国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水氮互作對(duì)作物生理特性和氮素利用影響的研究進(jìn)展

2016-03-30 16:48胡夢(mèng)蕓門福圓張穎君孫麗靜李倩影劉富爽
麥類作物學(xué)報(bào) 2016年3期
關(guān)鍵詞:干旱生長發(fā)育

胡夢(mèng)蕓,門福圓,張穎君,孫麗靜,劉 茜,李倩影,劉富爽,李 輝

(河北農(nóng)林科學(xué)院糧油作物研究所,河北石家莊 050035)

?

水氮互作對(duì)作物生理特性和氮素利用影響的研究進(jìn)展

胡夢(mèng)蕓,門福圓,張穎君,孫麗靜,劉 茜,李倩影,劉富爽,李 輝

(河北農(nóng)林科學(xué)院糧油作物研究所,河北石家莊 050035)

摘要:水、肥是作物生長發(fā)育過程中既相互促進(jìn)又相互制約的兩個(gè)因子。隨著農(nóng)業(yè)水資源緊缺日趨嚴(yán)峻和不合理施肥造成的污染范圍擴(kuò)大,減少作物灌溉用水、提高肥料利用效率以實(shí)現(xiàn)農(nóng)作物穩(wěn)產(chǎn)高產(chǎn)的理論和技術(shù)研究受到廣泛重視。本文就水氮互作對(duì)作物生長發(fā)育、光合特性、產(chǎn)量和氮素利用的影響、水氮互作對(duì)作物響應(yīng)干旱脅迫的調(diào)控研究現(xiàn)狀進(jìn)行了綜述,并對(duì)目前水氮互作研究中存在的問題進(jìn)行了分析和討論。

關(guān)鍵詞:水氮互作;生長發(fā)育;氮素利用;干旱

水資源短缺是目前制約農(nóng)業(yè)生產(chǎn)的一個(gè)全球性問題,干旱嚴(yán)重影響了作物的生長發(fā)育,不僅造成嚴(yán)重的減產(chǎn),甚至限制了作物的更廣泛分布,使生態(tài)環(huán)境日益惡化。提高作物的抗旱性是我國發(fā)展節(jié)水農(nóng)業(yè)的關(guān)鍵,也是應(yīng)對(duì)水資源危機(jī)和保障糧食生產(chǎn)安全最經(jīng)濟(jì)和最有效的措施之一。氮素是影響作物生長和產(chǎn)量形成的必需元素,也是旱地土壤容易缺乏的營養(yǎng)元素。旱地營養(yǎng)物質(zhì)的缺乏不僅制約水分潛勢(shì)的發(fā)揮,導(dǎo)致糧食減產(chǎn),也限制水分的利用效率。國際干旱農(nóng)業(yè)研究中心已將“土壤水分和養(yǎng)分研究” ( SWAN,soil water and nutrient ) 列入農(nóng)作制度研究項(xiàng)目,并指出,氣候、土壤養(yǎng)分和水分是農(nóng)業(yè)生產(chǎn)力的決定因素;水、肥是影響旱地農(nóng)業(yè)生產(chǎn)的主要脅迫因子,也是一對(duì)聯(lián)因互補(bǔ)、互相制約的因子,研究作物生長過程中水與肥的相互關(guān)系及對(duì)作物生長的影響,對(duì)農(nóng)業(yè)生產(chǎn)力的提高具有重要意義[1]。中國是世界氮肥生產(chǎn)、消費(fèi)大國,氮肥農(nóng)田利用率低。只有進(jìn)行協(xié)調(diào)科學(xué)的水肥投入,才能產(chǎn)生明顯的協(xié)同和互補(bǔ)效果,這正是水分和養(yǎng)分之間的互作效應(yīng)[2]。水肥之間的耦合效應(yīng)也是旱地“以肥調(diào)水”、“以水促肥”的理論基礎(chǔ)。因此,重視水肥之間的耦合與互作調(diào)控關(guān)系,使其表現(xiàn)出最大的增產(chǎn)效應(yīng),是解決半干旱地區(qū)種植業(yè)持續(xù)發(fā)展的重要前提和基礎(chǔ)。

1氮素水平對(duì)水分脅迫下作物生長的影響

水分虧缺條件下,適量施氮能促進(jìn)玉米根系生長,增加根系吸收面積和活力,降低其細(xì)胞膜受傷害率,減輕因水分虧缺所產(chǎn)生的不良影響[3];而過多施氮對(duì)抗旱性意義并不大,甚至表現(xiàn)出負(fù)效應(yīng)[4]。張鳳翔等[5]研究認(rèn)為,在減少土壤水分供應(yīng)的條件下,增施氮肥能顯著增加水稻根系干重并促進(jìn)根系的深扎。對(duì)不同抗旱類型的花生品種研究表明,中度干旱脅迫條件下增施氮肥,能改善花生根系的生長,增加根系向深層土壤的擴(kuò)展,明顯增加40 cm 以下土層內(nèi)的根系生物量、根長和根系表面積,從而增加根系對(duì)下層土壤水分的吸收利用,提高了根系傷流強(qiáng)度,使產(chǎn)量提高[6]。重度干旱脅迫則會(huì)限制氮肥作用的發(fā)揮,重度干旱脅迫下增施氮肥,會(huì)導(dǎo)致玉米根系生物量和生理特性的下降,加重水分脅迫對(duì)根系生長的不良影響[3]。張歲岐和山 侖[7]對(duì)春小麥研究認(rèn)為,中度干旱脅迫下施氮可促進(jìn)小麥地上部的生長,表現(xiàn)為增大葉面積、促進(jìn)植株的生長和干物質(zhì)積累,從而減輕干旱造成的減產(chǎn)。根冠比對(duì)協(xié)調(diào)作物地上部和地下部的生長、吸水與失水平衡具有重要作用,不同水分條件下氮素供應(yīng)水平對(duì)根冠比的影響不同。低水平的氮供應(yīng)會(huì)使植物根系吸收表面積增大、光合產(chǎn)物向根系轉(zhuǎn)運(yùn)分配增多、向地上部分輸出的減少,從而導(dǎo)致根冠比較大[8];過多施氮,會(huì)導(dǎo)致根系生長不良,不能更好地滿足地上部養(yǎng)分和水分的供應(yīng)[9]。楊建昌等[10]認(rèn)為水分脅迫下氮素對(duì)地上部生長的促進(jìn)作用大于對(duì)根系的促進(jìn)作用,使水稻根冠比減小。隨著氮肥用量的增加,冬小麥根冠比減小,不同水分條件下表現(xiàn)趨勢(shì)一致;水氮通過調(diào)控地上-地下干物質(zhì)分配而影響作物產(chǎn)量和水分利用效率,在水分虧缺條件下,增施氮肥會(huì)降低小麥根冠比,更利于地上干物質(zhì)的積累和經(jīng)濟(jì)產(chǎn)量的形成[11]。但李 英等[12]認(rèn)為,施氮使小麥的根冠比增大。

2水分脅迫下氮素營養(yǎng)對(duì)作物光合作用和產(chǎn)量的影響

氮素是植物體內(nèi)葉綠素、蛋白質(zhì)、核酸和部分激素的重要組分。施氮一般能促進(jìn)植物葉綠素的合成,是調(diào)控植物葉片光合能力的最有效因子之一,對(duì)葉片葉綠素含量、光合速率、暗反應(yīng)主要酶活性以及光呼吸等有直接或間接的影響[13]。適量施用氮肥可提高光合葉片的含氮量、光合速率,延長葉片功能期。Makino等[14]對(duì)小麥等作物研究發(fā)現(xiàn),葉片中超過一半的氮被分配到光合器官。植物的光合能力與單位葉面積的氮含量正相關(guān)[15]。Llorens等[16]研究認(rèn)為,植物響應(yīng)干旱脅迫而導(dǎo)致光合作用和RuBPCO酶活性的下降與較低的葉片氮含量相關(guān)。在供水條件下,適量增施氮肥有利于作物光合功能葉片中RuBP羧化酶活性的增加及葉綠素a熒光動(dòng)力學(xué)參數(shù)Fv/F0和Fv/Fm的提高,從而有助于光合產(chǎn)物的積累和粒重的提高[17-18]。在干旱脅迫下,適量施用氮肥可以通過增加葉面積指數(shù)和光合色素含量來提高植物葉片的光合性能,減輕干旱脅迫對(duì)PSΠ造成的光損傷,促進(jìn)植株的生長發(fā)育,減輕因水分虧缺對(duì)植物產(chǎn)量的影響[19]。增施氮肥可以部分補(bǔ)償因干旱脅迫造成的植物水分利用率和產(chǎn)量下降[20-21]。過量施用氮肥會(huì)導(dǎo)致植物的光合特性向不利方向變化,并引起產(chǎn)量的下降。不同施氮水平下對(duì)旱地和水地抗旱小麥品種的光合和生長的研究表明,葉片的光合速率和氣孔導(dǎo)度隨施氮量的增加呈先升高后降低之勢(shì),表明適量施氮對(duì)提高植物氣孔的光合氣體交換能力具有積極意義。上官周平等[22]的研究表明,培肥土壤和增施肥料可明顯改善小麥葉片光合速率和水分狀況,有利于冬小麥在灌漿后期維持較大的光合葉面積,并延緩葉片衰老,從而改善籽粒灌漿特性、增加穗粒數(shù)。李銀坤等[23]對(duì)黃瓜的研究也表明,在非節(jié)水灌水條件下,施氮量的增加有助于葉片光合速率和蒸騰速率的提高;在灌水量減少30%、施氮量減少50%的組合處理中,黃瓜產(chǎn)量達(dá)到最高,而葉片光合速率與非節(jié)水灌溉條件下無顯著差異。棉花在干旱脅迫下,適量施氮(240 kg·hm-2)的棉株葉片具有較高的葉綠素含量、PSⅡ最大光化學(xué)效率和電子傳遞速率,因而其凈光合速率較高;而過量施氮(480 kg·hm-2)使棉株受旱程度嚴(yán)重,PSⅡ最大光化學(xué)效率、PSⅡ量子產(chǎn)量、電子傳遞速率與光化學(xué)猝滅系數(shù)較低,不利于棉株光合性能的提高,最終不能形成高產(chǎn)[24]。綜上所述,水分虧缺條件下,適量供應(yīng)氮素可提高植物葉片光合能力,對(duì)提高小麥抗旱性和旱地作物的產(chǎn)量具有積極意義。不同作物中關(guān)于水氮互作對(duì)產(chǎn)量的影響研究結(jié)果不盡一致。謝志良等[25]對(duì)棉花的研究表明,干旱脅迫限制了氮素的增產(chǎn)效果;水分充足條件下,增施氮素的增產(chǎn)效果顯著。土壤輕度干旱條件下,水氮耦合對(duì)大豆產(chǎn)量的影響表現(xiàn)為限制性的協(xié)同作用,但重度干旱時(shí),水氮耦合不起作用,過量施氮甚至?xí)巩a(chǎn)量明顯下降[26]。在水稻中也有相同的研究結(jié)果[10,27]。在正常生長條件下,供水對(duì)小麥光合特性和籽粒產(chǎn)量的影響大于氮肥,而增加施氮量卻能明顯彌補(bǔ)水分虧缺造成的不利影響;適度水分虧缺與正常施氮水平為最優(yōu)的水氮互作模式,可使黃淮冬麥區(qū)小麥水分利用效率和產(chǎn)量均達(dá)到最高[28]。

3不同氮素水平對(duì)作物響應(yīng)干旱脅迫的調(diào)控

增施氮肥能提高干旱脅迫下小麥葉片抗氧化酶的活性,提高保護(hù)酶系的活性,降低過氧化物的含量,并顯著提高干旱脅迫下小麥葉片的保水能力,減緩旗葉的衰老,從而提高其對(duì)干旱的適應(yīng)能力[29-30]。李秧秧和邵明安[4]研究認(rèn)為,適量增施氮素能促進(jìn)小麥根系的生長發(fā)育,提高總根重和深層土壤的根重,增強(qiáng)根系對(duì)土壤水肥的吸收,改善根系的水分關(guān)系,提高了細(xì)胞膜的穩(wěn)定性,因而有助于增強(qiáng)小麥的抗旱性。也有研究認(rèn)為施氮可提高小麥對(duì)干旱脅迫的敏感性,隨作物受干旱脅迫程度加劇,施氮使小麥光合能力下降[31]。旱地條件下合理施氮,有助于作物擴(kuò)大根系延伸范圍,顯著增加根系活力和根系活躍吸收面積,從而增強(qiáng)根系的吸水能力,根系耐脫水能力和維持膨壓的能力都較強(qiáng)。這種促根效應(yīng)是“以肥調(diào)水,以水促肥”的機(jī)理所在[32]。梁銀麗等[33]發(fā)現(xiàn)在干旱脅迫條件下,適量增施氮肥能促進(jìn)小麥幼苗根系的生長,而過量施氮?jiǎng)t表現(xiàn)為負(fù)效應(yīng)。水分脅迫下適量施氮有利于棉花和小南瓜根系生物量的積累,可增加總根重和深層土壤中的根重,但根系表面積隨施氮量增加逐漸降低,這是因?yàn)楦呤┑恳鸬乃秩霛B深度的增加直接影響作物根系的生長和分布[25,34]。由此說明氮營養(yǎng)對(duì)改善小麥的耐旱性具有重要意義。氮素對(duì)抗旱性的影響是一個(gè)較為復(fù)雜的問題,在干旱情況下,單方面提高氮肥的施用量對(duì)提高作物的抗旱性是不利的。氣孔導(dǎo)度反映了單位面積的蒸騰失水情況和氣孔對(duì)干旱的敏感性。在水分脅迫條件下,隨水分脅迫程度的加劇,增加施氮量,則小麥葉片的氣孔導(dǎo)度下降,且顯著低于低氮水平下小麥葉片的氣孔導(dǎo)度[35]。

4水氮互作對(duì)作物氮代謝的影響

4.1水氮互作對(duì)氮代謝關(guān)鍵酶活性的影響

4.2水分脅迫對(duì)植物固氮和氮素利用率的影響

中國是第一大氮肥消費(fèi)國,氮肥消耗量占世界氮肥總量的30%,與發(fā)達(dá)國家相比,我國氮肥利用率過低,不及發(fā)達(dá)國家的一半。水分脅迫是限制植物固氮的一個(gè)主要因素。樊小林等[46]對(duì)不同抗旱性小麥材料研究表明,同一基因型小麥的籽粒、秸稈和地上部吸氮量隨于旱脅迫加劇而減小;高抗旱基因型小麥不論施氮量多少,其吸氮量最小,中抗、低抗小麥吸氮量相對(duì)較多,低氮、高氮處理下中抗小麥吸氮量最多。氮肥和供水以及品種間的有機(jī)配合,對(duì)小麥產(chǎn)量和吸氮量具有明顯的正效應(yīng)[47]。Sinclair等[48]研究表明,干旱脅迫不利于小麥植株對(duì)氮素的吸收,隨著供水量和灌溉次數(shù)的增加,小麥開花前后植株對(duì)氮素的吸收量顯著增加。參與干旱脅迫下植株固氮的機(jī)制可能主要有碳短缺、根瘤碳代謝、氧限制和氮代謝物積累的反饋調(diào)控等。Serraj 等[49]研究認(rèn)為干旱脅迫降低了作物木質(zhì)部運(yùn)輸能力,導(dǎo)致氨基酸輸出受損,引起根瘤中氮化合物的積累,從而局部通過N-反饋調(diào)控植株的固氮作用。Gil-Quintana等[50]研究認(rèn)為,干旱導(dǎo)致植株不同組織中氨基酸的積累程度不同,是植物對(duì)干旱逆境的一種響應(yīng)機(jī)制,大量氮化合物的積累會(huì)引起N-反饋調(diào)控,這種N-反饋參與調(diào)控干旱脅迫下固氮抑制過程。眾多研究表明,干旱脅迫程度越大,小麥吸氮量越小,干旱脅迫限制土壤養(yǎng)分供應(yīng)的同時(shí),也限制了作物對(duì)養(yǎng)分的吸收利用。適度水分脅迫有利于氮素向穗部的轉(zhuǎn)運(yùn)和分配,而供水量過多或過少,則導(dǎo)致氮素過多分配至莖、葉、鞘等營養(yǎng)器官,均不利于產(chǎn)量的形成。氮肥吸收利用率與水分的相關(guān)性顯著,輕度的水分虧缺有利于水稻氮肥吸收利用率的提高[51]。從氮素利用效率看,隨水分脅迫加重,氮素利用效率降低。適度水分脅迫,有利于節(jié)約灌溉用水,并保持較高的氮素利用率,獲得高產(chǎn)、高效的結(jié)果[52]。

4.3干旱脅迫下氮代謝與碳代謝的關(guān)系

作物產(chǎn)量和品質(zhì)是碳氮代謝協(xié)調(diào)轉(zhuǎn)化的結(jié)果,研究鑒定碳氮代謝協(xié)調(diào)轉(zhuǎn)化水平的評(píng)判指標(biāo),不僅可以從植物養(yǎng)分高效利用角度為作物高產(chǎn)高效提供理論依據(jù),還能很好的解釋作物因過量施氮或缺氮所導(dǎo)致的貪青晚熟或早衰等碳氮代謝協(xié)調(diào)轉(zhuǎn)化不當(dāng)所引起的產(chǎn)量和品質(zhì)不理想的現(xiàn)象。目前有關(guān)作物達(dá)到最佳生長狀況的碳、氮代謝互作調(diào)控機(jī)制研究,以及合理的水氮耦合模式下作物碳氮代謝的平衡關(guān)系和代謝強(qiáng)度研究較缺乏。因此,探究不同水氮互作模式下不同產(chǎn)量水平的品種在不同生育期的碳氮代謝協(xié)調(diào)轉(zhuǎn)化規(guī)律,在實(shí)踐生產(chǎn)中,通過農(nóng)業(yè)措施來調(diào)控碳氮代謝,研究碳氮代謝在作物生長中的協(xié)調(diào)互作效應(yīng),將其用于指導(dǎo)農(nóng)業(yè)節(jié)水灌溉、合理施肥和提高水肥的利用效率,不僅是理論研究所需,在生產(chǎn)實(shí)踐中也具有重要的指導(dǎo)意義。

5水氮互作效應(yīng)

水氮對(duì)作物籽粒產(chǎn)量的調(diào)控存在互補(bǔ)效應(yīng),增施氮肥可補(bǔ)償因灌水不足導(dǎo)致的籽粒產(chǎn)量降低[65-66]。尹光華等[67]對(duì)春小麥的水肥耦合效應(yīng)研究表明,在半干旱區(qū),水、肥單因子對(duì)產(chǎn)量的影響顯著,水的影響大于肥;水肥耦合的產(chǎn)量效應(yīng)顯著,適量水肥組合的效應(yīng)大于高水高肥和低水低肥組合;水肥互作效應(yīng)最大的為氮與水的耦合。水、氮對(duì)水稻的氮吸收、利用及產(chǎn)量有顯著互作效應(yīng),適度的水分脅迫,能提高水稻的氮素利用率,減少土壤氮損失[68]。王小燕等[69]研究表明,小麥植株吸氮量、籽粒產(chǎn)量、籽粒蛋白質(zhì)含量的水氮互作效應(yīng)均達(dá)顯著水平;灌溉量與施氮量對(duì)植株吸氮量、籽粒產(chǎn)量、籽粒蛋白質(zhì)含量存在互作效應(yīng),且灌溉量起主導(dǎo)作用,施氮量對(duì)灌溉量有補(bǔ)償效應(yīng)。因此,在小麥高產(chǎn)優(yōu)質(zhì)栽培過程中,可以通過調(diào)節(jié)施氮量、灌水量與灌水時(shí)期,實(shí)現(xiàn)水氮耦合效應(yīng),在促進(jìn)植株對(duì)肥料氮吸收的同時(shí),獲得較高的產(chǎn)量,在提高氮肥生產(chǎn)效率的同時(shí)也提高了作物的水分利用率。李生秀和李世清[70]研究認(rèn)為,水分虧缺條件下,增施氮肥可使植物葉片氣孔密度變小、蒸騰降低、作物產(chǎn)量和水分利用效率提高,有利于增強(qiáng)植物的抗旱性。水分脅迫條件下,通過增施氮肥可以促進(jìn)作物對(duì)深層土壤水分的利用,從而減少因水分不足對(duì)小麥產(chǎn)量造成的影響,起到“以肥調(diào)水”的作用[71-72]。在土壤氮肥水平較高的條件下,結(jié)實(shí)期進(jìn)行適當(dāng)?shù)耐寥浪置{迫,能增加水稻籽粒灌漿速率,達(dá)到節(jié)水而不減產(chǎn)的目的[73]。沈榮開等[74]對(duì)冬小麥和夏玉米的水肥耦合研究結(jié)果表明,施氮效應(yīng)與土壤水分狀況密切相關(guān),在減少灌水條件下,肥料的增產(chǎn)效益十分顯著,但氮肥貢獻(xiàn)率隨施肥量的增加呈遞減的趨勢(shì)。水分脅迫會(huì)導(dǎo)致水解酶類活性增強(qiáng),使蛋白質(zhì)與氨基酸的比率或蛋白質(zhì)含量減少,而增施氮素可使缺水植株的蛋白酶、肽酶及核糖核酸酶活性降低,維持較高的蛋白質(zhì)水平和NR活性,從而增加了植株總吸氮量和葉綠素含量,從而增強(qiáng)作物耐受水分脅迫的能力[46,75]。總之,水可促氮,氮可調(diào)水,不同的作物只有配以適合的水、氮比例,才能獲得較高的產(chǎn)量和較好的品質(zhì)。

6結(jié)束語

土壤水肥是影響作物生長發(fā)育的重要因子,深入研究水肥互作效應(yīng)對(duì)作物水肥吸收和產(chǎn)量形成的影響及其交互效應(yīng),可提高水肥利用效率,減少環(huán)境污染,為作物高產(chǎn)、優(yōu)質(zhì)和高效栽培提供重要理論依據(jù)。干旱是制約干旱半干旱地區(qū)農(nóng)業(yè)發(fā)展的重要限制因素,施肥是農(nóng)業(yè)生產(chǎn)的關(guān)鍵技術(shù)措施,水肥具有明顯的耦合關(guān)系,合理施用氮肥可調(diào)節(jié)作物對(duì)水分的利用率,科學(xué)的供水也能明顯提高肥料的增產(chǎn)作用和利用效率。因此,合理的水肥措施,可最大限度地發(fā)揮水肥耦合優(yōu)勢(shì)在農(nóng)業(yè)生產(chǎn)中的作用,對(duì)保護(hù)農(nóng)業(yè)生態(tài)環(huán)境,實(shí)現(xiàn)以水養(yǎng)肥、以肥調(diào)水,充分、高效利用農(nóng)業(yè)資源具有重要意義;對(duì)解決農(nóng)業(yè)水資源缺乏,肥料利用率低,環(huán)境污染嚴(yán)重等根本性問題具有一定指導(dǎo)作用。

目前有關(guān)作物水氮互作研究更多關(guān)注的是水氮互作模式下氮的代謝與利用,關(guān)于水肥互作調(diào)控作物高產(chǎn)高效的作用機(jī)制、對(duì)碳代謝、轉(zhuǎn)運(yùn)和分配的影響以及對(duì)作物品質(zhì)的影響等相關(guān)研究較為少見。有關(guān)水氮互作條件下氮高效品種是否能節(jié)水抗旱、抗旱的品種是否營養(yǎng)高效、抗旱節(jié)水與營養(yǎng)高效能否協(xié)調(diào)發(fā)展等一序列問題還有待深入研究。因此,有必要進(jìn)一步研究水氮互作對(duì)作物產(chǎn)量形成、碳氮代謝機(jī)理以及作物品質(zhì)的影響,以明確水氮互作的調(diào)控機(jī)理。利用養(yǎng)分高效的作物品種研究其抗旱節(jié)水性,利用抗旱品種研究其氮素代謝、吸收利用效率,明確篩選和培育水肥高效作物品種的方法,對(duì)當(dāng)前減少農(nóng)業(yè)面源污染、提高農(nóng)業(yè)資源利用效率將具有深遠(yuǎn)的意義,也將為利用基因工程手段改良作物高產(chǎn)高效提供理論基礎(chǔ)和實(shí)踐意義。

參考文獻(xiàn):

[1]鄧世媛,陳建軍.干旱脅迫下氮素營養(yǎng)對(duì)作物生長及生理代謝的影響[J].河南農(nóng)業(yè)科學(xué),2005(11):24-26.

Deng S Y,Chen J J.Effects of nitrogen on physiological metabolism and crop growth under drought stress [J].JournalofHenanAgriculturalSciences,2005(11):24-26.

[2]李生秀.土壤植物營養(yǎng)研究文集[M].西安:陜西科學(xué)技術(shù)出版社,1999:1-36.

Li S X.Study on Soil and Plant Nutrition [M].Xi’an:Shaanxi Science and Technology Press.1999:1-36.

[3]宋海星,李生秀.水、氮供應(yīng)和土壤空間所引起的根系生理特性變化[J].植物營養(yǎng)與肥料學(xué)報(bào),2004,10(1):6-11.

Song H X,Li S X.Changes of root physiological characteristics resulting from supply of water,nitrogen and root growing space in soil [J].PlantNutritionandFertilizerScience,2004,10(1):6-11.

[4]李秧秧,邵明安.小麥根系對(duì)水分和氮肥的生理生態(tài)反應(yīng)[J].植物營養(yǎng)與肥料學(xué)報(bào),2000,6(4):383-388.

Li Y Y,Shao M A.Physio-ecological response of spring wheat root to water and nitrogen [J].PlantNutritionandFertilizerScience,2000,6(4):383-388.

[5]張鳳翔,周明耀,周春林,等.水肥耦合對(duì)水稻根系形態(tài)與活力的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2006,22(5):197-200.

Zhang F X,Zhou M Y,Zhou C L,etal.Effects of water and fertilizer coupling on root morphological characteristics and activities of rice [J].TransactionsoftheCSAE,2006,22(5):197-200.

[6]丁 紅,張智猛,戴良香,等.水氮互作對(duì)花生根系生長及產(chǎn)量的影響[J].中國農(nóng)業(yè)科學(xué),2015,48(5):872-881.

Ding H,Zhang Z M,Dai L X,etal.Effects of water and nitrogen interaction on peanut root growth and yield [J].ScientiaAgriculturaSinica,2015,48(5):872-881.

[7]張歲岐,山 侖.氮素營養(yǎng)對(duì)春小麥抗旱適應(yīng)性及水分利用的影響[J].水土保持研究,1995,2(1):31-35.

Zhang S Q,Shan L.Effects of nitrogen nutrition on the drought adaptation and water use of spring wheat [J].ResearchofSoilandWaterConservation,1995,2(1):31-35.

[8]Passioura J B.Roots and drought resistance [J].AgriculturalWaterManagement,1983,7:265-280.

[9]張大勇,姜新華,趙松齡,等.半干旱區(qū)作物根系生長冗余的生態(tài)學(xué)分析[J].西北植物學(xué)報(bào),1995,15(5):110-114.

Zhang D Y,Jiang X H,Zhao S L,etal.An ecological analysis of growth redundancy in root systems of crops under drought conditions [J].ActaBotanicaBoreali-OccidentaliaSinica,1995,15(5):110-114.

[10]楊建昌,王志琴,朱慶森.不同土壤水分狀況下氮素營養(yǎng)對(duì)水稻產(chǎn)量的影響及其生理機(jī)制的研究[J].中國農(nóng)業(yè)科學(xué),1996,29(4):58-66.

Yang J C,Wang Z Q,Zhu Q S.Effects of nitrogen nutrition on rice yield and its physiological mechanism under different status soil moisture [J].ScientiaAgriculturaSinica,1996,29(4):58-66.

[11]王艷哲,劉秀位,孫宏勇,等.水氮調(diào)控對(duì)冬小麥根冠比和水分利用效率的影響研究[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(3):282-289.

Wang Y Z,Liu X W,Sun H Y,etal.Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat [J].ChineseJournalofEco-Agriculture,2013,21(3):282-289.

[12]李 英,陳培元,陳建軍.水分脅迫下不同抗旱類型品種對(duì)氮素營養(yǎng)反應(yīng)的比較研究[J].西北植物學(xué)報(bào),1991,11(4):309-315.

Li Y,Chen P Y,Chen J J.Comparative study on responses to nitrogen nutrient of different drought resistance types of wheat under water stresses [J].ActaBotanicaBoreali-OccidentaliaSinica,1991,11(4):309-315.

[13]張旺鋒,勾 玲,王振林,等.氮肥對(duì)新疆高產(chǎn)棉花葉片葉綠素?zé)晒鈩?dòng)力學(xué)參數(shù)的影響[J].中國農(nóng)業(yè)科學(xué),2003,36(8):893-898.

Zhang W F,Gou L,Wang Z L,etal.Effect of nitrogen on ChlorophyⅡ fIuorescence of leaves of high-yielding cotton in Xinjiang [J].ScientiaAgriculturaSinica,2003,36(8):893-898.

[14]Makino A,Osmond B.Effects of nitrogen nutrition on nitrogen partitioning between chloroplast and mitoehondria in pea and wheat [J].PlantPhysiology,1991,96:355-362.

[15]Walcroft A S,Whitehead D,Silvester W B.The response of photosynthetic model parameter to temperature and nitrogen eoneentration inPinusradiataD.Don [J].PlantCellEnvironment,1997,20:1338-1348.

[16]Llorens L,Péuelas J,Estiarte M.Ecophysiological responses of two mediterranean shrubs,Erica multiflora and Globularia alypum,to experimentally drier and warmer conditions [J].PlantPhysiology,2003,119:231-243.

[17]馬冬云,郭天財(cái),宋 曉,等.施氮對(duì)冬小麥旗葉RuBP羧化酶活性及葉綠素?zé)晒鈪?shù)的影響[J].西北植物學(xué)報(bào),2010,30(11):2197-2202.

Ma D Y,Guo T C,Song X,etal.Effects of nitrogen fertilizer application on RuBP carboxylase activity and ChlorophyⅡ fluorescence parameters in flag leaves of winter wheat [J].ActaBotanicaBoreali-OccidentaliaSinica,2010,30(11):2197-2202.

[18]王仁雷,李 霞,陳國祥,等.氮肥水平對(duì)雜交稻汕優(yōu)63劍葉光合速率和RuBP羧化酶活性的影響[J].作物學(xué)報(bào),2001,27(6):930-934.

Wang R L,Li X,Chen G X,etal.Effect of N-fertilizer levels on photosynthetic rate and RuBP carboxylase activity in flag leaves of hybrid rice Shanyou 63 [J].ActaAgronomicaSinica,2001,27(6):930-934.

[19]Wu F Z,Bao W K,Li F L,etal.Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of sophora davidii seedlings [J].Photosynthetica,2008,46(1):40-48.

[20]郭天財(cái),馮 偉,趙會(huì)杰,等.水氮運(yùn)籌對(duì)干旱型冬小麥旗葉生理性狀及產(chǎn)量的交互效應(yīng)[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(3):453-457.

Guo T C,Feng W,Zhao H J,etal.Interactive effect of irrigation and nitrogen application on physiological characteristics of flag leaf and grain yield of winter wheat in dry years [J].ChineseJornalofAppliedEcology,2004,15(3):453-457.

[21]Latiri S K,Nortcliff S,Lawlor D W.Nitrogen fertilizer can increase dry matter,grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions [J].EuropeanJournalofAgronomy,1998,9:21-34.

[22]上官周平,劉文兆,徐宣斌.旱作農(nóng)田冬小麥水肥耦合增產(chǎn)效應(yīng)[J].水土保持研究,1999,6(3):103-106.

Shangguan Z P,Liu W Z,Xu X B.Interactive effects of water and fertilizer on yield of winter wheat in dryland [J].ResearchofSoilandWaterConservation,1999,6(3):103-106.

[23]李銀坤,武雪萍,吳會(huì)軍,等.水氮互作對(duì)溫室黃瓜光合特征與產(chǎn)量的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2010,18(6):1170-1175.

Li Y K,Wu X P,Wu H J,etal.Effects of water and nitrogen interaction on photosynthetic characteristics and yield of cucumber in greenhouse [J].ChineseJournalofEco-Agriculture,2010,18(6):1170-1175.

[24]劉瑞顯,王友華,陳兵林,等.花鈴期干旱脅迫下氮素水平對(duì)棉花光合作用與葉綠素?zé)晒馓匦缘挠绊慬J].作物學(xué)報(bào),2008,34(4):675-683.

Liu R X,Wang Y H,Chen B L,etal.Effects of nitrogen levels on photosynthesis and ChlorophyⅡ fluorescence characteristics under drought stress in cotton flowering and boll-forming stage [J].ActaAgronomicaSinica,2008,34(4):675-683.

[25]謝志良,田長彥.膜下滴灌水氮耦合對(duì)棉花干物質(zhì)積累和氮素吸收及水氮利用效率的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2011,17(1):160-165.

Xie Z L,Tian C Y.Coupling effects of water and nitrogen on dry matter accumulation,nitrogen uptake and water-nitrogen use efficiency of cotton under mulched drip irrigation [J].ScientiaAgriculturaSinica,2011,17(1):160-165.

[26]裴宇峰,韓曉增,祖 偉,等.水氮耦合對(duì)大豆生長發(fā)育的影響Ⅰ.水氮耦合對(duì)大豆產(chǎn)量和品質(zhì)的影響[J].大豆科學(xué),2005,24(2):106-110.

Pei Y F,Han X Z,Zu W,etal.Effect of water and nitrogen fertilizer coupling on growth and develop of soybeanⅠ.Effect of water and nitrogen fertilizer coupling on yield and quality of soybean [J].SoybeanSciene,2005,24(2):106-110.

[27]程建平,曹湊貴,蔡明歷.不同土壤水勢(shì)與氮素營養(yǎng)對(duì)雜交水稻生理特性和產(chǎn)量的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2008,2:199-206.

Cheng J P,Cao C G,Cai M L.Effect of different nitrogen nutrition and soil water potential on physiological parameters and yield of hybrid rice [J].ScientiaAgriculturaSinica,2008,2:199-206.

[28]石珊珊,周蘇玫,尹 鈞,等.高產(chǎn)水平下水肥耦合對(duì)小麥旗葉光合特性及產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2013,3(3):549-554.

Shi S S,Zhou S M,Ying J,etal.Effects of water and fertilizer coupling on photosynthetic characteristics in flag leaves and yield of winter wheat under high yield condition [J].JournalofTriticeaeCrops,2013,3(3):549-554.

[29]Shangguan Z P,Shao M A,Ren S J.Effect of nitrogen nutrition on root and shoot relations and gas exchange in winter wheat [J].BotanicalBulletionofAcademiaSinica,2004,45(1):49-54.

[30]Bartels D,Sunkar R.Drought and salt tolerance in plants [J].CriticalReviewsinPlantSciences,2005,24(1):23-58.

[31]張緒成,上官周平.施氮對(duì)不同抗旱性小麥葉片光合及生長特性的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2007,15(6):59-64.

Zhang X C,Shangguan Z P.Effects of application nitrogen on photosynthesis and growth of different drought resistance winter wheat cultivars [J].ChineseJournalofEco-Agriculture,2007,15(6):59-64.

[32]信乃詮,侯向陽,張燕卿.我國北方旱地農(nóng)業(yè)研究開發(fā)進(jìn)展及對(duì)策[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2001,9(4):58-60.

Xin N Q,Hou X Y,Zhang Y Q.Important progress on research development and countermeasures of dry land agriculture in North China [J].ChineseJournalofEco-Agriculture,2001,9(4):58-60.

[33]梁銀麗,陳培元.水分脅迫和氮素營養(yǎng)對(duì)小麥根苗生長及水分利用效率的效應(yīng)[J].西北植物學(xué)報(bào),1995,15(1):21-25.

Liang Y L,Chen P Y.Effects of water stress and nitrogen nutritionon root and seedling growth and water use efficiency of wheat [J].ActaBotanicaBoreali-occidentaliaSinica,1995,15(1):21-25.

[34]劉世全,曹紅霞,張建青,等.不同水氮供應(yīng)對(duì)小南瓜根系生長、產(chǎn)量和水氮利用效率的影響[J].中國農(nóng)業(yè)科學(xué),2014,47(7):1362-1371.

Liu S Q,Cao H X,Zhang J Q,etal.Effects of different water and nitrogen supplies on root growth,yield and water and nitrogen use efficiency of small pumpkin [J].ScientiaAgriculturaSinica,2014,47(7):1362-1371.

[35]徐 璇,周 瑞,谷艷芳,等.不同水氮耦合對(duì)小麥旗葉主要光合特性的影響[J].河南大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,40(1):53-57.

Xu X,Zhou R,Gu Y F,etal.Effect of water and nitrogen interaction on main photosynthetic characteristics in flag leaves of wheat[J].JournalofHenanUniversity(NaturalScience),2010,40(1):53-57.

[36]Lam H M,Coschigano K T,Oliveira I C,etal.The molecular-genetics of nitrogen assimilation into amino acids in higher plants [J].AnnualReviewPlantPhysiologyPlantMolecularBiology,1996,47:569-593.

[37]Chen S H,Kao C H.The rote of proteolytic enzymes in protein degradation during senesence of rice leaves [J].PhysiolPlant,1984,62:231-237.

[38]孫永健,孫園園,李旭毅,等.水氮互作下水稻氮代謝關(guān)鍵酶活性與氮素利用的關(guān)系[J].作物學(xué)報(bào),2009,35(11):2055-2063.

Sun Y J,Sun Y Y,Li X Y,etal.Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction [J].ActaAgronomicaSinica,2009,35(11):2055-2063.

[39]Xie Z J,Jiang D,Cao W X,etal.Effects of post-anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains [J].JournalofPlantPhysiologyandMolecularBiology,2003,29(4):309-316.

[40]盧紅芳,王晨陽,郭天財(cái),等.灌漿前期高溫和干旱脅迫對(duì)小麥籽粒蛋白質(zhì)含量和氮代謝關(guān)鍵酶活性的影響[J].生態(tài)學(xué)報(bào),2014,34(13):3612-3619.

Lu H F,Wang C Y,Guo T C,etal.Effects of high-temperature and drought stress on protein concentration and key enzyme activities in relation to nitrogen metabolism in wheat grains during the early stage of grain filling [J].ActaEcologicaSinica,2014,34(13):3612-3619.

[41]Singh K K,Ghosh S.Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (OryzasativaL.) cultivars under water deficit conditions [J].PlantCellReports,2013,32:183-193.

[42]趙宏偉,馬鳳鳴,李文華.氮肥施用量對(duì)春玉米硝酸還原酶活性及產(chǎn)量的影響[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,35(3):276-281.

Zhao H W,Ma F M,Li W H.Study on the effects of quantity of nitrogen on the activity of nitric-revivification enzyme,yield and quality of spring maize [J].JournalofNortheastAgriculturalUniversity,2004,35(3):276-281.

[43]Xu Z Z,Yu Z W,Wang D,etal.Nitrogen accumulation and translocation for winter wheat under different irrigation regimes [J].AgronomyandCropScience,2005,191:439-449.

[44]曹翠玲,李生秀.水分脅迫下氮素對(duì)分蘗期小麥某些生理特性的影響[J].核農(nóng)學(xué)報(bào),2004,189(5):402-405.

Cao C L,Li S X.Effect of water stress and nitrogen on some physiological characteristics at tilling stage of wheat [J].ActaAgriculturaeNucleataeSinica,2004,189(5):402-405.

[45]王曉琴,袁繼超,柯永培,等.水分脅迫對(duì)玉米幼苗氮素代謝的影響[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,22(1):23-25.

Wang X Q,Yuan J C,Ke Y P,etal.Effect of water-stress on nitrogen metabolism of maize seedling [J].JournalofSichuanAgriculturalUniversity,2004,22(1):23-25.

[46]樊小林,李 玲,何文勤,等.氮肥、干旱脅迫、基因型差異對(duì)冬小麥吸氮量的效應(yīng)[J].植物營養(yǎng)與肥料學(xué)報(bào),1998,4(2):131-137.

Fan X L,Li L,He W Q,etal.Effect of nitrogen fertilizer,water stress and the genotypes on nitrogen uptake of winter wheat [J].PlantNutritionandFertilizeScience,1998,4(2):131-137.

[47]李世娟,周殿璽,諸葉平,等.水分和氮肥運(yùn)籌對(duì)小麥氮素吸收分配的影響[J].華北農(nóng)學(xué)報(bào),2002,17(1):69-75.

Li S J,Zhou D X,Zhu Y P,etal.Effects of water and nitrogen application on nitrogen uptake and distribution in wheat [J].ActaAgricuturaeBoreali-Sinica,2002,17(1):69-75.

[48]Sinclair T R,Pinter P J,Kimball B A,etal.Leaf nitrogen concentration of wheat subjected to elevated CO2and either water or N deficits [J].AgricultureEcosystems&Environment,2000,79:53-60.

[49]Serraj R,Vadez V,Sinclair TR.Feedback regulation of symbiotic N-fixation under drought stress [J].Agronomie,2001,21:621-626.

[50]Gilquintana E,Larrainza E,Arreselgor C,etal.Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed medicago truncatula [J].JournalofExperimentalBotany,2013,64(1):281-292.

[51]馬紅梅,謝英荷.水氮耦合對(duì)山西旱地冬小麥籽粒產(chǎn)量和氮吸收影響研究[J].灌溉排水學(xué)報(bào),2011(2):140-142.

Ma H M,Xie Y H.Interactive effects of irrigation and nitrogen fertilizer on grain yield and nitrogen recovery of dryland winter wheat [J].JournalofIrrigationandDrainage,2011(2):140-142.

[52]石 巖,于振文,位東斌,等.土壤水分脅迫對(duì)冬小麥氮素分配利用及產(chǎn)量的影響[J].核農(nóng)學(xué)報(bào),1999,13(1):27-33.

Shi Y,Yu Z W,Wei D B,etal.Effects of soil water stress on nitrongen distribution utilization and yield in winter wheat [J].ActaAgriculturaeNucleataeSinica,1999,13(1):27-33.

[53]Halford N G,Hey S,Jhurreea D.Highly conserved protein kinases involved in the regulation of carbon and amino acid metabolism [J].JournalofExperimentalBotany,2004,55(394):35-42.

[54]Good A G,Shrawat A K,Muench D G.Can less yield more is reducing nutrient input into the environment compatible with maintaining crop production [J].TrendsinPlantScience,2004,9(12):597-605.

[55]Mcdowell N G.Mechanisms linking drought,hydraulics,carbon metabolism,and vegetation mortality [J].PlantPhysiology,2011,155(3):1051-1059.

[56]Gonzalez E M,Gordon A J,James C,etal.The role of sucrose synthase in the response of soybean nodules to drought [J].JournalofExperimentalBotany,1995,46,1515-1523.

[57]Ramos M L G,Gordon A J,Minchin F R,etal.Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (PhaseolusvulgarisL.) [J].AnnalsofBotany,1999,83:57-63.

[58]Cuellar S M,De L P,Arrieta M,etal.Relationship between carbohydrate partitioning and drought resistance in common bean [J].Plant,Cell&Environment,2008,31(10):1399-1409.

[59]Yang J C,Zhang J H,Wang Z Q,etal.Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling [J].JournalofExperimentalBotany,2001,52:2169-2179.

[60]Praxedes S C,DaMatta F M,Loureiro M E G,etal.Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffeacanephorapierrevar.kouillou) leaves [J].EnvironmentalandExperimentalBotany,2006,56(3):263-273.

[61]Robredo A,Pérez-López U,Miranda-Apodaca J,etal.Elevated CO2reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery [J].EnvironmentalandExperimentalBotany,2011,71(3):399-408.

[62]Zhang Y H,Zhang G,Liu L Y,etal.The role of calcium in regulating alginate-derived oligosaccharides in nitrogen metabolism ofBrassicacampestrisL.var.TsenetLee[J].JournalofPlantGrowthRegulation,2011,64(2):193-202.

[63]Foyer C H,Valadier M H,Migge A,etal.Drought induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves [J].PlantPhysioogyl,1998,117(1):283-292.

[64]Xu Z Z,Zhou G S.Nitrogen metabolism and photosynthesis inLeymuschinensisin response to long-term soil drought [J].JournalofPlantGrowthRegulation,2006,25(3):252-266.

[65]郭天財(cái),姚戰(zhàn)軍,王晨陽,等.水肥運(yùn)籌對(duì)小麥旗葉光合特性及產(chǎn)量的影響[J].西北植物學(xué)報(bào),2004,24(10):1786-1791.

Guo T C,Yao Z J,Wang C Y,etal.Effects of irrigation and fertilizer application regimes on photosynthetic characteristics of flag leaves and yield traits of wheat [J].ActaBotanicaBoreali-OccidentaliaSinica,2004,24(10):1786-1791.

[66]翟丙年,李生秀.冬小麥水氮配合關(guān)鍵期和虧缺敏感期的確定[J].中國農(nóng)業(yè)科學(xué),2005,38(6):1188-1195.

Zhai B N,Li S X.Study on the key and sensitive stage of winter wheat responses to water and nitrogen coordination [J].ScientiaAgriculturaSinica,2005,38(6):1188-1195.

[67]尹光華,劉作新,李桂芳.遼西半干旱區(qū)春小麥氮磷水耦合產(chǎn)量效應(yīng)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2005,21(1):41-45.

Ying G H,Liu Z X,Li G F.Effect of nitrogen,phosphorus and water coupling on spring wheat yield in semi-arid areas of western Liaoning province [J].TransactionsofTheChineseSocietyofAgriculturalEngineering,2005,21(1):41-45.

[68]王紹華,曹衛(wèi)星,丁艷鋒,等.水氮互作對(duì)水稻氮吸收與利用的影響[J].中國農(nóng)業(yè)科學(xué),2004,37(4):497-501.

Wang S H,Cao W X,Ding Y F,etal.Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice [J].ScientiaAgriculturaSinica,2004,37(4):497-501.

[69]王小燕,于振文.不同施氮量條件下灌溉量對(duì)小麥氮素吸收轉(zhuǎn)運(yùn)和分配的影響[J].中國農(nóng)業(yè)科學(xué),2008,41(10):3015-3024.

Wang X Y,Yu Z W.Effect of irrigation rate on absorption and translocation of nitrogen under different nitrogen fertilizer rate in wheat [J].ScientiaAgriculturaSinica,2008,41(10):3015-3024.

[70]李生秀,李世清.施用氮肥對(duì)提高旱地作物利用土壤水分的作用機(jī)理和效果[J].干旱地區(qū)農(nóng)業(yè)研究,1994,12(1):38-46.

Li S X,Li S Q,Gao Y J.The mechanism and effects of N fertilization in increasing water use efficiency [J].AgriculturalResearchintheAridAreas,1994,12(1):38-46.

[71]陳新紅,劉 凱,王志琴,等.水稻水氮互作效應(yīng)與產(chǎn)量模型研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,34(9):141-148.

Chen X H,Liu K,Wang Z Q,etal.Studies on interactions between soil moisture and nitrogen and yield models in rice [J].JournalofNorthwestSci-TechUniversityofAgricultureandForestry(NaturalScienceEdition),2006,34(9):141-148.

[72]王國驕,張 雯,候立白.水氮配合對(duì)春小麥產(chǎn)量和品質(zhì)的影響[J].耕作與栽培,2005,19(3):24-26.

Wang G J,Zhang W,Hou L B.Effects of water and nitrogen on yield and quality of spring wheat [J].TillageandCultivation,2005,19(3):24-26.

[73]王 維,張建華,楊建昌.水分脅迫對(duì)貪青遲熟水稻莖貯藏碳水化合物代謝及產(chǎn)量的影響[J].作物學(xué)報(bào),2004,30(3):196-204.

Wang W,Zhang J H,Yang J C.Effect of water stress on metabolism of stored carbohydrate of stem and yield in rice grown under unfavorable delayed senescence [J].ActaAgronomicaSinica,2004,30(3):196-204.

[74]沈榮開,王 康,張瑜芳,等.水肥耦合條件下作物產(chǎn)量、水分利用和根系吸氮的試驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2004,30(3):196-204.

Shen R K,Wang K,Zhang Y F.Field test and study on yield,water use and N uptake under varied irrigation and fertilizer in crops [J].TransactionsofTheChineseSocietyofAgriculturalEngineering,2001,17(5):35-38.

[75]康玲玲,魏義長,張景略.水肥條件對(duì)冬小麥生理特性及產(chǎn)量影響的試驗(yàn)研究[J].干旱地區(qū)農(nóng)業(yè)研究,1998,16(4):21-28.

Kang L L,Wei Y C,Zhang J L.Effects of soil moisture and fertilizer on physiological property and yield of winter wheat [J].AgriculturalResearchintheAridAreas,1998,16(4):21-28.

Researche Progress on Water-nitrogen Interaction and Its Effects on Crop Growth and Utilization of Nitrogen

HU Mengyun,MEN Fuyuan,ZHANG Yingjun,SUN Lijing,LIU Qian,LI Qianying,LIU Fushuang,LI Hui

(Institute of Cereal and Oil Crops,Hebei Academy of Agricultural and Forestry Sciences,Shijiazhuang,Heibei 050035,China)

Abstract:Water and fertilizer are the most limiting factors in agricultural production in most parts of the world. At present,the shortage of agricultural water resources and the overuse of fertilizer caused the expansion of pollution. It is more important to reduce the crop irrigation water and improve the utilization of fertilizers to achieve the high and stable yield of crop. This report reviewed the researches in water and nitrogen interaction,effects of water and nitrogen interaction on crop growth and development,photosynthetic characteristic,yield and water and nitrogen coupling on utilization rate of nitrogen in crops,and the regulatory effects of water and nitrogen coupling on acclimating to water deficit. According to the actual demand,reasonable water and fertilizer coupling mode can be established,thereby improving the utilization efficiencies of water and fertilizer.Problems in current research of water and nitrogen interactions are discussed and prospected.

Key words:Water-nitrogen interaction;Growth and development;Nitrogen utilization;Drought stress

中圖分類號(hào):S512.1;S318

文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):1009-1041(2016)03-0332-09

通訊作者:李 輝(E-mail:zwslihui@163.com)

基金項(xiàng)目:國家轉(zhuǎn)基因生物新品種培育重大專項(xiàng)(2015ZX08002-005);河北省自然科學(xué)基金項(xiàng)目(C2013301057);河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系小麥創(chuàng)新團(tuán)隊(duì)項(xiàng)目;河北省應(yīng)用基礎(chǔ)研究計(jì)劃重點(diǎn)基礎(chǔ)研究項(xiàng)目(13966305D)

收稿日期:2015-11-06修回日期:2015-12-08

網(wǎng)絡(luò)出版時(shí)間:2016-03-01

網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160301.1342.022.html

第一作者E-mail:ziren80@163.com

猜你喜歡
干旱生長發(fā)育
基于距平的白城地區(qū)干旱時(shí)間分布特征分析
臨夏地區(qū)干旱特征及干濕氣候區(qū)劃
秸稈覆蓋和保水劑對(duì)烤煙生長發(fā)育的影響
溫度與降水條件對(duì)玉米生長發(fā)育的影響
夏季高溫干旱時(shí)節(jié)高山蔬菜種植管理策略
基于多源衛(wèi)星遙感的長江流域旱情監(jiān)測(cè)研究
基于SPI指數(shù)的農(nóng)作物生長期干旱時(shí)間變化研究