杜 花,熊曉虎,付云翀,牛振川,盧雪峰
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061;2. 陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點實驗室,西安加速器質(zhì)譜中心,西安 710061)
骨頭14C-AMS測年前處理方法的研究進(jìn)展
杜 花1,2,熊曉虎1,2,付云翀1,2,牛振川1,2,盧雪峰1,2
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061;2. 陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點實驗室,西安加速器質(zhì)譜中心,西安 710061)
骨頭是考古和地質(zhì)領(lǐng)域常用的測年物質(zhì)之一,由于它松散的結(jié)構(gòu)特點,使得在埋藏過程中極易受到外界年輕碳的污染,從而造成14C測年的不可靠性,但是由于其在考古14C測年中的不可或缺性,因此需要對其測年的可靠性進(jìn)行系統(tǒng)的研究,通過有效的14C-AMS測年前處理方案移除污染以獲得準(zhǔn)確的年齡一直是研究的熱點和難點問題。骨頭的埋葬環(huán)境及保存狀態(tài)的好壞直接影響它測年結(jié)果的準(zhǔn)確度,于是選用何種測年物質(zhì)和分離技術(shù)及樣品狀況之間的權(quán)衡甚為重要。本文主要針對骨頭的14C-AMS測年發(fā)展進(jìn)行簡要的綜述,分別從骨化石在埋葬過程中的組成及性質(zhì)變化、骨膠原的分析評價技術(shù)及各種前處理方案進(jìn)行了介紹,并對其當(dāng)前的發(fā)展?fàn)顩r及純化新技術(shù)進(jìn)行了分析,此外也提及了采用逐步燃燒法作為一種新方法的嘗試,認(rèn)為此方法為骨頭可靠14C測年物質(zhì)的獲取提供了一條新途徑,希望本文能對以后的測年工作提供指導(dǎo)和幫助。
骨頭;14C-AMS;骨膠原;XAD-2樹脂;超濾;氨基酸;磷灰石
自20世紀(jì)50年代放射性碳測年技術(shù)發(fā)展初期,骨頭就被認(rèn)為是理想的測年物質(zhì),同時也是測量中受困擾最多的物質(zhì)之一(Libby,1955;Hedges and Van Klinken,1992)。骨頭在考古地層中出現(xiàn)較多,往往是考古學(xué)家青睞的測年物質(zhì)(Katzenberg and Harrison,1997)。14C-AMS技術(shù)是目前應(yīng)用廣泛且精度高的測年手段,使得很多樣品量少、年代老及污染嚴(yán)重的骨頭樣品的測年成為可能,但由于骨頭自身的特性,它埋葬環(huán)境及骨頭保存狀態(tài)的好壞直接影響測年結(jié)果的準(zhǔn)確度,于是選用何種測年物質(zhì)和分離技術(shù)及樣品狀況之間的權(quán)衡甚為重要,本文通過總結(jié)前人關(guān)于骨頭14C-AMS可靠測年的研究進(jìn)展,對于它的分離純化技術(shù)有了系統(tǒng)深入的了解,也希望能給其他的測年工作者提供指導(dǎo)性的幫助。
新鮮的骨骼由75%—80%的無機(jī)礦物質(zhì)即羥基磷灰石(Ca10(PO4)6(OH)2)和20%左右的有機(jī)質(zhì)組成,羥基磷灰石中主要包含磷酸鈣、碳酸鈣、氟化鈣和氫氧化鈣,有機(jī)質(zhì)中85%—90%約為骨膠原蛋白,其余為非膠原蛋白(NCPs),主要是骨鈣蛋白、骨粘連蛋白、糖蛋白和血蛋白等(Brock et al,2013)。羥基磷灰石中只占骨頭總重的6%左右,牙釉質(zhì)中就更少了(3.5%),在近十幾年間,普遍認(rèn)為骨化石的無機(jī)14C年齡是一種混合年齡,晚于化石的真實年齡,于是科學(xué)家們研究的焦點集中在了提取骨膠原組分的測年(Hedges and Van Klinken,1992;Mihara et al,2004;Brock et al,2010a;Minami et al,2013a),圖1就能很好地體現(xiàn)出來(Zazzo and Saliège,2011)。骨頭樣品中的有機(jī)質(zhì)組分,仍然被認(rèn)為是最為合理的,也是最有可能經(jīng)過一系列化學(xué)、物理分離提取之后成為可靠測年組分的物質(zhì)。
地質(zhì)學(xué)上認(rèn)為保存較好的埋藏骨化石,是保存于干洞穴及永久凍土中的,這種環(huán)境下骨膠原成巖作用和腐殖酸污染通常會最?。⊿tafford et al,1988)。實際上,大多數(shù)的骨頭由于其主要成分磷灰石具有疏松、多孔及巨大比表面的結(jié)構(gòu),在長期的埋葬過程中,易發(fā)生如攝入陽離子和周圍的有機(jī)質(zhì)、交換某些離子、分解和淋濾膠原、微生物的襲擊、礦物質(zhì)晶格的改變甚至被淋濾、浸入無機(jī)淀積物等變化(Hedges,2002),它們的生物特性和化學(xué)組成都發(fā)生了改變,所以大多數(shù)用來測年的骨頭都是經(jīng)過中度至深度的成巖作用,以及經(jīng)常受到大量腐殖酸和其他一些外源有機(jī)物質(zhì)的侵蝕污染,這就增加了骨頭樣品14C年齡測定的困難和數(shù)據(jù)的不可靠性,因此,評價骨頭的有機(jī)質(zhì)部分骨膠原的保存情況對14C測年數(shù)據(jù)的正確分析至關(guān)重要。
圖1 自1959年以來Radiocarbon期刊上發(fā)表的關(guān)于骨頭有機(jī)質(zhì)(黑圓點)和骨頭碳酸鹽(空心圓)的14C測年數(shù)據(jù)量對比圖Fig.1 Compilation of all the radiocarbon dates published in the journal Radiocarbon on bone organic matter (black circles) and bone carbonate (open circles) since 1959
在埋葬的環(huán)境中,礦物質(zhì)晶格可以保護(hù)骨膠原,一定程度上避免發(fā)生降解作用,然而,在骨頭發(fā)生嚴(yán)重成巖變化時,骨膠原可能發(fā)生隨意的交聯(lián),部分分子的腐殖化作用,外源腐殖酸污染的侵入及水解作用的發(fā)生使一些膠原蛋白損失嚴(yán)重,所有嚴(yán)重風(fēng)化的骨頭將失去骨膠原的主要部分(至少80%),因此,骨膠原的含量可以指示骨頭成巖風(fēng)化程度。通過一些生物化學(xué)的手段可以指示骨膠原的性質(zhì),用以判斷骨頭的保存程度,評價骨頭的級別,有人稱之為“指紋圖(fi ngerprints)”,這對14C-AMS測年的正確性分析很重要。
現(xiàn)代骨頭中含22%的骨膠原,但在埋藏過程中這個含量會逐步下降,下降速度跟埋藏的環(huán)境條件有關(guān)。在歐洲、溫帶-亞熱帶區(qū)域,骨膠原一般損失較慢,更多的為污染的骨頭;在熱帶地區(qū),損失較快,骨膠原含量較低,一般都為降解骨頭。普遍認(rèn)為原始骨膠原含量為5%—20%的都屬于保存好的骨頭,<5%的為保存差的骨頭,< 0.5%的為“非膠原的”保存,不適用于分析(Van Klinken,1999)。提取完整骨膠原中C%為35%左右,對于保存差的骨頭,這個值經(jīng)常低于30%,而且顯示低骨膠原含量和異常的C/N值。正常的N%含量一般為11%—16%,低骨膠原含量的骨頭中N%和C%有著相似的變化。DeNiro(1985)指出C/N比值不在2.9—3.6這個區(qū)間的被認(rèn)為有污染,一般大家都普遍使用這個指標(biāo)來指示骨膠原的污染狀況(Calabrisotto et al,2013),但是牛津大學(xué)14C實驗室發(fā)現(xiàn)他們的C/N平均值為3.29 ± 0.27(n= 2146),于是采用3.1—3.5的區(qū)間來判別是否為可以接收的骨樣品,認(rèn)為更能靈敏地指示出污染的骨頭(Van Klinken,1999)。高值(遠(yuǎn)大于4的)的被認(rèn)為有很大程度的成巖作用,或者可能來源于樣品預(yù)處理過程中引入的大量外源C。
判斷骨膠原質(zhì)量的指標(biāo)通常為骨膠原含量,C、N含量及C/N值,其次也可通過一些化學(xué)手段如穩(wěn)定C、N同位素值、紅外光譜(D'Elia et al,2007;Maspero et al,2011)及離子束分析(Quarta et al,2006,2008,2013)等進(jìn)一步分析和判斷它的組成,補(bǔ)充評價骨頭的污染狀況。近幾年也有一些新技術(shù)如微計算機(jī)斷層掃描技術(shù)(micro-CT),它結(jié)合一系列技術(shù)手段(組織學(xué)、紅外光譜、透射電子掃描鏡TEM、LA-ICP-MS)從微尺度方法上建立骨頭保存狀況的重要性,此項技術(shù)被評價有潛力成為一個快捷非破壞性的研究骨頭成巖作用的有用工具(Tripp et al,2010;Fernandes et al,2013)。
羥基磷灰石在埋藏過程中易與環(huán)境中的外源C發(fā)生交換及重結(jié)晶,致使很難完全分離得到內(nèi)源C,故認(rèn)為不能作為用于埋藏骨頭的14C測年物質(zhì)(Passariello et al,2012),但對于嚴(yán)重風(fēng)化沒有足夠骨膠原的骨樣及幾乎不含有骨膠原成分的牙釉質(zhì)和火化焙燒過的骨頭,只能采用無機(jī)羥基磷灰石-碳酸鹽部分進(jìn)行14C年代測定(Hedges et al,1995;Naysmith et al,2007;Cherkinsky and Chataigner,2010)。在Longin法問世之前,骨頭在14C測量中都是使用全樣進(jìn)行分析,而往往得出較年輕的結(jié)果。20世紀(jì)60年代開始有人嘗試用鹽酸浸泡過濾掉次級碳酸鹽——方解石,選用磷灰石晶體中的無機(jī)碳組分來測年,骨磷酸鹽晶格中的碳酸鹽比其他的更易發(fā)生化學(xué)交換,易于溶解的地下水碳酸鹽或大氣中的CO2發(fā)生交換,所以普遍認(rèn)為得不到正確的年代。Haynes(1968)提出用醋酸選擇性地除掉次生碳酸鹽,得到了一個偏老的年代,之后,Haas and Banewicz(1980)提出利用step heating方法來釋放磷灰石中的碳酸鹽,認(rèn)為熱量和化學(xué)穩(wěn)定性正相關(guān),因此只需要低的熱量就可以釋放出CO2,表面的受污染產(chǎn)生的碳酸鹽加酸會在較低的溫度釋放出CO2,而骨頭樣中沒有污染的源生C則需要較高的溫度可以釋放。Surovell(2000)采用Haas and Banewic提出的step heating方法收集無機(jī)碳進(jìn)行一系列測年,得出的年代較為接近正確年代,并認(rèn)為這方面還是有許多工作可以做的,但是結(jié)合醋酸+NaClO/醋酸(5:1)連續(xù)酸洗的方法可得到較好的結(jié)果。
火化焙燒的骨頭一般都是在較高的溫度(>600°C)下進(jìn)行的,此過程會損失所有的有機(jī)質(zhì),同時,磷灰石的晶體結(jié)構(gòu)和大小也會發(fā)生變化,高溫下重結(jié)晶形成了一種對剩余的原有構(gòu)造碳酸鹽(大約0.1wt%)的保護(hù)層,阻止了它與環(huán)境中的碳酸鹽進(jìn)行交換,目前針對這微量的構(gòu)造碳酸鹽的提取及分析有了一系列的研究(Lanting et al,2001;Hüls et al,2010;Snoeck et al,2014)。處理方法一般如下:加入1.5%次氯酸鈉溶液去除有機(jī)C(48 h,20°C),再加入1 M醋酸去除游離態(tài)的碳酸鹽(24 h,20°C),得到的殘余物烘干并粉碎成粉末后,加過飽和磷酸反應(yīng)收集CO2,再還原成石墨進(jìn)行AMS測量(Lanting et al,2001;Olsen et al,2008,2013)。
骨膠原的提取開始于20世紀(jì)70年代,而且占據(jù)了很重要的地位,目前也被認(rèn)為是最可靠的埋藏骨化石的14C測年物質(zhì)。骨膠原不溶于冷水,但在熱水中長時間蒸煮,可以水解為溶于水的明膠,并且可能轉(zhuǎn)變?yōu)榘被岬?,骨膠原不和稀酸和稀堿反應(yīng),但可以被濃HCl分解,因此通常用稀酸在室溫下提取骨膠原。使用明膠是因為腐殖酸在90℃、pH=3的水中不溶,這個條件正是用來提取明膠的(Longin,1971;Gurfi nkel,1987),很多事實證實腐殖酸是主要污染源,為了從骨膠原中除掉腐殖酸使用Longin法與明膠提取相結(jié)合的方法運(yùn)用至今,目前仍然是骨頭有機(jī)質(zhì)提取的主流方案。很多考古遺址及人類文明的研究中,都采用骨膠原進(jìn)行14C-AMS定年,也都獲得了滿意的年代框架(Yuan et al,1996;Rando et al,2008;Zhang et al,2006)。
有時,只選用骨膠原測年往往得到的結(jié)果有偏差,于是就需要進(jìn)一步的分離提純,常用的方法有:離子交換樹脂、超濾、提取單個氨基酸、納濾等。對于保存較好的骨化石,這些方法所得年齡與骨膠原的無明顯差別,但對于骨膠原含量低的樣品,有時需要提取總氨基酸或特定單個氨基酸測定,但這需要充足的樣品量,也有采用非膠原蛋白,如骨鈣蛋白、血液蛋白等進(jìn)行研究,所得到的結(jié)果都不是很理想。
4.1 XAD-2離子交換柱法
XAD樹脂是多孔性的,非極性甚至弱極性的吸附劑,適用于從水相溶液中分離出弱的非離子的脂肪族和芳香族化合物。XAD-1,XAD-2,XAD-4聚合吸附劑是一類大孔的、非離子的、疏水性的苯乙烯-二乙烯苯共聚物,它們的比表面積分別是100 m2·g-1,330 m2·g-1,750 m2·g-1,孔徑分別是200 ?,90 ?,50 ?,非常適用于同位素分析中,因為這些樹脂物理化學(xué)性質(zhì)穩(wěn)定,幾乎不溶于酸堿及有機(jī)溶劑,可耐溫度達(dá)250℃,常用于從環(huán)境和生化溶液中提取稀釋化學(xué)物質(zhì)或是從新鮮海水濃縮出腐殖酸,用液相色譜從水溶液中分離出弱極性化合物。
Stafford et al(1987,1988)首次提出使用XAD-2樹脂進(jìn)一步移除明膠溶液中的腐殖酸污染物,Minami and Nakamura(2000)、Minami et al(2004)用提取的明膠與XAD-2樹脂過柱產(chǎn)物分別測年對比表明了對于保存狀況不太好的骨頭樣品,特別是骨膠原含量小于1%的時候,提取明膠測年得到的年齡往往偏年輕,認(rèn)為XAD-2樹脂方法可以更有效地去除污染物,而對于保存狀況很好的骨頭,提取明膠測年就很充分了;Yuan et al(2000)列舉了常用于14C測年的四種物質(zhì):骨膠原、水解骨膠原得到的明膠、進(jìn)一步過XAD-2柱子純化得到的氨基酸、進(jìn)一步分離單個氨基酸,并進(jìn)行了一些對比實驗,也認(rèn)為XAD - 2樹脂方法是移除腐殖酸污染更有效的方法,與Minami的結(jié)論一致。但是有實驗發(fā)現(xiàn),經(jīng)過明膠化、水解和離子交換分離得到的混合氨基酸經(jīng)14C含量測定,被證明含有大約5 pMC污染,推測為通過離子交換柱時沒有分離的氨基酸形成的氨基糖造成的,加之此方法操作過柱子較繁瑣,因此使用此方法的實驗室較少。
4.2 超濾方法
超濾是利用不對稱微孔結(jié)構(gòu)和半透膜介質(zhì),依靠膜兩側(cè)的壓力差為驅(qū)動力,阻截溶液中各種大分子溶質(zhì)、微粒、膠懸體,以達(dá)到分離純化的目的。超濾(UF)同反滲透技術(shù)類似,是以壓力為推動力的膜分離技術(shù),屬分子量水平的過濾,截留分子量范圍為 500—500000 道爾頓(Da),超濾膜的孔徑一般在 1—100 nm。利用超濾器能有效地去除水中的微粒、膠體、細(xì)菌、熱源和有機(jī)物,適用于以分離、濃縮、凈化為目的的各種生產(chǎn)工藝中,此方法使用過程簡單,不需加熱,效率高。
Brown et al(1988)首次提出使用超濾技術(shù)進(jìn)一步純化骨膠原,以獲得大分子量的蛋白質(zhì)混合物(一般?。?0 kDa),牛津大學(xué)ORAU實驗室在2000年確定了采用ABA- GEL明膠化-超濾的流程為處理骨頭樣品的實驗室方案(Bronk Ramsey et al,2000),之后很多實驗室都認(rèn)為超濾是可以移除這些潛在污染(短鏈降解的膠原和一些鈦、氨基酸、富里酸和鹽等)簡單有效的好辦法(Bronk Ramsey et al,2004;Higham et al,2006;Brock et al,2013),但是也有報道指出并不能完全移除< 30 kDa組分,且超濾膜自身會帶來一些污染,即膜上的潤濕劑丙三醇,它是用植物或動物中提取的,或是石油加工中的副產(chǎn)品,這些都或多或少的帶入或年輕或年老的C污染(Bronk Ramsey et al,2004;Brock et al,2007;Hüls et al,2007,2009)。Bronk Ramsey et al(2004)提出了一些改進(jìn)方案,重復(fù)清洗濾膜可減少污染,對于采用超濾法的實用性和正確性一直存在爭議,但相比較而言,超濾法是近幾年各14C實驗室最常用的膠原提純方法(Beaumont et al,2010;Talamo and Richards,2011;Fuller et al,2015)。
4.3 提取氨基酸測年方法
樣品愈老外來的成分愈多,外來碳的相對比重也就愈高,年齡測量的誤差也愈大。雖然骨膠原有較強(qiáng)的抗蝕性,能部分保存,但是溶解于地下水中的游離氨基酸和各種腐殖酸可能被帶進(jìn)骨化石,通過骨膠原提取的總氨基酸測年往往是不夠的,于是有人就提出使用液相色譜分離技術(shù)提取單個氨基酸進(jìn)行14C-AMS測年更可靠一些。羥脯氨酸在骨膠原中占10%左右,在自然界中大多數(shù)的其他動物蛋白質(zhì)中比較罕見,同時它在亞硝酸體系中不會發(fā)生脫氨基作用形成羥基羧酸,而是形成亞硝基化合物,較易與其他氨基酸分離純化,因此被認(rèn)為是骨頭特有的生物標(biāo)記物(Van Klinken and Mook,1990;McCullagh et al,2010)。1981年,Gillespie和他的同事首次從化石骨骼中分離出羥脯氨酸并用于14C-AMS測定年代結(jié)果表明,該方法提供的年代與當(dāng)時傳統(tǒng)的批量膠原蛋白的年代一樣精確(Gillespie et al,1984)。1990年,陳鐵梅選用了骨質(zhì)樣品中不同有機(jī)碳組分進(jìn)行對比測年,結(jié)果表現(xiàn)為同一樣品中以羥脯氨酸年齡最老,純氨基酸年齡居中,而骨膠原年齡則普遍稍晚,污染還反映在個別樣品的腐殖酸年齡明顯偏低(陳鐵梅,1990)。Marom et al(2012,2013)和McCullagh et al(2010)分別肯定了采用高效液相色譜法HPLC提取單個氨基酸方法進(jìn)行測定的可能性,認(rèn)為特別對于一些接近測年上限的(>40 ka)、年代一直有爭議的老骨頭樣品,分離骨膠原中羥脯氨酸進(jìn)行測定可以得出準(zhǔn)確可靠的14C年齡,但此技術(shù)的使用過程很費(fèi)時、費(fèi)力。
4.4 其他方法
納濾技術(shù)是介于超濾與反滲透之間的一種膜分離技術(shù),其截留分子量在80—1000道爾頓,孔徑為幾納米,因此稱納濾。Boudin et al(2013,2014)介紹了一個用陶瓷過濾器的納濾方法進(jìn)一步純化骨膠原的研究,這意味著避免了類似超濾方法中過濾膜代入的外源碳污染。超濾是去除骨膠原低分子量污染的一種有效的方法,但是它沒有移除骨膠原蛋白中高分子量的污染物,如腐殖質(zhì)-膠原蛋白交聯(lián)復(fù)合物,相比于用HPLC分離單個氨基酸的方法,納濾是更簡單和易操作一些。Boudin研究選擇截留分子量為450道爾頓的納濾膜,收集的所需氨基酸則在滲透液中(氨基酸的截留分子量在75.07 —204.23道爾頓變化),而污染物腐殖物質(zhì)(HSs)則在保留相中,因為腐殖質(zhì)的分子量一般在1000—300000道爾頓,此方法目前處于探索階段,在骨頭的前處理方案中應(yīng)用也比較少。還有研究報道了將超濾和XAD-2方法結(jié)合使用對一些有問題的骨頭樣品年代進(jìn)行再次的探討,得到了滿意的結(jié)果(Gillespie et al,2015)。
逐步燃燒法作為一個有效的分離年輕污染物手段,已成功運(yùn)用于木炭和沉積物可靠14C測年物質(zhì)的獲取中(Santos et al,2001;McGeehin et al,2004;程鵬等,2012),如果將逐步燃燒法應(yīng)用到骨樣品的可靠14C測年組分的提取研究中,將會是一個最經(jīng)濟(jì)最方便有效的一個替代前處理方案。針對這一想法,先選擇了幾個不同保存類型的考古骨頭樣品進(jìn)行了逐步燃燒法的初探,主要是對提取的骨膠原組分進(jìn)一步通過高低溫(800℃和400℃)來分離年輕不穩(wěn)定的組分來達(dá)到純化的目的,收集不同溫度組分進(jìn)行14C-AMS測年,并與骨膠原的年代結(jié)果進(jìn)行比較,數(shù)據(jù)見表1。通過骨膠原的一系列指標(biāo)分析,再加上外觀的初步判斷,認(rèn)為2#樣品為保存較好的骨頭樣本,5#樣品為相對保存較差的骨頭樣本,不同組分的14C年代數(shù)據(jù)對比顯示:對于保存狀況好的骨樣,骨膠原在400℃、800℃組分的14C年齡和骨膠原14C年齡在誤差范圍內(nèi)較為一致,逐步燃燒并沒有分離出年輕的污染物,進(jìn)一步佐證了骨膠原的14C年齡就代表了此類骨頭的真實年齡值,而對于相對保存較差的骨樣,800℃得到的高溫組分比骨膠原的年齡偏老,低溫組分偏年輕,可見逐步燃燒方法高溫組分獲得的年代更可靠一些,表明了此方法純化骨膠原移除腐殖酸污染效果很明顯,這為骨質(zhì)樣品可靠14C測年物質(zhì)的獲得提供了一條新的途徑。
表1 2個骨樣的骨膠原評價及不同組分的14C-AMS測年數(shù)據(jù)Tab.1 Results of14C-AMS dating of different collagen fractions and evaluation of collagen for 2 fossil bone samples
目前,這些前處理方法各實驗室都在使用,根據(jù)骨頭的不同保存狀態(tài)不同類型選擇不同的研究方案。對于保存較好骨樣品,通常認(rèn)為骨膠原水解得到的明膠即為可靠的14C測年物質(zhì),但是對于保存一般甚至不太好的骨頭,通常是需要更多的分離技術(shù)來提純骨膠原,如XAD樹脂,超濾及液相色譜分離單個氨基酸等,對于火化處理過的骨頭和牙釉質(zhì),則需提取羥基磷灰石中的碳酸鹽部分進(jìn)行測年研究。對于上述常用的骨膠原純化方法,都或多或少的存在一些缺陷和問題,這時就需要一些新方法新技術(shù)的出現(xiàn)。采用逐步燃燒法的嘗試給未來工作提供了方向,還需進(jìn)一步對此方法在骨頭前處理中的應(yīng)用做深入研究,并與以上的國際熱門方法進(jìn)行對比實驗,探討出一個方便可行、高效快捷的測年提取方案。
程 鵬, 吳書剛, 杜 花, 等. 2012. 逐級溫度熱解法在黃土古土壤樣品14C測年中的應(yīng)用[J].干旱區(qū)資源與環(huán)境, 26(12): 81 – 85. [Cheng P, Wu S G, Du H, et al. 2012. The application of temperature-step-pyrolyzing to14C dating of loess paleosoil sample [J].Journal of arid land resource and environment, 26(12): 81 – 85.]
陳鐵梅. 1990. 第四紀(jì)骨化石樣品的多方法對比測年[J].第四紀(jì)研究, 9(3): 282 – 290. [Chen T M. 1990. Comparative study of Quaternary fossil bone dating [J].Quaternary Sciences, 9(3): 282 – 290.
Beaumont W, Beverly R, Southon J, et al. 2010. Bone preparation at the KCCAMS laboratory [J].Nuclear Instruments and Methods in Physics Research B, 268: 906 – 909.
Boudin M, Boeckx P, Buekenhoudt A, et al. 2013. Development of a nanofiltration method for bone collagen14C AMS dating [J].Nuclear Instruments and Methods in Physics Research B, 294: 233 – 239.
Boudin M, Boeckx P, Vandenabeele P, et al. 2014. An archaeological mystery revealed by radiocarbon dating of cross-flow nanofiltrated amino acids derived from bone collagen, silk, and hair: case study of the bishops Baldwin Ⅰand Radbot Ⅱ from Noyon-Tournai [J].Radiocarbon, 56(2): 603 – 617.
Brock F, Geoghegan V, Thomas B, et al. 2013. Analysis of bone“collagen” extraction products for radiocarbon dating [J].Radiocarbon, 55(2/3): 445 – 463.
Brock F, Higham T, Ditchfield P, et al. 2010a. Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator unit (ORAU) [J].Radiocarbon, 52(1): 103 – 112.
Brock F, Higham T, Ramsey C B, et al. 2010b. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones [J].Journal of Archaeological Science, 37: 855 – 865.
Brock F, Ramsey C B, Higham T F G. 2007. Quality assurance of ultrafiltered bone dating [J].Radiocarbon, 49(2): 187 – 92.
Bronk Ramsey C, Higham T F G, Bowles A, et al. 2004. Improvements to the pretreatment of bone at Oxford [J].Radiocarbon, 46(1): 155 – 163.
Bronk Ramsey C, Pettitt P B, Hedges R E M, et al. 2000. Radiocarbon dates from the Oxford AMS system: Archaeometry Datelist 30 [J].Archaeometry, 42: 459 – 479. Brown T A, Nelson D E, Vogel J S, et al. 1988. Improved collagen extraction by modified Longin method [J].Radiocarbon, 30(2): 171 – 177.
Calabrisotto C S, Fedi M E, Caforio L, et al. 2013. Collagen quality indicators for radiocarbon dating of bones: new data on bronze age Cyprus [J].Radiocarbon, 55(2/3): 472 – 480.
Cherkinsky A, Chataigner C. 2010.14C ages of bone fractions from Armenian prehistoric sites [J].Radiocarbon, 52(2/3): 569 – 577.
DeNiro M J. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction [J].Nature, 317: 806 – 809.
D'Elia M, Gabriella G, Gianluca Q, et al. 2007. Evaluation of possible contamination sources in the14C analysis of bone samples by FTIR spectroscopy [J].Radiocarbon, 49(2): 201 – 210.
Fernandes R, Hüls M, Nadeau M J, et al. 2013. Assessing screening criteria for the radiocarbon dating of bone mineral [J].Nuclear Instruments and Methods in Physics Research B, 294: 226 – 232.
Fuller B T, Harris J M, Farrell A B, et al. 2015. Sample preparation for radiocarbon dating and isotopic analysis of bone from Rancho La Brea [J].Natural History Museumof Los Angeles County Science Series, 42: 151 – 167.
Gillespie R, Hedges R E M, Wand J O. 1984. Radiocarbon dating of bone by accelerator mass spectrometry [J].Journal of Archaeological Science, 11(2): 165 – 170.
Gillespie R, Wood R, Fallon S, et al. 2015. New14C dates for Spring Creek and Mowbray Swamp megafauna: XAD-2 processing [J].Archaeology in Oceania, 50(1): 43 – 48.
Gurfinkel D M. 1987. Comparative study of the radiocarbon of different bone collagen preparations [J].Radiocarbon, 9(1): 45 – 52.
Haas H, Banewicz J. 1980. Radiocarbon dating of bone apatite using thermal release of CO2[J].Radiocarbon, 22(2): 537 – 544.
Haynes Jr C V. 1968. Radiocarbon, analysis of inorganic carbon of fossil bone and enamel [J].Science, 161: 687 – 688.
Hedges R E M. 2002. Bone diagenesis: an overview of processes [J].Archaeometry, 44(3): 319 – 328.
Hedges R E M, Van Klinken G J. 1992. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS [J].Radiocarbon, 34(3): 279 – 291.
Hedges R E M, Lee-Thorp J A, Tuross N C. 1995. Is tooth enamel carbonate a suitable material for radiocarbon dating? [J].Radiocarbon, 37(2): 285 – 290.
Higham T F G, Jacobi R M, Ramsey C B. 2006. AMS Radiocarbon dating of ancient bone using Ultrafi ltration [J].Radiocarbon, 48(2): 179 – 195.
Hüls C M, Erlenkeuser H, Nadeau M J. 2010. Experimental study on the origin of cremated bone apatite carbon [J].Radiocarbon, 52(2/3): 587 – 599.
Hüls C M, Grootes P M, Nadeau M J. 2007. How clean is ultrafi ltration cleaning of bone collagen? [J].Radiocarbon, 49(2): 193 – 200.
Hüls C M, Grootes P M, Nadeau M J. 2009. Ultrafiltration: Boon or Bane? [J].Radiocarborn, 51(2): 613 – 625.
Katzenberg M A, Harrison R G. 1997. What's in a bone? Recent advances in Archaeological bone chemistry [J].Journal of Archaeological Research, 5(3): 265 – 293.
Lanting J N, Aerts-BijmaA T, Plicht J V. 2001. Dating of creamated bones [J].Radiocarbon, 43(2A): 249 – 254.
Libby W F. 1955. Radiocarbon dating (2nd edition) [M]. Chicago: University of Chicago Press.
Longin R. 1971. New method of collagen extraction for radiocarbon dating [J].Nature, 230: 241 – 242.
Marom A, McCullagh J S O, Higham T F G, et al. 2012. Single amino acid radiocarbon dating of Upper Paleolithic modern humans [J].Proceedings of the National Academy of Sciences of the USA, 109(18): 6878 – 6881.
Marom A, McCullagh J S O, Higham T F G, et al. 2013. Hydroxyproline dating: experiments on the14C analysis of contaminated and low-collagen bones [J].Radiocarbon, 55(2/3): 698 – 708.
Maspero F, Sala S, Fedi M E, et al. 2011. A new procedure for extraction of collagen from modern and archaeological bones for14C dating [J].Analytical and Bioanalytical Chemistry, 401: 2019 – 2023.
McCullagh J S O, Marom A, Hedges R E M. 2010. Radiocarbon dating of individual amino acids from archaeological bone collagen [J].Radiocarbon, 52(2/3): 620 – 634.
McGeehin J, Burr G S, Hodgins G. 2004. Stepped-combustion14C dating of bomb carbon in lake sediment [J].Radiocarbon, 46(2): 893 – 900.
Mihara S, Miyamoto K, Nakamura T, et al. 2004.14C age determination for human bones during the Yayoi period—the calibration ambiguity around 2400 BP and the marine reservoir effect [J].Nuclear Instruments and Methods in Physics Research B, 223/224: 700 – 704.
Minami M, Muto H, Nakamura T. 2004. Chemical techniques to extract organic fractions from fossil bones for accurate14C dating [J].Nuclear Instruments and Methods in Physics ResearchB, 223/224: 302 – 307.
Minami M, Nakamura T. 2000. AMS radiocarbon age for fossil bone by XAD-2 chromatography method [J].Nuclear Instruments and Methods in Physics Research B, 172: 462 – 468.
Minami M, Sakata K, Takigami M, et al. 2013b. Ultrafi ltration pretreatment for14C dating of fossil bones from archaeological sites in Japan [J].Radiocarbon, 55(2/3): 481 – 490.
Minami M, Yamazaki K, Omori T, et al. 2013a. Radiocarbon dating of VIRI bone samples using ultrafiltration [J].Nuclear Instruments and Methods in Physics Research B, 294: 240 – 245.
Naysmith P, ScottE M, Cook G T, et al. 2007. A Cremated bone intercomparison study [J].Radiocarbon, 49(2): 403 – 408.
Olsen J, Heinemeier J, Bennike P, et al. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone [J].Journal of Archaeological Science, 35: 791 – 800.
Olsen J, Heinemeier J, Hornstrup K M, et al. 2013. ‘Old wood' effect in radiocarbon dating of prehistoric cremated bones? [J].Journal of Archaeological Science, 40: 30 – 34.
Passariello I, Simone P, Tandoh J, et al. 2012. Characterization of different chemical procedures for14C dating of buried, creamted, and modern bone samples at CIRCE [J].Radiocarbon, 54(3/4): 867– 877.
Quarta G, Butalag K, Calcagnile L, et al. 2008. IBA analyses and lead concentration measurements of AMS-14Cdated bones from two medieval sites in Italy [J].Nuclear Instruments and Methods in Physics Research B, 266: 2343 – 2347.
Quarta G, Calcagnile L, D'elia M, et al. 2013. A combined PIXE-PIGE approach for the assessment of the diagenetic state of cremated bones submitted to AMS radiocarbon dating [J].Nuclear Instruments and Methods in Physics Research B, 294: 221 – 225.
Quarta G, D'Elia M, Butalagl K, et al. 2006. An integrated accelerator mass spectrometry radiocarbon dating and ion beam analysis approach for the study of archaeological contexts [J].Applied Physics A: Materials Science & Processing, 83: 605 – 609.
Rando J C, Alcover J A, Navarro J F. 2008. Chronology and causes of the extinction of the Lava Mouse, Malpaisomys insularis (Rodentia: Muridae) from the Canary Islands [J].Quaternary Research, 70(2): 141 – 148.
Santos G M, Bird M I, Pillans B, et al. 2001. Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand [J].Radiocarbon, 43(2A): 239 – 248.
Snoeck C, Brock F, Schulting R J. 2014. Carbon exchanges between bone apatite and fuels during cremation: impact on radiocarbon dates [J].Radiocarbon, 56(2): 591 – 602.
Stafford T W, Jull A J T, Brendel K, et al. 1987. Study of bone radiocarbon dating accuracy at the university of Arizona NSF accelerator facility for radioisotope analysis [J].Radiocarbon, 29(1): 24 – 44.
Stafford T W, Brendel K, Duhamel R C. 1988. Radiocarbon,13C and15N analysis of fossil bone: Removal of humates with XAD-2 resin [J].Geochimica et Cosmochimica Acta, 52: 2257 – 2267.
Surovell T A. 2000. Radiocarbon dating of bone apatite by step heating [J].Geoarchaeology, 15: 591 – 608.
Talamo S, Richards M. 2011. A comparison of bone pretreatment methods for AMS dating of sample >30,000 BP [J].Radiocarbon, 53(3): 443 – 449.
Tripp J A, Squire M E, Hamilton J, et al. 2010. A nondestructive prescreening method for bone collagen content using micro-computed tomography [J].Radiocarbon, 52(2/3): 612 – 619.
Van Klinken G J, Mook W G. 1990. Preprative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen [J].Radiocarbon, 32(2): 155 – 164.
Van Klinken G J. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements [J].Journal of Archaeological Science, 26(6): 687 – 695.
Yuan S X, Wu X H, Gao S J, et al. 2000. Comparison of different bone pretreatment methods for AMS14C dating [J].Nuclear Instruments and Methods in Physics Research B, 172: 424 – 427.
Yuan S X, Guo Z Y, Wang J J. 1996. AMS14C dating of ancient human bones in missing layers [J].Nuclear Instruments and Methods in Physics Research Section B, 113: 477 – 478.
Zazzo A, Saliège J F. 2011. Radiocarbon dating of biological apatites: A review [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 310: 52 – 61.
Zhang H C, Li B, Yang M S, et al. 2006. Dating paleosol and animal remains in loess deposits [J].Radiocarbon, 48(1): 109 – 116.
Recent advances of the pretreatment approaches for14C-AMS dating in bone
DU Hua1,2, XIONG Xiaohu1,2, FU Yunchong1,2, NIU Zhenchuan1,2, LU Xuefeng1,2
(1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an Accelerator Mass Spectrometry Center, Xi'an 710061, China)
Background, aim, and scopeBone is one of widely used dating materials in the field of archaeology and geochronology, it represents a significant repository of archaeological information and, within an archaeological context, bones acquire increasing importance especially when they are the only available material at a given site. Bone's chemical treatments for radiocarbon dating has drawn the attention of many laboratories because dates of bones and charcoals found in the same layer often disagree. Human and animal bones contain carbon in both organic and inorganic form, with collagen being the commonly analyzed fraction for radiocarbon dating of the buried bones, but isolation of bone collagen for14C dating is a labor-intensive and time-consuming process that sometimes results in unacceptably low protein recovery, so it is still a hot spot and diffi cult problem for scientists to remove contamination by effective purifi cation plan and produce accurate14C-AMS dating ages. The content and the quality of collagen can vary signifi cantly, mainly depending on bone preservation, so how to choosethe dating materials or purifi cation methods is important for bone depending on the sample status.Materials and methodsIn this article we briefly reviewed the recent advances of the pretreatment approaches for14C-AMS dating of bone, separately introduced the chemical composition and natures of fossil bone during the buried process, the evaluation and analysis technology of collagen and various kinds of pretreatment methods. Moreover, for 2 archaeological bone samples we have analysed the quality of collagen indicators, adopted the stepped-combustion method to extract the different components of collagens, prepared them into graphites respectively for dating using AMS.ResultsWe simply described the quality of the collagen indicators, it included that the collagen content, the content of C, N and C/N value, the stable C and N isotope analysis, the infrared spectrum and the ion beam analysis etc, we can evaluate the preserved status of fossil bone by these information analysis, it's important to properly analyse and explain if the14C dating results we got are resonable. Meanwhile, we analyzed the current development status of inorganic hydroxyapatite fraction dating and the new techniques in purifi cation of collagen, we mainly focused on intrducing the extracted and the purified methods of bone collagen, including the XAD-2 ion-exchange resin dating, the ultrafi ltration dating, the nanofi ltration dating and the single amino acid dating. In the end we refered our preliminary study of bone collagen14C dating using the stepped-combustion method. As an effective method of separating young contaminants, the stepped-combustion method is successfully used in the sediment and charcoal application of extracted reliable14C dating materials, so we wanted to apply the stepped-combustion method to extract reliable components for14C-AMS dating of 2 bone samples.DiscussionFor well-preserved bone samples, generally the gelatin obtained from hydrolyzing collagen to isolate young contaminants is as a reliable14C dating material, its ages are no obvious differences in compared with the other ages derived from more purifi ed procedures, for poorly-preserved bones and even extremely poorly-preserved samples, we need more experiment procedures to purify the bone collagen, such as XAD-2 resin, ultrafi ltration, nanofi ltration and liquid chromatographic separation of a single amino acid etc. Moreover, for the cremated bone and tooth enamel, we need extract the inorganic carbon of hydroxyapatite for radiocarbon dating. We analysed a series of evaluation indicators for collagen, coupled with the appearance of a preliminary judgment, agreed that one sample was the well-preserved bone samples, another was relative poorly-preserved bone samples, the14C dating results of different components show that for the well-preserved bone, the14C ages from high-temperature 800℃ components and the low-temperature 400℃ components is relatively consistent with the14C age of collagen within the error range. For the relative poorly-preserved bone samples, the14C age from high-temperature (800℃) component was older than collagen, the low-temperature component age was young, that it suggested that stepped-combustion method could isolate young pollutants, its high-temperature components could get a more reliable14C age, and it established a new path for the pretreatment of bone samples for14C dating.ConclusionsAlthough the ultrafi ltration is the popular collagen extraction method in many14C lab, but some reseachers found it could bring some contamination during the experiment process, so we need do more research and improvements about the pretreatment methods since these methods have some more or less defects and problems, we think it's necessary that some new methods and technology may be appeared for improving the development of bone14C dating research in such the situation.Recommendations and perspectivesWith so few data points, such conclusions are at best tentative, but we anticipate that with further work these trend will remain valid. In future we need to optimize of the step-combustion method conditions to ensure that samples, in particular poorly-preserved bone samples, are effective, and compare with the other purifi ed collagen methods like XAD-2 resin and ultrafi ltration. We hope this paper can provide helping for other reseachers in the fi eld of radiocarbon dating.
14C-AMS; bone; collagen; XAD-2 resin; ultrafi ltration; amino acid; bio-apatite
DU Hua, E-mail: duhua@ieecas.cn
10.7515/JEE201606002
2016-07-21;錄用日期:2016-10-07
Received Date:2016-07-21;Accepted Date:2016-10-07
中國科學(xué)院科研裝備研制項目(YZ201409)
Foundation Item:Instrument Developing Project of Chinese Academy of Sciences (YZ201409)
杜 花,E-mail: duhua@ieecas.cn