谷胱甘肽(GSH)含量、谷胱甘肽-S轉(zhuǎn)移酶(GST)活性、超氧化物歧化酶(SOD)活性,以及谷丙轉(zhuǎn)氨酶(ALT)和谷草轉(zhuǎn)氨酶(AST)的活性進(jìn)行了連續(xù)測(cè)定。結(jié)果發(fā)現(xiàn),低濃度脅迫(0.1 mg·L-1)對(duì)各項(xiàng)指標(biāo)均有不同程度的誘導(dǎo)作用,且持續(xù)時(shí)間較長;而在中高濃度PFOS脅迫下,則呈現(xiàn)出明顯的誘導(dǎo)向抑制過渡的時(shí)間效應(yīng)。GSH含量和GST活性具有較高的相關(guān)性(P<0.05)?;謴?fù)實(shí)驗(yàn)中,所測(cè)指標(biāo)普遍未恢復(fù)到對(duì)照組水平,說明PFOS脅迫損傷的恢復(fù)需要更長的時(shí)間。研究表明,PFOS對(duì)三角帆蚌肝胰腺的氧化脅迫顯著,并能快速地激活肝胰腺細(xì)胞的解毒代謝;但長期的PFOS脅迫則會(huì)造成肝胰腺細(xì)胞的實(shí)質(zhì)性損傷。
PFOS;三角帆蚌;肝胰腺;酶活性;毒性機(jī)理
全氟辛烷磺酸(PFOS)是首個(gè)被列入斯德哥爾摩公約污染物清單的全氟化持久性有機(jī)污染物。由于具有極強(qiáng)的表面張力和穩(wěn)定性,PFOS及其聚合物被作為高效的表面活性劑廣泛應(yīng)用于各大工業(yè)產(chǎn)業(yè),包括人類經(jīng)常接觸的日常生活用品(部分包裝,防水透氣材料等),與此同時(shí),大量的含PFOS廢物也成為了潛在的污染源。目前,已在地表水[1-2]、地下水[3-4]、近岸海水[2,5]、雨水及城市降雨徑流[1,6],甚至部分城市供水中發(fā)現(xiàn)PFOS污染[7-8],全球范圍內(nèi)的PFOS污染形勢(shì)不容樂觀。
PFOS具有較高的生物可利用性[9]和生物累積性[10],并能輕易地通過呼吸、進(jìn)食等行為被生物吸收,進(jìn)而在體內(nèi)大量蓄積,對(duì)各組織器官造成長久的毒害[11]。PFOS在生物體內(nèi)已普遍存在[12-13],人類體內(nèi)也有一定的檢出[14-15]。PFOS可隨血液進(jìn)入生物體各組織,影響機(jī)體功能,并能透過胎盤屏障和血腦屏障富集于胚胎和腦組織[16-17],對(duì)神經(jīng)中樞以及其胚胎的發(fā)育造成影響[18]。肝臟是生物體主要的毒物代謝器官,也是PFOS的最主要蓄積器官[13,19]。生物體內(nèi)的解毒過程通常會(huì)產(chǎn)生大量的活性氧[20]。由超氧化物歧化酶(SOD)等組成的抗氧化酶系是活性氧的主要清除途徑[21]。研究表明,PFOS脅迫能夠產(chǎn)生顯著的氧化壓迫,可能是其肝毒性和發(fā)育毒性的主要原因之一[22]。
縱觀以往的PFOS相關(guān)研究,大部分都以大鼠等陸生生物為受試生物。一方面是由于作為陸生模式生物,其研究背景已經(jīng)非常完整,有利于對(duì)PFOS毒性及毒理機(jī)制的類比分析;另一方面,則是因?yàn)樵谶M(jìn)化層面上,陸生動(dòng)物比水生動(dòng)物更加接近人類,以前者為研究對(duì)象能夠更加可靠地推測(cè)PFOS對(duì)人類的影響。但細(xì)致分析PFOS的污染分布可以發(fā)現(xiàn),其在自然環(huán)境中多以溶解態(tài)存在于水體中,或被有機(jī)質(zhì)吸附沉降,水體中的生物將是PFOS進(jìn)入生態(tài)系統(tǒng),并開始累積和放大的首個(gè)關(guān)鍵環(huán)節(jié)。有研究表明,自然水體中PFOS的水-泥吸附系數(shù)可以達(dá)到4.2[23],但該系數(shù)受沉積物中有機(jī)質(zhì)(OM)含量的影響較大[12]。這說明棲息于水體下層的生物體極有可能接觸到更多的PFOS污染,從而產(chǎn)生更加明顯的生物累積和毒性表現(xiàn)。由此角度出發(fā),本實(shí)驗(yàn)選取了普遍存在于我國各大水系的三角帆蚌(Hyriopsis cumingii)作為受試生物,來研究底棲濾食性生物對(duì)PFOS的毒理學(xué)反應(yīng),以輔助我國水體生態(tài)環(huán)境污染的研究。
1.1 儀器和試劑
儀器:全自動(dòng)組織勻漿儀(MP Fastprep24,美國),紫外可見分光光度儀(unico,WFZ UV-4802H,美國),臺(tái)式低溫離心機(jī)(eppendorf,Centrifuge 5810R,德國),電熱恒溫水浴鍋(上海精宏,DK-S24,中國),多功能讀板機(jī)(Molecular Decices FlexStation 3,美國)。
試劑:全氟辛烷磺酸鉀(C8F17KO3S,AR)、乙二胺四乙酸(EDTA)、NaCl購自sigma公司;酶活性測(cè)定試劑盒及總蛋白(TP)測(cè)定試劑盒,均購自南京建成生物工程研究所;無水乙醇購自上海試劑有限公司;1 mol·L-1Tris-HCl(pH=7.6)購自生工生物工程有限公司。100 mmol·L-1苯甲基磺酰氟(phenylmethanesulfonyl fluoride, PMSF)購自上海碧云天生物技術(shù)有限公司。
1.2 實(shí)驗(yàn)材料
受試三角帆蚌為2齡,于2015年5月1日購自浙江省諸暨市山下湖某養(yǎng)殖場(chǎng),大小均一(殼長9.5 cm±0.7 cm)。實(shí)驗(yàn)開始前于200 L塑料養(yǎng)殖箱內(nèi)暫養(yǎng)2周,使用充分曝氣(48 h以上)的自來水,水溫25 ℃,連續(xù)充氣,以玉米粉和微藻粉混合投喂,每天更換總水量的1/2,選擇活力較好的健康個(gè)體進(jìn)行正式實(shí)驗(yàn)。
1.3 分組與處理
將160只蚌隨機(jī)分為4組,每組40只,分別編號(hào)為A、B、C、D。A組為對(duì)照組,飼養(yǎng)于未添加PFOS的曝氣水中;B、C、D為處理組,分別暴露于PFOS濃度為0.1、1.0、5.0 mg ·L-1的曝氣水中??刂扑疁睾愣?5 ℃,pH為7.5~8.0,連續(xù)充氣,溶解氧含量DO>5 mg·L-1。處理期間每天更換總水量的1/2,以保持PFOS濃度。
1.4 樣品采集與前處理
1.4.1 樣品采集
實(shí)驗(yàn)于2015年7月16日開始,首先進(jìn)行30 d的PFOS脅迫實(shí)驗(yàn),于0 h、2 h、4 h、8 h、24 h、4 d、10 d、20 d、30 d采樣,隨后將各組三角帆蚌移入凈水中進(jìn)行恢復(fù)實(shí)驗(yàn),并于31 d、37 d、45 d采樣。采樣時(shí)每組隨機(jī)取出3只蚌,洗凈后在冰上迅速解剖,分離完整的肝胰腺,用預(yù)冷的生理鹽水洗凈,濾紙吸干,置于2 mL無菌去酶的離心管(Axygen)中,液氮速凍,保存于-80 ℃冰箱中待用。
1.4.2 組織勻漿制作
取適量凍存組織稱重,按組織質(zhì)量(g):液體體積(mL)=1:9加入預(yù)冷的組織勻漿液,加入適量陶瓷研磨珠,放入全自動(dòng)組織勻漿儀中振蕩20 s,將樣品取下,置于冰上5 min,重復(fù)振蕩3次,將離心管移入4 ℃離心機(jī)中,轉(zhuǎn)速3 500 r·min-1下離心15 min,立即小心吸取上清液進(jìn)行相關(guān)指標(biāo)的測(cè)定。
1.5 酶活性測(cè)定
超氧化物歧化酶(SOD)、谷胱甘肽-S轉(zhuǎn)移酶(GST)、還原型谷胱甘肽(GSH)、谷草轉(zhuǎn)氨酶(AST)、谷丙轉(zhuǎn)氨酶(ALT)的活性以及總蛋白(TP)的含量,均依據(jù)南京建成生物工程研究所試劑盒說明書測(cè)得。
1.6 數(shù)據(jù)處理與分析
使用SPSS 19.0分析所得數(shù)據(jù),首先進(jìn)行方差齊性檢驗(yàn)(levene’s test)和單因素方差分析(one-way AVONA),隨后進(jìn)行多重比較分析(Duncan’s和post hoc LSD)。統(tǒng)計(jì)結(jié)果用平均值±標(biāo)準(zhǔn)偏差(Mean±SD)表示,P<0.05,P<0.01則認(rèn)為存在顯著差異。使用GraphPad Prism 5進(jìn)行制圖。
2.1 PFOS對(duì)三角帆蚌肝胰腺GSH含量的影響
如圖1所示,低濃度(0.1 mg·L-1)PFOS脅迫下,三角帆蚌肝胰腺中的GSH含量普遍高于對(duì)照組,最高達(dá)到對(duì)照組的3.71倍(24 h,P<0.01),誘導(dǎo)作用顯著。中濃度(1.0 mg·L-1)組的GSH含量呈現(xiàn)出先升高再降低的變化規(guī)律,2 h至4 d內(nèi)均處于誘導(dǎo)狀態(tài),4 h時(shí)達(dá)到了8.04 μmol·g prot-1,是對(duì)照組的1.65倍(P<0.01);第10天后,脅迫組GSH含量開始低于對(duì)照組,抑制作用微弱,30 d時(shí)脅迫組GSH含量僅為對(duì)照組的37%,抑制達(dá)到最強(qiáng)(P<0.01)。高濃度(5.0 mg·L-1)組GSH含量的變化規(guī)律與中濃度組相同,4 h達(dá)到對(duì)照組的2.51倍(P<0.01),30 d時(shí)下降至對(duì)照組的24%。相比之下,高濃度組的誘導(dǎo)作用和抑制作用均明顯強(qiáng)于中濃度組,體現(xiàn)了PFOS脅迫的劑量效應(yīng)關(guān)系?;謴?fù)實(shí)驗(yàn)中,各組GSH含量均于37 d恢復(fù)到正常水平,但在45 d時(shí)均有顯著升高,可能于機(jī)體功能的調(diào)整有關(guān)。
圖1 PFOS脅迫和凈水恢復(fù)實(shí)驗(yàn)各組三角帆蚌肝胰腺中GSH含量隨時(shí)間的變化注:各組分別與對(duì)照組比較,* P<0.05,** P<0.01。Fig. 1 The change of GSH concentration in hepatopancreas of PFOS treated Hyriopsis cumingii Note: Each group was compared with the control, * P<0.05, ** P<0.01.
2.2 PFOS對(duì)三角帆蚌肝胰腺SOD活性的影響
如圖2所示,低濃度組的SOD活性普遍高于對(duì)照組,誘導(dǎo)較弱,僅在第4天達(dá)到了顯著水平,為3.61 U·g prot-1,是對(duì)照組的1.30倍。中濃度組的SOD活性在整個(gè)脅迫過程中先升高再降低,顯著的誘導(dǎo)作用出現(xiàn)于8 h(4.86 U·g prot-1,P<0.05),是對(duì)照組的1.66倍;隨著脅迫時(shí)間的延長,第20天開始出現(xiàn)顯著抑制(P<0.05),30 d時(shí)達(dá)到顯著水平(P<0.01),僅為對(duì)照組的57%。高濃度組SOD活性在脅迫開始的8 h內(nèi)出現(xiàn)了微弱的誘導(dǎo),隨后便進(jìn)入抑制狀態(tài),30 d時(shí)抑制最強(qiáng)(P<0.01),為1.79 U·g prot-1,是對(duì)照組的57%。恢復(fù)實(shí)驗(yàn)結(jié)束時(shí),中低濃度組SOD活性均恢復(fù)到正常水平,高濃度組則出現(xiàn)了下降。
2.3 PFOS對(duì)三角帆蚌肝胰腺GST活性的影響
由圖3可見,低濃度組肝胰腺的GST活性在整個(gè)脅迫過程中均高于對(duì)照組,且普遍處于顯著水平(P<0.01),誘導(dǎo)作用較強(qiáng);活性最大值24.42 U·mg prot-1出現(xiàn)于4 d,是對(duì)照組的2.05倍。中濃度組的GST活性普遍處于顯著(P<0.01)誘導(dǎo)狀態(tài),誘導(dǎo)最強(qiáng)時(shí)達(dá)到對(duì)照組的2.41倍(24 h,30.22 U·mg prot-1);顯著的抑制僅在第30天出現(xiàn)(P<0.05),是對(duì)照組的62%(7.87 U·mg prot-1)。高濃度組GST活性先升高再降低的規(guī)律明顯,2 h至4 d內(nèi)均處于顯著(P<0.01)誘導(dǎo)狀態(tài),與中濃度組相似,但其活性最大值出現(xiàn)在8 h(27.75 U·mg prot-1,2.38倍),早于中濃度組;顯著(P<0.01)的抑制狀態(tài)由10 d開始持續(xù)至30 d達(dá)到最強(qiáng)(5.39 U·mg prot-1),是對(duì)照組的43%?;謴?fù)實(shí)驗(yàn)中,各組均有恢復(fù)的趨勢(shì),但在恢復(fù)實(shí)驗(yàn)結(jié)束時(shí),均未達(dá)到正常水平。
圖2 PFOS脅迫和凈水恢復(fù)實(shí)驗(yàn)各組三角帆蚌肝胰腺中SOD活性隨時(shí)間的變化注:各組分別與對(duì)照組比較,* P<0.05,** P<0.01。Fig. 2 The change of SOD activity in hepatopancreas of PFOS treated Hyriopsis cumingiiNote: Each group was compared with the control, * P<0.05, ** P<0.01.
圖3 PFOS脅迫和凈水恢復(fù)實(shí)驗(yàn)各組三角帆蚌肝胰腺中GST活性隨時(shí)間的變化注:各組分別與對(duì)照組比較,* P<0.05,** P<0.01。Fig. 3 The change of GST activity in hepatopancreas of PFOS treated Hyriopsis cumingiiNote: Each group was compared with the control, * P<0.05, ** P<0.01.
2.4 PFOS對(duì)三角帆蚌肝胰腺功能的影響2.4.1 肝胰腺中谷丙轉(zhuǎn)氨酶(ALT)活力的變化
如圖4所示,低濃度脅迫對(duì)三角帆蚌肝胰腺ALT活性的誘導(dǎo)作用明顯,且隨脅迫時(shí)間的延長而逐漸增強(qiáng),脅迫結(jié)束時(shí)的ALT活性值為7.19 U·g prot-1,是對(duì)照組的1.90倍(P<0.01)。中濃度組的誘導(dǎo)作用由2 h持續(xù)至4 d達(dá)到最強(qiáng),活性值為6.15 U·g prot-1,是對(duì)照組的1.92倍(P<0.01);顯著的抑制出現(xiàn)在30 d,活性值僅為對(duì)照組的47%(P<0.05)。高濃度組的誘導(dǎo)作用僅持續(xù)至24 h,4 h時(shí)最強(qiáng)(5.97 U·g prot-1,1.88倍);4 d至30 d內(nèi)抑制作用明顯,活性最小值0.36 U·g prot-1出現(xiàn)于20 d,是對(duì)照組的12%(P<0.01)?;謴?fù)實(shí)驗(yàn)結(jié)束時(shí),僅中濃度組ALT活性恢復(fù)到正常水平,相較于對(duì)照組,低濃度組和高濃度組的ALT活性仍存在極顯著差異(P<0.01)。
圖4 PFOS脅迫和凈水恢復(fù)實(shí)驗(yàn)各組三角帆蚌肝胰腺中ALT活性隨時(shí)間的變化注:各組分別與對(duì)照組比較,* P<0.05,** P<0.01。Fig. 4 The change of ALT activity in hepatopancreas of PFOS treated Hyriopsis cumingiiNote: Each group was compared with the control, * P<0.05, ** P<0.01.
圖5 PFOS脅迫和凈水恢復(fù)實(shí)驗(yàn)各組三角帆蚌肝胰腺中AST活性隨時(shí)間的變化注:各組分別與對(duì)照組比較,* P<0.05,** P<0.01。Fig. 5 The change of AST activity in hepatopancreas of PFOS treated Hyriopsis cumingiiNote: Each group was compared with the control, * P<0.05, ** P<0.01.
2.4.2 肝胰腺中AST活力的變化
如圖5所示,低濃度組AST活性普遍高于對(duì)照組,活性最大值5.79 U·g prot-1出現(xiàn)于20 d,是對(duì)照組的1.98倍,誘導(dǎo)作用顯著(P<0.01)。中濃度組AST活性在整個(gè)脅迫過程中變化幅度較小,未檢測(cè)到顯著的誘導(dǎo)作用;第4天開始進(jìn)入抑制狀態(tài),并在30 d達(dá)到顯著水平(P<0.05),AST活性值僅為對(duì)照組的55%(1.69 U·g prot-1)。高濃度組AST活性先升高再降低的規(guī)律明顯,0 h至24 h內(nèi)逐漸升高至6.06 U·g prot-1,是對(duì)照組的1.90倍(P<0.01);4 d至30 d內(nèi)的抑制作用顯著(P<0.05),活性最小值0.42 U·g prot-1出現(xiàn)于第10天,是對(duì)照組的15%(P<0.01)?;謴?fù)實(shí)驗(yàn)結(jié)束時(shí),中低濃度組的AST活性已恢復(fù)至正常水平,但高濃度組仍顯著低于對(duì)照組(P<0.01)。
2.5 GSH含量與GST活性的相關(guān)性分析
分別將各濃度組12次采樣測(cè)得的GSH含量與同組的GST活性進(jìn)行相關(guān)性分析,所得結(jié)果如表1所示,PFOS脅迫下三角帆蚌肝胰腺GSH含量和GST活性具有一定的相關(guān)性,相關(guān)性的大小與脅迫濃度有關(guān),PFOS脅迫濃度為5.0 mg·L-1時(shí),兩者的相關(guān)性達(dá)到了顯著水平(P<0.05)。
GSH是細(xì)胞中最高效的生物解毒工具之一,其不僅是強(qiáng)親核試劑,同時(shí)也是強(qiáng)還原劑,能夠有效攔截親電子劑和氧化劑,以保護(hù)核酸、蛋白等重要的親核性大分子免受親電子劑和氧化劑的攻擊[24]。GSH能夠自發(fā)或在GST催化條件下,與多數(shù)毒性化合物結(jié)合生成無毒或低毒的大分子,以保證外源毒物轉(zhuǎn)運(yùn)和分解代謝過程的安全進(jìn)行[25],但也有研究表明,GSH的自發(fā)共軛作用可能形成更具毒性的衍生物[24]。Ji和Lu[26]用PCB118脅迫淡水鯽魚后發(fā)現(xiàn),各處理組肝臟中的GSH含量均有顯著降低,并伴隨有脂質(zhì)過氧化產(chǎn)物MDA的顯著升高。由于PFOS具有較強(qiáng)的親電性,故GSH將在其排除代謝途徑上發(fā)揮重要作用。Xu等[27]發(fā)現(xiàn),PFOS脅迫的42 d內(nèi),各處理組蚯蚓體內(nèi)的GSH含量水平普遍低于對(duì)照組,說明PFOS會(huì)顯著地消耗細(xì)胞內(nèi)的GSH;與之類似,PFOS的攝入會(huì)造成大鼠免疫細(xì)胞內(nèi)GSH的顯著降低,同時(shí)伴隨著GST活性的下降,和細(xì)胞凋亡的加劇[28]。Zhang等[28]認(rèn)為這是細(xì)胞解毒能力下降的表現(xiàn),其原因可能是高濃度的PFOS所帶來的嚴(yán)重氧化損傷。反觀本實(shí)驗(yàn),所得結(jié)果與以上的研究略有不同,即在實(shí)驗(yàn)前期,處理組的GSH含量顯著高于對(duì)照組,這說明PFOS可以在短期內(nèi)誘導(dǎo)三角帆蚌肝胰腺中GSH含量的升高。Nogueira等[25]和Ji等[26]的實(shí)驗(yàn)中亦出現(xiàn)了相似的現(xiàn)象。大量GSH的存在能夠有效屏蔽外源毒物,清除氧化劑,并加速毒物的轉(zhuǎn)運(yùn)和代謝過程,故GSH含量的升高對(duì)于生物體而言至關(guān)重要。Trevisan等[29]的研究表明,硒(Na2SeO3)能夠顯著提高紫貽貝(Mytilus edulis)鰓中的GSH含量,并在隨后的銅(CuSO4)脅迫實(shí)驗(yàn)中加速Cu2+的運(yùn)輸和代謝,避免毒性蓄積的產(chǎn)生。Nogueira等[25]也認(rèn)為,生物柴油脅迫下的毒物運(yùn)輸能夠觸發(fā)GSH的合成。筆者認(rèn)為,GSH含量在短期內(nèi)的升高是細(xì)胞對(duì)PFOS脅迫所進(jìn)行的適應(yīng)性調(diào)整,這一觀點(diǎn)與Zhang等[28]的觀點(diǎn)相似,其認(rèn)為這種適應(yīng)性調(diào)整的原動(dòng)力來自于低劑量PFOS所造成的微弱氧化壓迫。
表1 PFOS脅迫下三角帆蚌肝胰腺內(nèi)GSH含量與GST活性變化的相關(guān)性分析Table 1 The correlation analysis of GSH concentration and GST activity in hepatopancreas of PFOS treated Hyriopsis cumingii
注:*為0.05水平上(雙側(cè))顯著相關(guān)。
Note: * P<0.05 (2-tailed).
從合成途徑來看,GSH一般通過γ-谷氨酰基循環(huán)合成,γ-谷氨酰半胱氨酸合成酶(γ-GCL)是該過程的限速酶。林秀秀等[30]的研究表明,在飼料中添加脂質(zhì)過氧化產(chǎn)物MDA,能夠顯著地誘導(dǎo)γ-GCL酶調(diào)控基因表達(dá)的上調(diào)。這證明細(xì)胞氧化壓迫信號(hào)刺激,能夠促進(jìn)GSH的合成,在一定程度上印證了筆者的觀點(diǎn),并闡明了其分子機(jī)理。此外,GSH的合成過程需要ATP供能及大量谷氨酸,本實(shí)驗(yàn)的肝功能指標(biāo)變化趨勢(shì)與GSH含量的變化趨勢(shì)相近。一方面,這表明在此期間肝胰腺代謝旺盛,充分滿足了GSH大量合成的物質(zhì)和能量需求;另一方面,由于GSH既是甘油醛磷酸脫氫酶的輔基,又是乙二醛酶及丙糖脫氫酶的輔酶,參與體內(nèi)三羧酸循環(huán)及糖代謝,并能激活多種酶,從而促進(jìn)機(jī)體對(duì)氨基酸的吸收和轉(zhuǎn)運(yùn),以及葡萄糖[31]、鈣[32]和無機(jī)態(tài)硒[33]等的吸收,大量GSH的合成也可能是肝胰腺功能增強(qiáng)的原因之一。筆者認(rèn)為,本實(shí)驗(yàn)的結(jié)果是由以上兩方面的因素相互作用而形成的,但肝胰腺功能增強(qiáng)現(xiàn)象的成因則更為復(fù)雜。以上論述充分解釋了GSH含量升高的現(xiàn)象,而就GSH含量降低的原因而言,筆者推測(cè)主要包括以下幾點(diǎn):首先,持續(xù)不斷的PFOS脅迫消耗了大量GSH以屏蔽其毒性,但礙于PFOS極低的代謝率,其解毒通路被嚴(yán)重阻塞;第二,PFOS的屏蔽和轉(zhuǎn)運(yùn)過程會(huì)產(chǎn)生大量的活性氧,進(jìn)一步消耗了GSH;第三,由于解毒通路的阻塞,機(jī)體受到實(shí)質(zhì)性的傷害,造成組織功能下降,GSH合成的中斷。對(duì)細(xì)胞而言,GSH的減少將嚴(yán)重影響其穩(wěn)定性,在一定程度上,GSH含量的降低可以作為細(xì)胞凋亡的預(yù)兆之一[34]。
GST是細(xì)胞排毒系統(tǒng)的關(guān)鍵酶,并參與外源物質(zhì)的生物運(yùn)輸。Maria和Bebianno[35]發(fā)現(xiàn),苯并(a)芘(10 μg·L)脅迫,能夠顯著誘導(dǎo)紫貽貝(Mytilus galloprovincialis)鰓中GST的活性;與之相似的現(xiàn)象亦出現(xiàn)在針對(duì)重金屬(汞[36])、農(nóng)藥(BHC[37]、DDT[38])、石油衍生物[39-40]等外源毒物的研究中。本實(shí)驗(yàn)的結(jié)果證明,PFOS脅迫同樣能夠在短期內(nèi)引發(fā)機(jī)體GST活性的升高,并在長期脅迫后顯著地抑制機(jī)體內(nèi)GST的活性,且表現(xiàn)出明顯的劑量效應(yīng)關(guān)系。該結(jié)論與袁璐瑤等[41]、Zhang等[28]的研究結(jié)果一致,其原因可能與GST相關(guān)基因表大量的上調(diào)有關(guān)[28]。另外,GST活性的變化通常與胞內(nèi)GSH的含量具有一定的聯(lián)系[24]。如表1所示,隨著PFOS脅迫劑量的增加,GSH含量與GST活性的相關(guān)性逐漸增強(qiáng),在印證了兩者聯(lián)系的同時(shí),也預(yù)示著低濃度脅迫下,多數(shù)的GSH被用于胞內(nèi)活性氧的去除,而高濃度脅迫下,細(xì)胞的排毒作用則消耗了更大比例的GSH。
SOD是生物抗氧化體系中重要的組成部分,眾多研究表明,PFOS對(duì)生物體內(nèi)的SOD活性具有顯著地誘導(dǎo)作用[27-28,41]。本實(shí)驗(yàn)在短期內(nèi)(4 h、8 h)即檢測(cè)到了SOD活性的顯著升高,充分地說明了PFOS對(duì)生物體氧化應(yīng)激反應(yīng)的激發(fā)作用,在一定程度上補(bǔ)充了前人對(duì)短期響應(yīng)的研究。Gong等[42]發(fā)現(xiàn),大鼠阻塞性黃疸發(fā)生期間,其肝臟PPAR蛋白的表達(dá)與總SOD活性呈正相關(guān)(P<0.01),并認(rèn)為PPARs可能在肝損傷過程中扮演重要角色,而這一過程是通過控制SOD活性的改變等方式實(shí)現(xiàn)的。據(jù)Pyper等[43]報(bào)道,PFAAs可以激活過氧化氫酶增殖體受體α(PPAR-α),而后者的活性則關(guān)系到基因表達(dá)、脂調(diào)控、葡萄糖穩(wěn)態(tài)、細(xì)胞增生及炎癥反應(yīng)。Wolf等[44]則發(fā)現(xiàn),PFOS和PFOA能夠顯著地誘導(dǎo)瞬變轉(zhuǎn)染的人類纖維母細(xì)胞樣COS-1細(xì)胞系中的PPAR-α,且呈現(xiàn)出劑量效應(yīng)和碳鏈鏈長效應(yīng)。筆者認(rèn)為,本實(shí)驗(yàn)中SOD活性的升高,從側(cè)面證明了GSH含量升高的動(dòng)力來源;而實(shí)驗(yàn)后期SOD活性的顯著降低,也從另一個(gè)方面說明了肝胰腺細(xì)胞實(shí)質(zhì)性損傷的發(fā)生。至于本實(shí)驗(yàn)中SOD活性變化是否受制于PPARs,仍需要進(jìn)一步的研究來證實(shí)。
ALT和AST的測(cè)定結(jié)果顯示,PFOS脅迫對(duì)三角帆蚌肝胰腺的代謝能力的影響呈現(xiàn)明顯的劑量效應(yīng)和時(shí)間效應(yīng),側(cè)面反應(yīng)了肝胰腺細(xì)胞的受損。另外,本實(shí)驗(yàn)測(cè)定的其他指標(biāo)出現(xiàn)抑制的時(shí)間與ALT和AST活性下降的時(shí)間接近,一定程度上印證了實(shí)質(zhì)性損傷的推測(cè)?;謴?fù)實(shí)驗(yàn)中,各脅迫組的各項(xiàng)指標(biāo)普遍沒有回歸正常水平,但多數(shù)有恢復(fù)的趨勢(shì),這與Gagné等[45]的研究有相似之處,其測(cè)定的部分指標(biāo)在凈水恢復(fù)一個(gè)月后仍未恢復(fù)正常值。故筆者認(rèn)為,30 d內(nèi),PFOS脅迫對(duì)各劑量組對(duì)三角帆蚌肝胰腺的損傷并非不可恢復(fù),但需要比本實(shí)驗(yàn)更長的恢復(fù)期。
[1] Eschauzier C, Haftka J, Stuyfzand P J, et al. Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes[J]. Environmental Science & Technology, 2010, 44(19): 7450-7455
[2] M?ller A, Ahrens L, Surm R, et al. Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed[J]. Environmental Pollution, 2010, 158(10): 3243-3250
[3] Jennifer A. Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA [J]. Journal of Environmental Monitoring, 2003, 5(2): 341-345
[4] Schultz M M, Barofsky D F, Field J A. Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS[J]. Environmental Science & Technology, 2004, 38(6): 1828-1835
[5] Ahrens L, Gerwinski W, Theobald N, et al. Sources of polyfluoroalkyl compounds in the North Sea, Baltic Sea and Norwegian Sea: Evidence from their spatial distribution in surface water[J]. Marine Pollution Bulletin, 2010, 60(2): 255-260
[6] Kwok K Y, Taniyasu S, Yeung L W Y, et al. Flux of perfluorinated chemicals through wet deposition in Japan, the United States, and several other countries [J]. Environmental Science & Technology, 2010, 44(18): 7043-7049
[7] Ericson I, Domingo J L, Nadal M, et al. Levels of perfluorinated chemicals in municipal drinking water from Catalonia, Spain: Public health implications [J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4): 631-638
[8] Eschauzier C, Beerendonk E, Scholte-Veenendaal P, et al. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain [J]. Environmental Science & Technology, 2012, 46(3): 1708-1715
[9] Wen B, Zhang H, Li L, et al. Bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in biosolids-amended soils to earthworms (Eisenia fetida) [J]. Chemosphere, 2015, 118: 361-366
[10] Houde M, Czub G, Small J M, et al. Fractionation and bioaccumulation of perfluorooctane sulfonate (PFOS) isomers in a Lake Ontario food web [J]. Environmental Science & Technology, 2008, 42(24): 9397-9403
[11] 江敏, 袁璐瑤. 全氟辛烷磺酸(PFOS)的環(huán)境污染及生態(tài)毒性研究進(jìn)展[J]. 安全與環(huán)境學(xué)報(bào), 2014, 14(4): 207-212
Jiang M, Yuan L Y. Research advances on the environmental pollution and ecological toxic harm of the perfluorooctane sulfonate (PFOS) [J]. Journal of Safety and Environment, 2014, 14(4): 207-212 (in Chinese)
[12] DeWitt J C. Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances [M]// Perfluorinated Alkyl Acids in Wildlife. Cham, Switzerland: Springer International Publishing, 2015: 127-143
[13] Moody C A, Martin J W, Kwan W C, et al. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek [J]. Environmental Science & Technology, 2002, 36(4): 545-551
[14] Yamaguchi M, Arisawa K, Uemura H, et al. Consumption of seafood, serum liver enzymes, and blood levels of PFOS and PFOA in the Japanese population [J]. Journal of Occupational Health, 2013, 55(3): 184-194
[15] Audet-Delage Y, Ouellet N, Dallaire R, et al. Persistent organic pollutants and transthyretin-bound thyroxin in plasma of Inuit women of childbearing age [J]. Environmental Science &Technology, 2013, 47(22): 13086-13092
[16] Olsen G W, Mair D C, Church T R, et al. Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000-2006 [J]. Environmental Science & Technology, 2008, 42(13): 4989-4995
[17] Johansson N, Fredriksson A, Eriksson P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice [J]. Neurotoxicology, 2008, 29(1): 160-169
[18] Luebker D J, Hansen K J, Bass N M, et al. Interactions of flurochemicals with rat liver fatty acid-binding protein [J]. Toxicology, 2002, 176(3): 175-185
[19] Taniyasu S, Kannan K, Horii Y, et al. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan [J]. Environmental Science &Technology, 2003, 37(12): 2634-2639
[20] Kumar G N, Surapaneni S. Role of drug metabolism in drug discovery and development [J]. Medicinal Research Reviews, 2001, 21(5): 397-411
[21] Li Z H, Velisek J, Zlabek V, et al. Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): Effects on morphological indices, hematological parameters and antioxidant responses [J]. Journal of Hazardous Materials, 2011, 185(2): 870-880
[22] Feng M, He Q, Meng L, et al. Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers [J]. Aquatic Toxicology, 2015, 161: 108-116
[23] Zareitalabad P, Siemens J, Hamer M, et al. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater-A review on concentrations and distribution coefficients [J]. Chemosphere, 2013, 91(6): 725-732
[24] Pompella A, Corti A. Editorial: The changing faces of glutathione, a cellular protagonist [J]. Frontiers in Pharmacology, 2003, 66: 1499-1503
[25] Nogueira L, Garcia D, Trevisan R, et al. Biochemical responses in mussels Perna perna exposed to diesel B5 [J]. Chemosphere, 2015, 134: 210-216
[26] Ji Y, Lu G. Biological effects and liver biomarkers of PCB contamination on freshwater fish Carassius auratus [C]. International Conferenceon Remote Sensing, Environment and Transportation Engineering (RSETE), 2011: 5767-5770
[27] Xu D, Li C, Wen Y, et al. Antioxidant defense system responses and DNA damage of earthworms exposed to perfluorooctane sulfonate (PFOS) [J]. Environmental Pollution, 2013, 174: 121-127
[28] Zhang Y H, Wang J, Dong G H, et al. Mechanism of perfluorooctanesulfonate (PFOS)-induced apoptosis in the immunocyte [J]. Journal of Immunotoxicology, 2013, 10(1): 49-58
[29] Trevisan R, Mello D F, Fisher A S, et al. Selenium in water enhances antioxidant defenses and protects against copper-induced DNA damage in the blue mussel Mytilus edulis [J]. Aquatic Toxicology, 2011, 101(1): 64-71
[30] 林秀秀, 葉元土, 蔡春芳, 等. 丙二醛引起草魚腸道, 肝胰臟谷胱甘肽/谷胱甘肽轉(zhuǎn)移酶通路抗氧化應(yīng)激[J]. 動(dòng)物營養(yǎng)學(xué)報(bào), 2015, 27(11): 3604-3612
Lin X X, Ye Y T, Cai C F, et al. Malondialdehyde causes glutathione/glutathione transferase pathway oxidative stress in intestine and hepatopancreas of grass carp (Ctenopharyngodon idellus) [J]. Chinese Journal of Animal Nutrition, 2015, 27(11): 3604-3612 (in Chinese)
[31] Mannery Y O, Ziegler T R, Park Y, et al. Oxidation of plasma cysteine/cystine and GSH/GSSG redox potentials by acetaminophen and sulfur amino acid insufficiency in humans [J]. Journal of Pharmacology and Experimental Therapeutics, 2010, 333(3): 939-947
[32] de Talamoni N T, Marchionatti A, Baudino V, et al. Glutathione plays a role in the chick intestinal calcium absorption [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1996, 115(2): 127-132
[33] Senn E, Scharrer E, Wolffram S. Effects of glutathione and of cysteine on intestinal absorption of selenium from selenite [J]. Biological Trace Element Research, 1992, 33(1): 103-108
[34] Zou X, Feng Z, Li Y, et al. Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: Activation of Nrf2 and JNK-p62/SQSTM1 pathways [J]. The Journal of Nutritional Biochemistry, 2012, 23(8): 994-1006
[35] Maria V L, Bebianno M J. Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo (a) pyrene and copper [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2011, 154(1): 56-63
[36] Elia A C, Galarini R, Taticchi M I, et al. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure [J]. Ecotoxicology and Environmental Safety, 2003, 55(2): 162-167
[37] Trivedi N P, Rawal U M. Hepatoprotective and antioxidant property of Andrographis paniculata (Nees) in BHC induced liver damage in mice [J]. Indian Journal of Experimental Biology, 2001, 39(1): 41-46
[38] Gunasekaran K, Muthukumaravel S, Sahu S S, et al. Glutathione S transferase activity in Indian vectors of malaria: A defense mechanism against DDT [J]. Journal of Medical Entomology, 2011, 48(3): 561-569
[39] Lima I, Moreira S M, Rendon-Von Osten J, et al. Biochemical responses of the marine mussel Mytilus galloprovincialis to petrochemical environmental contamination along the North-western coast of Portugal [J]. Chemosphere, 2007, 66(7): 1230-1242
[40] Zanette J, de Almeida E A, da Silva A Z, et al. Salinity influences glutathione S-transferase activity and lipid peroxidation responses in the Crassostrea gigas oyster exposed to diesel oil [J]. Science of the Total Environment, 2011, 409(10): 1976-1983
[41] 袁璐瑤, 潘若雷, 江敏. 全氟辛烷磺酸對(duì)斑馬魚生理生化指標(biāo)的影響研究[J]. 上海海洋大學(xué)學(xué)報(bào), 2015, 24(6): 869-879
Yuan L Y, Pan R L, Jiang M. Effects of PFOS on the physiological and biochemical indices of Danio rerio [J]. Journal of Shanghai Ocean University, 2015, 24(6): 869-879 (in Chinese)
[42] Gong P, Xu H, Zhang J, et al. PPAR expression and its association with SOD and NF-κB in rats with obstructive jaundice [J]. Biomedical Research (0970-938X), 2012, 23(4): 551-560
[43] Pyper S R, Viswakarma N, Jia Y, et al. PRIC295, a nuclear receptor coactivator, identified from PPAR α-interacting cofactor complex [J]. PPAR Research, 2010, 2010(5): 16
[44] Wolf D C, Moore T, Abbott B D, et al. Comparative hepatic effects of perfluorooctanoic acid and WY 14,643 in PPAR-α knockout and wild-type mice [J]. Toxicologic Pathology, 2008, 36(4): 632-639
[45] Gagné F, Blaise C, Hellou J. Endocrine disruption and health effects of caged mussels, Elliptio complanata, placed downstream from a primary-treated municipal effluent plume for 1 year [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2004, 138(1): 33-44
◆
Perfluorooctane Sulfonate (PFOS)-Induced Oxidative Damage in Hepatopancreas ofHyriopsiscumingii
Pan Ruolei1, Yang Shuwen1, Jiang Min1,2,*
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China 2. Research and Engineering Center on Aquatic Environment Ecosystem, Shanghai 201306, China
Received 4 January 2016 accepted 1 February 2016
Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant, which has high levels of bio-availability and can easily migrate in the environment or accumulate in biont. In addition, PFOS has a wide range of biological toxicity. However, few studies have focused on the toxicity mechanism of PFOS on aquatic benthic animals. In this study, we explored the toxic effects of different concentrations (0.1, 1.0 and 5.0 mg·L-1) of PFOS to benthic organisms by testing the activity of glutathione S-transferase (GST), superoxide dismutase (SOD), alanine transaminase (ALT), aspartate transaminase (AST), and the concentration of glutathione(GSH) in the hepatopancreas of PFOS treated Hyriopsis cumingii. In different intensities, we detected long-lasting inductions of GSH, GST and ALT activity in the lower concentration (0.1 mg·L-1) group. In contrast, similar patterns for all biomarkers shifting from induction to inhibition were found in the 1.0 mg·L-1and 5.0 mg·L-1groups. As an indicator of oxidative stress, the activity of SOD was significantly inhibited in all the treated groups. Finally, a positive correlation (P<0.05) was found between GSH concentration and GST activity in the 5.0 mg·L-1group suggesting that the cellular detoxification system was highly motivated. In the restoration experiment, none of the biomarkers had restored to the normal range, and all of the biomarkers showed more instability than the control group, which indicated the dysfunction and suggested that a longer convalescence was needed to repair the damage. In summary, the rapid triggering of cellular detoxification and oxidative stress of the antioxidant system in hepatopancreas of Hyriopsis cumingii was detected during the PFOS treated process. The blocking of toxic metabolic pathways and accumulation of oxidant may be the origin of cellular damage.
PFOS; Hyriopsis cumingii; hepatopancreas; enzyme activity; toxic mechanism
上海市高校知識(shí)服務(wù)平臺(tái)項(xiàng)目(ZF1206);上海市教委重點(diǎn)學(xué)科建設(shè)項(xiàng)目(J50701)
潘若雷(1991—),男,碩士研究生,研究方向?yàn)榄h(huán)境毒理學(xué),E-mail: pollyprl@sina.com;
*通訊作者(Corresponding author), E-mail: mjiang@shou.edu.cn
10.7524/AJE.1673-5897.20160104001
2016-01-04 錄用日期:2016-02-01
1673-5897(2016)6-112-09
X171.5
A
江敏(1972—),女,博士,教授,研究方向?yàn)闈O業(yè)水域環(huán)境監(jiān)測(cè)與調(diào)控、環(huán)境化學(xué)、環(huán)境毒理學(xué)。
潘若雷, 楊淑雯, 江敏. 全氟辛烷磺酸(PFOS)對(duì)三角帆蚌肝胰腺的氧化性損傷[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(6): 112-120
Pan R L, Yang S W, Jiang M. Perfluorooctane sulfonate (PFOS)-induced oxidative damage in hepatopancreas of Hyriopsis cumingii [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 112-120 (in Chinese)