袁 喜,黃應(yīng)平,靖錦杰,蔣 清,胥 燾,涂志英,李為民(1.三峽庫區(qū)生態(tài)環(huán)境教育部工程研究中心(三峽大學(xué)),湖北宜昌443002;2.三峽地區(qū)地質(zhì)災(zāi)害與生態(tài)環(huán)境湖北省協(xié)同創(chuàng)新中心(三峽大學(xué)),湖北宜昌443002;3.中國科學(xué)院水生生物研究所,武漢430072)
?
銅暴露對(duì)草魚幼魚代謝行為的影響
袁喜1,2,3,黃應(yīng)平1,2*,靖錦杰1,2,蔣清1,2,胥燾1,2,涂志英1,2,李為民1,2
(1.三峽庫區(qū)生態(tài)環(huán)境教育部工程研究中心(三峽大學(xué)),湖北宜昌443002;2.三峽地區(qū)地質(zhì)災(zāi)害與生態(tài)環(huán)境湖北省協(xié)同創(chuàng)新中心(三峽大學(xué)),湖北宜昌443002;3.中國科學(xué)院水生生物研究所,武漢430072)
摘要:為了探討水體中銅污染對(duì)魚的生態(tài)毒理效應(yīng)和游泳能力的影響,在實(shí)驗(yàn)室條件下,測(cè)定了銅暴露草魚(Ctenopharyngodon idella)幼魚半致死濃度、不同濃度銅暴露(0、0.025、0.050、0.075、0.10 mg·L-1)96 h后組織(肝、鰓、肌肉)銅累積量、相對(duì)臨界游泳速度(Ucrit)以及耗氧率(MO2)。結(jié)果表明:與對(duì)照組比較,銅暴露對(duì)組織(肝、鰓、肌肉)銅累積量無顯著影響(P>0.05),銅對(duì)草魚幼魚的安全濃度為0.008 mg·L-1。銅暴露草魚幼魚相對(duì)臨界游泳速度受抑制顯著(P<0.05),不同濃度暴露后Ucrit分別較對(duì)照組下降了18.4%、21.8%、33.8%和38.1%。隨著游泳速度的增加,其速度-代謝率關(guān)系為MO2=a+b×Uc,隨著暴露濃度增加,速度參數(shù)c值增加,不同濃度銅暴露后c分別比對(duì)照組增加了37.78%、33.33%、56.67%和61.11%,表明游泳能量利用率下降。銅暴露導(dǎo)致草魚幼魚有氧代謝范圍增加,0.1 mg Cu·L-1時(shí)有氧代謝范圍比對(duì)照組增加了37.48%。銅暴露對(duì)草魚幼魚的游泳能力以及氧代謝行為產(chǎn)生影響,尤其是導(dǎo)致游泳效率降低、抑制游泳能力。
關(guān)鍵詞:草魚;銅;游泳能力;耗氧率
袁喜,黃應(yīng)平,靖錦杰,等.銅暴露對(duì)草魚幼魚代謝行為的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35(2):261-265.
銅類殺菌藥物及肥料的使用造成養(yǎng)殖水體重金屬銅污染,并通過生物富集和生物放大效應(yīng)對(duì)水生態(tài)系統(tǒng)產(chǎn)生重要影響,特別是對(duì)魚類等水生生物有較強(qiáng)的毒性[1-2]。作為水生生物食物鏈的頂層類群,魚體內(nèi)污染物水平和魚對(duì)污染物產(chǎn)生的生物效應(yīng)可客觀反映水環(huán)境的狀況。研究表明長江沉積物中重金屬銅的富集系數(shù)較高[3],關(guān)于重金屬銅在草魚(Ctenopharyngodon idella)組織中的積累與分布和毒性效應(yīng)的研究文獻(xiàn)報(bào)道較多,銅對(duì)草魚存活率和生長[4]、體內(nèi)酶活性、抗氧化功能、遺傳物質(zhì)[5]等方面的影響已有相關(guān)研究。但目前關(guān)于銅暴露導(dǎo)致草魚幼魚代謝及行為變化的研究尚鮮見報(bào)道。
魚類生理生態(tài)行為對(duì)環(huán)境因子變化的適應(yīng)性最先表現(xiàn)為行為上的改變[6],臨界游泳速度(Ucrit)在某種程度上反映了動(dòng)物的有氧運(yùn)動(dòng)能力,代謝率范圍(Metabolicraterange)用于評(píng)價(jià)魚類的有氧代謝能力[7-8]。本文通過研究不同濃度水體銅暴露對(duì)草魚幼魚游泳能力與代謝范圍以及組織(鰓、肝、肌肉)銅累積量的影響,考察其幼魚因水體銅濃度變化而引發(fā)的運(yùn)動(dòng)和代謝方面的改變,從而評(píng)估銅污染對(duì)草魚幼魚潛在的生態(tài)毒性,為水生態(tài)毒理學(xué)基礎(chǔ)研究提供參考,對(duì)水體重金屬污染、水產(chǎn)品養(yǎng)殖及環(huán)境治理決策具有實(shí)際意義。
1.1實(shí)驗(yàn)材料
實(shí)驗(yàn)用草魚幼魚于2015年1月購于宜昌養(yǎng)殖場(chǎng)。實(shí)驗(yàn)前將魚在實(shí)驗(yàn)室魚缸(420 L)中馴化2周。每2 d投喂飼料1次,飼料成分:蛋白質(zhì)>38%,脂肪>5%,纖維素<5%,灰分<12%,濕度<11%。馴養(yǎng)用水為曝氣后的自來水,馴養(yǎng)期間充氣使水體溶氧水平接近飽和,日換水量約為水體的1/3,自然水溫(15±1)℃,自然光照。在實(shí)驗(yàn)前48 h停止喂餌料。
馴養(yǎng)結(jié)束后,選取健康幼魚60尾,隨機(jī)平均分配至各濃度梯度組,實(shí)驗(yàn)魚體長、體重參數(shù)如表1。根據(jù)急性毒性試驗(yàn)結(jié)果,本研究共設(shè)5個(gè)銅(Cu2+)濃度梯度,分別為0、0.025、0.050、0.075、0.10 mg·L-1,暴露時(shí)間為96 h。暴露期間不投餌,每日定時(shí)換水并補(bǔ)充相應(yīng)濃度的硫酸銅溶液以保持水體銅濃度基本恒定,實(shí)驗(yàn)條件與馴養(yǎng)期間保持一致。
表1 草魚幼魚的體長、體重參數(shù)(平均值±標(biāo)準(zhǔn)差)Table 1 Body length and weight parameters of juvenile grass carp(mean±SD)
1.2實(shí)驗(yàn)方法
采用魚類游泳能力測(cè)定裝置[9]測(cè)定草魚Ucrit。將每個(gè)處理實(shí)驗(yàn)魚在暴露96 h后轉(zhuǎn)入游泳能力測(cè)定裝置中馴化2 h(流速為0.1 m·s-1)。適應(yīng)結(jié)束后,采用逐步遞增法,直至實(shí)驗(yàn)魚運(yùn)動(dòng)疲勞,其判定標(biāo)準(zhǔn)為:實(shí)驗(yàn)魚被水流沖到游泳區(qū)后面篩網(wǎng)上貼網(wǎng)不能游泳,則視為疲勞[9]。Ucrit計(jì)算公式:
式中:Ucrit為臨界游泳速度,BL·s-1;U1為實(shí)驗(yàn)魚所能完成的最大游泳速度(實(shí)驗(yàn)魚疲勞前的速度),BL·s-1;U2為速度增量,BL·s-1;T1為在最大游泳速度下未能完成設(shè)定歷時(shí)的實(shí)際持續(xù)時(shí)間,min;T2為設(shè)定時(shí)間步長,min。
實(shí)驗(yàn)中時(shí)間步長T2=30min,流速增量U2=1 BL·s-1。
實(shí)驗(yàn)過程中每間隔5 min測(cè)定一次水中溶解氧含量,利用充氧泵進(jìn)行內(nèi)外水槽水的交換,使密封水槽溶解氧量不低于飽和溶解氧濃度的75%。游泳運(yùn)動(dòng)代謝率的計(jì)算公式:
式中:MO2為標(biāo)準(zhǔn)體重的運(yùn)動(dòng)代謝率,mg O2·h-1· kg-1;Sf為實(shí)驗(yàn)魚游泳時(shí)溶氧值隨時(shí)間變化斜率的絕對(duì)值(表觀耗氧量);S0是無實(shí)驗(yàn)魚存在的溶氧值隨時(shí)間變化斜率的絕對(duì)值(細(xì)菌耗氧量);60為時(shí)間常數(shù),min·h-1;V是實(shí)驗(yàn)水體系統(tǒng)總體積,L;m為魚體重,kg。
代謝范圍為最大耗氧代謝率與最小耗氧率的差值。
魚體組織Cu2+含量測(cè)定:將草魚幼魚用丁香酚溶液麻醉后,解剖分離出鰓、肝臟、肌肉組織并于-40℃保存。將各組織樣本(以相同處理下12尾魚組織為一個(gè)樣本,分3組,對(duì)照組6尾魚)稱取2 g(濕重)并置于50 mL聚四氟乙烯消解罐中,加入4 mL HNO3(65%)過夜,然后加入2 mL HClO4(70%),電熱板上150℃加熱,蒸發(fā)至近干,冷卻后加適量0.1% HNO3,轉(zhuǎn)移到50 mL容量瓶,0.1%HNO3定容。采用SPEC TRA-240FS-石墨爐火焰型原子吸收分光光度計(jì)(Varian,美國)測(cè)定組織銅含量。利用標(biāo)準(zhǔn)物質(zhì)法校準(zhǔn)(DORM-2 National Research Council,Canada),回收率97.9%~108.3%。組織中重金屬含量用mg·kg-1(濕重,平均值±標(biāo)準(zhǔn)誤)表示。
1.3數(shù)據(jù)處理
實(shí)驗(yàn)數(shù)據(jù)利用SPSS 20.0進(jìn)行單因素方差分析(One-way ANOVA,Duncan post hoc test)并檢驗(yàn)差異顯著性。統(tǒng)計(jì)數(shù)據(jù)表示為平均值±標(biāo)準(zhǔn)誤(Mean±S.E),顯著性水平為P<0.05。
2.1草魚幼魚鰓、肝臟、肌肉組織銅累積量特征
采用靜水急性毒性試驗(yàn)法測(cè)定銅對(duì)草魚幼魚的毒性,統(tǒng)計(jì)銅污染暴露24、48、72、96 h后草魚幼魚死亡率,直線內(nèi)插法計(jì)算獲得LC50分別為0.12、0.094、0.093、0.078 mg·L-1,根據(jù)96 h LC50×0.1計(jì)算安全濃度為0.008 mg·L-1。急性銅暴露下草魚幼魚鰓(F=2.04;P=0.16)、肝臟(F=1.99;P=0.17)和肌肉(F=1.99;P= 0.17)組織中銅累積量各處理間差異不顯著。銅暴露后幼魚組織中Cu2+的累積量如圖1所示。
圖1 銅暴露后草魚幼魚鰓、肝臟、肌肉組織銅累積量Figure 1 Gill,liver and muscle copper contents in juvenile grasscarp after exposed to different copper concentrations
2.2銅暴露對(duì)草魚幼魚臨界游泳速度的影響
銅暴露對(duì)草魚幼魚臨界游泳速度的影響顯著(F=36.21,P<0.001),如圖2所示。隨著銅濃度增加,草魚幼魚相對(duì)臨界游泳速度逐漸下降,當(dāng)銅濃度為0.075~0.10 mg·L-1時(shí),草魚幼魚相對(duì)臨界游泳速度顯著降低(P<0.05)。對(duì)照組相對(duì)臨界游泳速度為(6.83± 0.24)BL·s-1,0.025、0.050、0.075、0.10 mg·L-1暴露組分別為(5.58±0.19)、(5.34±0.18)、(4.53±0.11)、(4.23± 0.05)BL·s-1,為對(duì)照組的81.61%、78.19%、66.24%和61.90%。
2.3銅暴露對(duì)草魚幼魚耗氧率及活動(dòng)代謝的影響
圖2 銅暴露對(duì)草魚幼魚相對(duì)臨界游泳速度的影響Figure 2 Effect of copper exposure on Ucritin juvenile grass carp
圖3 銅暴露對(duì)草魚幼魚代謝率(a)及活動(dòng)代謝(b)范圍的影響Figure 3 Effect of copper exposure on metabolic rate(a)and metabolic rate range(b)of juvenile grass carp
表2 不同銅暴露處理下草魚幼魚游泳速度與代謝率關(guān)系Table 2 Relationship between swimming speed and oxygen metabolic rate under different concentrations of copper exposed
圖3a顯示,隨著游泳速度的增大(1~4 BL·s-1),草魚耗氧代謝率呈增加趨勢(shì)。游泳速度與草魚幼魚代謝率可以用指數(shù)關(guān)系MO2=a+b×Uc表示(a、b、c為相關(guān)參數(shù)),其結(jié)果見表2。隨著暴露濃度增加,速度參數(shù)c值增加,不同濃度銅暴露使c分別比對(duì)照組增加了37.78%、33.33%、56.67%和61.11%。圖3b顯示,銅暴露對(duì)草魚幼魚有氧代謝范圍影響顯著(F=7.19,P= 0.005),隨著暴露濃度增加,有氧代謝范圍增大,濃度為0.10 mg·L-1時(shí)有氧代謝范圍比對(duì)照組增加了37.48%。
在評(píng)價(jià)重金屬污染安全時(shí),污染物毒性以及污染物對(duì)魚類行為影響的量化很重要,但是由于不同區(qū)系生物受生活環(huán)境等因素的影響,如不同物種對(duì)銅的耐受性和敏感度存在很大的差異[10]。如銅對(duì)廣東魴幼魚(Megalobramaterminalis)安全濃度為0.01 mg·L-1[11],而對(duì)中華鱘(Acipenser sinensis Gray)幼魚的安全濃度為0.002 mg·L-1[12],遠(yuǎn)低于中國漁業(yè)水質(zhì)標(biāo)準(zhǔn)(銅的最高容許質(zhì)量濃度為0.01 mg·L-1)。本研究中Cu2+對(duì)草魚幼魚安全濃度為0.008 mg·L-1,根據(jù)有毒物質(zhì)對(duì)魚類的毒性標(biāo)準(zhǔn)[13],可判斷Cu2+對(duì)草魚幼魚具有高毒性。鰓是魚類呼吸濾食的主要器官,直接暴露在重金屬環(huán)境中,因而對(duì)重金屬的積累較大;肝臟是金屬硫蛋白合成的主要場(chǎng)所,肝臟等組織中重金屬積累明顯;相對(duì)其他組織器官而言,肌肉代謝較慢,而且沒有直接暴露于重金屬。因此,魚類對(duì)重金屬的累積量為肝臟>鰓>肌肉[14-15]。銅暴露導(dǎo)致鰓和肝臟組織銅硫蛋白絡(luò)合物(Cu-MT)的含量明顯增加,加速了Cu2+在魚體內(nèi)的代謝進(jìn)程,多余的Cu2+結(jié)合蛋白進(jìn)入血液循環(huán),并排泄到體外[16]。因此急性銅暴露后,魚體肝臟、鰓和肌肉組織重金屬累積量無顯著差異。
魚類呼吸系統(tǒng)的變化能迅速反映出機(jī)體自身機(jī)能的變化,它們對(duì)外環(huán)境變化敏感,是反映機(jī)體機(jī)能狀態(tài)的重要指標(biāo)。代謝率和代謝范圍的測(cè)定能在一定程度上反映魚類有氧運(yùn)動(dòng)的能力,對(duì)魚類行為測(cè)定具有重要的意義[17-18]。隨著暴露濃度增加,草魚幼魚呼吸代謝作用增強(qiáng),有氧代謝范圍顯著增加(F=7.19,P<0.01)。Cu2+等重金屬產(chǎn)生毒性效應(yīng)的途徑之一是誘導(dǎo)活性氧的產(chǎn)生[19]。在正常生理狀態(tài)下,魚類抗氧化系統(tǒng)能夠清除機(jī)體代謝所產(chǎn)生的活性氧;在其暴露于一定濃度污染物時(shí),會(huì)誘導(dǎo)活性氧產(chǎn)生,導(dǎo)致相關(guān)抗氧化酶活性發(fā)生變化,對(duì)機(jī)體產(chǎn)生損傷[20]。低濃度Cu2+能夠誘導(dǎo)鰓組織補(bǔ)償(細(xì)胞增生、黏液分泌)反應(yīng)[21],阻礙Cu2+的進(jìn)入,降低鰓損害程度[22],而且銅暴露會(huì)刺激鰓膜以及口腔上皮,導(dǎo)致魚大量更頻繁地移動(dòng),使耗氧率增加[23]。本研究與其相似,低濃度銅暴露誘導(dǎo)產(chǎn)生補(bǔ)償性反應(yīng),草魚幼魚呼吸代謝作用增強(qiáng)。耗氧率和游泳速度呈冪函數(shù)關(guān)系MO2=a+b×Uc,其中反映游泳效率的速度常數(shù)c值越大游泳效率越低[9]。實(shí)驗(yàn)中c值變化趨勢(shì)隨著暴露濃度的增加而上升,即銅暴露導(dǎo)致游泳效率下降。
研究表明,外源化學(xué)物質(zhì)誘導(dǎo)所產(chǎn)生的解毒作用引起魚類代謝水平升高,能量大量消耗導(dǎo)致活動(dòng)能力降低[24-25]。重金屬銅暴露使草魚幼魚能量的過量消耗,導(dǎo)致游泳能力的降低,不同濃度Cu2+暴露后Ucrit分別較對(duì)照組下降了18.4%、21.8%、33.8%和38.1%。另外,研究表明重金屬暴露可能導(dǎo)致神經(jīng)細(xì)胞內(nèi)鈣超負(fù)荷[26],甚至造成中樞神經(jīng)系統(tǒng)結(jié)構(gòu)損傷[27],影響神經(jīng)細(xì)胞功能活動(dòng),阻礙了神經(jīng)-肌肉突出的神經(jīng)傳導(dǎo)[28],影響肌肉收縮。因此,Cu2+暴露導(dǎo)致草魚幼魚臨界游泳速度降低,也可能是神經(jīng)系統(tǒng)損傷引起的。環(huán)境脅迫產(chǎn)生的應(yīng)激行為反應(yīng)機(jī)理十分復(fù)雜,涉及神經(jīng)系統(tǒng)、內(nèi)分泌系統(tǒng)及免疫系統(tǒng)的一系列活動(dòng),而且環(huán)境因素和重金屬之間的相互作用對(duì)不同年齡魚類運(yùn)動(dòng)和代謝行為影響的研究,在實(shí)際應(yīng)用中具有更重要的生產(chǎn)實(shí)踐意義,有待進(jìn)一步的研究。
(1)Cu2+對(duì)草魚幼魚具有較高毒性,安全濃度為0.008 mg·L-1,草魚幼魚對(duì)Cu2+反應(yīng)靈敏。急性銅暴露草魚肝臟、鰓和肌肉組織銅累積量無顯著差異。
(2)低濃度Cu2+暴露誘導(dǎo)刺激鰓膜以及口腔上皮產(chǎn)生應(yīng)激性反應(yīng),導(dǎo)致草魚幼魚大量更頻繁地運(yùn)動(dòng),呼吸代謝作用增強(qiáng),能量過量消耗,游泳效率下降,游泳能力降低。
參考文獻(xiàn):
[1] Hu M Y, Ye Y F, Xue L Y, et al. Tissue-specific metabolic responses of cyprinus flammans to copper[J]. Archives of Environmental Contamination & Toxicology, 2015, 69(1):112-122.
[2] Eyckmans M, Celis N, Horemans N, et al. Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species[J]. Aquatic Toxicology, 2011, 103(1/2):112-120.
[3]單麗麗,袁旭音,茅昌平,等.長江下游不同源沉積物中重金屬特征及生態(tài)風(fēng)險(xiǎn)[J].環(huán)境科學(xué), 2008, 29(9):2399-2404. SHAN Li-li, YUAN Xu-yin, MAO Chang-ping, et al. Characteristics of heavy metals in sediments from different sources and their ecological risks in the lower reaches of the Yangtze River[J]. Environment Science, 2008, 29(9):2399-2404.
[4] Hamed N, Shima H, Esmail G, et al. Effect of sublethal doses of copper on growth performance and survival rate of grass carp(Ctenopharyngodon idella)[J]. American-Eurasian Journal of Toxicological Sciences, 2015, 4(3):138-142.
[5] Zhu Q L, Zhi L, Zhuo M Q, et al. In vitro exposure to copper influences lipid metabolism in hepatocytes from grass carp(Ctenopharyngodon idellus)[J]. Fish Physiology & Biochemistry, 2014, 40(2):595-605.
[6] Hansen J A, Woodward D F, Little E E, et al. Behavioral avoidance:Possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river[J]. Environmental Toxicology & Chemistry, 1999, 18(2):313-317.
[7] Lee C G, Farrell A P, Lotto A, et al. Excess post-exercise oxygen consumption in adult sockeye(Oncorhynchus nerka)and coho(O. kisutch)salmon following critical speed swimming[J]. Journal of Experimental Biology, 2003, 206(18):3253-3260.
[8] Holt R E. Climate change in fish:Effects of respiratory constraints on optimal life history and behaviour[J]. Biology Letters, 2015,11(2). doi:10. 1098/rsbl. 2014. 1032.
[9] Tu Z, Li L, Yuan X, et al. Aerobic swimming performance of juvenile Largemouth bronze gudgeon(Coreius guichenoti)in the Yangtze River [J]. Journal of Experimental Zoology Part A:Ecological Genetics and Physiology, 2012, 317(5):294-302.
[10]王振,金小偉,王子健.銅對(duì)水生生物的毒性:類群特異性敏感度分析[J].生態(tài)毒理學(xué)報(bào), 2014, 9(4):640-646. WANG Zhen, JIN Xiao-wei, WANG Zi-jian. Taxon-specific sensitivity differences of copper to aquatic organisms[J]. Asian Journal of Ecotoxicology, 2014, 9(4):640-646.
[11]曾艷藝,賴子尼,楊婉玲,等.銅和鎘對(duì)珠江天然仔魚和幼魚的毒性效應(yīng)及其潛在生態(tài)風(fēng)險(xiǎn)[J].生態(tài)毒理學(xué)報(bào), 2014, 9(1):1673-5897. ZENG Yan-yi, LAI Zi-ni, YANG Wan-ling, et al. The toxicities and potential ecological effects of copper and cadmium to natural fish larvae and juveniles from the Pearl River[J]. Asian Journal of Ecotoxicology, 2014, 9(1):1673-5897.
[12]姚志峰,章龍珍,莊平,等.銅對(duì)中華鱘幼魚的急性毒性及對(duì)肝臟抗氧化酶活性的影響[J].中國水產(chǎn)科學(xué), 2010, 17(4):731-738. YAO Zhi-feng, ZHANG Long-zhen, ZHUANG Ping, et al. Effects of antioxidant enzyme in liver and acute toxicity of Cu2+on juvenile Chinese sturgeon[J]. Journal of Fishery Sciences of China, 2010, 17(4):731-738.
[13]張志杰,張維平.環(huán)境污染生物監(jiān)測(cè)與評(píng)價(jià)[M].北京:中國環(huán)境科學(xué)出版社, 1991. ZHANG Zhi-jie, ZHANG Wei-ping. Pollution of the environment monitoring and evaluation[M]. Beijing:China Environmental Science Press, 1991.
[14]周新文,朱國念, Jilisa Mwalilino,等.重金屬離子Cu、Zn、Cd的相互作用對(duì)Pb在鯽魚組織中積累的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2002, 21(1):23-25. ZHOU Xin-wen, ZHU Guo-nian, Jilisa Mwalilino, et al. Effect of the interaction of copper, zinc and cadmium on the accumulation of lead in the tissues of the Carassius auratus[J]. Journal of Agro-Environment Science, 2002, 21(1):23-25.
[15]周彥鋒,陳家長,楊光,等.重金屬鎘脅迫下鯽魚不同組織中金屬硫蛋白的動(dòng)態(tài)變化[J].安全與環(huán)境學(xué)報(bào), 2008, 8(3):18-21. ZHOU Yan-feng, CHEN Jia-zhang, YANG Guang, et al. On the dynamic variations of metallothionein in the different tissues of Carassius auratus due to the exposure of different concentrations of cadmium[J]. Journal of Safety and Environment, 2008, 8(3):18-21.
[16] Ghedira J, Jebali J, Bouraoui Z, et al. Metallothionein and metal levels in liver, gills and kidney of Sparus aurata exposed to sublethal doses of cadmium and copper[J]. Fish Physiology & Biochemistry, 2010, 36 (1):101-107.
[17] Palstra A P, Mes D, Kusters K, et al. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriolalalandi)[J]. Frontiers in Physiology, 2014, 5:506-506.
[18] Yan G J, He X K, Cao Z D, et al. Effects of fasting and feeding on the fast-start swimming performance of southern catfish Silurus meridionalis[J]. Journal of Fish Biology, 2015, 86(2):605-614.
[19] Regoli F, Nigro M, Bertoli E, et al. Defenses against oxidative stress in the Antarctic scallop Adamussium colbecki and effects of acute exposure to metals[J]. Hydrobiologia, 1997, 355(1-3):139-144.
[20]孫翰昌,丁詩華,代梅,等. Cu2+對(duì)中華倒刺鲃超氧化物歧化酶活性的影響[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2005, 27(5): 709-712. SUN Han-chang, DING Shi-hua, DAI-Mei, et al. Effect of copper on the activity of SOD(superoxide dismutase)in Barbodes(Spinibarbus sinensis)[J]. Journal of Southwest Agriculture University(Natural Science), 2005, 27(5):709-712.
[21] Arellano J M, Storch V, Sarasquete C. Histological changes and copper accumulation in liver and gills of the Senegal sole, Solea senegalensis [J]. Ecotoxicol Environ Safety, 1999, 44(1):62-72.
[22] Ortiz J B, Gonzalez de Canales M L, Sarasquete C. Quantification and histopathological alterations produced by sublethal concentrations of copper in Fundulus heteroclitus[J]. Ciencias Marinas, 1999, 25(1):119-143.
[23] Ohara J. Alterations in oxygen consumption by bluegills exposed to sublethal treatment with copper[J].Water Research,1971, 5(6):321-327.
[24] Hagenaars A, Vergauwen L, Benoot D, et al. Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity[J]. Chemosphere, 2013, 91(6):844-856.
[25] Xia J G, Nie L J, Mi X M, et al. Behavior, metabolism and swimming physiology in juvenile Spinibarbus sinensis exposed to PFOS under different temperatures[J]. Fish Physiology & Biochemistry, 2015, 41(5):1293-1304.
[26]馬軍,斯頎,葉廣俊.鎘對(duì)神經(jīng)細(xì)胞內(nèi)游離鈣濃度的影響[J].中國公共衛(wèi)生學(xué)報(bào), 1996, 4(1):21-23. MA Jun, SI Qi, YE Guang-jun. Effect of cadmium on intracellular free Ca2+concentration of nerve cell[J]. Chinese Journal of Public Health, 1996, 4(1):21-23.
[27] Lasley S M, Gilbert M E. Impairment of synaptic function by exposure to lead[M]//Evelyn T C. Methods in Pharmacology & Toxicology. Totowa N J: Humana Press, 2004:217-241.
[28] López E, Figueroa S, Oset-Gasque M J, et al. Apoptosis and necrosis:Two distinct events induced by cadmium in cortical neurons in culture [J]. British Journal of Pharmacology, 2003, 138(5):901-911.
YUAN Xi, HUANG Ying-ping, JING Jin-jie, et al. Effect of copper exposure on metabolism behavior of juvenile grass carp(Ctenopharyngodon idella)[J]. Journal of Agro-Environment Science, 2016, 35(2):261-265.
Effect of copper exposure on metabolism behavior of juvenile grass carp(Ctenopharyngodon idella)
YUAN Xi1,2,3, HUANG Ying-ping1,2*, JING Jin-jie1,2, JIANG Qing1,2, XU Tao1,2, TU Zhi-ying1,2, LI Wei-min1,2
(1. Innovation Center for Geo-Hazards and Eco-Environment in Three Gorges Area, China Three Gorges University, Yichang 443002, China;2.Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China;3.Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China)
Abstract:In this investigation, the eco-toxicological effects of copper on the swimming capability of juvenile grass carp(Ctenopharyngodon idella)were measured. Copper concentrations were measured in the gill, liver and muscle tissues of juvenile grass carp after a 96 h exposure to a range of copper concentrations; 0, 0.025, 0.050, 0.075 mg·L-1and 0.10 mg·L-1. Relative critical swimming speed(Ucrit)and metabolic rate(MO2)range were also measured after exposure. While the exposure did not significantly affect tissue concentrations(P>0.05), it did significantly affect Ucritand MO2range(P<0.05). The safe concentration for juvenile grass carp was 0.008 mg Cu·L-1. Compared to the control group, Ucritdecreased by 18.4%, 21.8%, 33.8% and 38.1% after 96 h exposure to 0.025, 0.05, 0.075 mg Cu·L-1and 0.10 mg Cu·L-1, respectively. The oxygen consumption rate increased exponentially with swimming speed; MO2=a+b×Uc. The speed parameter, c, increased with copper concentration by 37.78%, 33.33%, 56.67% and 61.11%, indicating a decrease in swimming efficiency. MO2range increased by 37.48% after exposure to 0.10 mg Cu·L-1copper. Exposure to copper polluted environment significantly affects the metabolism and swimming performance of juvenile grass carp, especially resulted in the decrease of swimming efficiency, inhibited swimming ability.
Keywords:Ctenopharyngodon idella; copper; swimming performance; oxygen consumption rate
*通信作者:黃應(yīng)平E-mail:chem_ctgu@126.com
作者簡介:袁喜(1987—),男,湖北仙桃人,博士研究生,主要從事水污染控制及水生態(tài)研究。E-mail: chem_ctgu@126.com
基金項(xiàng)目:國家自然科學(xué)基金(51309140);國家水專項(xiàng)(2012ZX07104-003-04);湖北省創(chuàng)新群體項(xiàng)目(2015CFA021)
收稿日期:2015-09-26
中圖分類號(hào):X503.225
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-2043(2016)02-0261-05
doi:10.11654/jaes.2016.02.008