国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Lanthanide(La,Tb,Dy)Complexes with Quinolinyloxy Acetamide Ligand:Crystal Structures and Fluorescence Properties

2016-04-05 08:11:17MAOPanDongYANLingLingWuWeiNaLIUMinQiZHOULiHuaFuSiLian
關(guān)鍵詞:喹啉氧基配位

MAO Pan-DongYAN Ling-Ling*,Wu Wei-Na*,LIU Min-QiZHOU Li-HuaFu Si-Lian

(1Department of Physics and Chemistry,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

(2School of Materials Science and Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

Lanthanide(La,Tb,Dy)Complexes with Quinolinyloxy Acetamide Ligand:Crystal Structures and Fluorescence Properties

MAO Pan-Dong1YAN Ling-Ling*,1Wu Wei-Na*,1LIU Min-Qi2ZHOU Li-Hua2Fu Si-Lian2

(1Department of Physics and Chemistry,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

(2School of Materials Science and Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

Three lanthanide(Ⅱ)complexes,[LaL2(NO3)3]·CH3CN(1),[Ln(L)(NO3)3(H2O)](Ln=Tb(2)and Dy(3)) based on L(L=N-phenyl-2-(5-chloro-quinolin-8-yloxy)acetamide)have been synthesized and characterized by elemental analyses,IR spectra and X-ray diffraction analyses.The results reveal that the La(Ⅱ)ion in complex 1 is surrounded by two tridentate amide ligands with NO2donor set and three bidentate nitrate anions,thus giving distorted icosahedron coordination geometry.By contrast,both complexes 2 and 3 are isostructral with those of the Pr,Nd,Sm,Eu,Gd and Er complexes bearing same ligand.In each complex,the center Ln(Ⅱ)ion with bicapped square antiprism coordination geometry is coordinated by one tridentate L,three bidentate nitrate anions and one water molecule.In addition,in solid state,complexes 2 and 3 could exhibit strong fluorescence emission in the visible region.CCDC:1438578,1;1438579,2;1438580,3.

amide type ligand;quinoline;lanthanide complex;fluorescence;crystal structure

The amide open chain ligands are a well suited type of antenna for lanthanide(Ⅱ)(Ln)ions,because they could shield the encapsulated lanthanide ion from interaction with the surroundings effectively,and thus to achieve strong fluorescent emission of metal ions[1-7].Up to now,a large amount of Eu(Ⅱ)and Tb(Ⅱ) complexes bearing such type of ligands have been widelyinvestigatedprimarilyduetotheirgoodluminescent properties[8-9].Recently,our previous work has demonstrated that the Sm(Ⅱ)and Eu(Ⅱ)complexes withN-phenyl-2-(5-chloro-quinolin-8-yloxl)acetamide exhibit the characteristic emission of the Eu(Ⅱ)and Sm(Ⅱ)ions,respectively[10-11].As a continuation of our research,we report here the structures of the ligands another three Ln(Ⅱ)complexes(Ln=La,Tb and Dy), together with their fluorescence properties in solid state.

1 Experimental

1.1 Materials and measurements

Solvents and starting materials for synthesis were purchasedcommerciallyandusedasreceived. Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra(ν=4 000~400 cm-1) were determined by the KBr pressed disc method on a Bruker V70 FTIR spectrophotometer.The UV spectra wererecordedonaPurkinjeGeneralTU-1800 spectrophotometer.Fluorescencespectrawere determinedonaVarianCARYEclipse spectrophotometer,andinthemeasurementsof emission and excitation spectra the pass width is 5 nm.

1.2 Preparations of complexes 1~3

The title Ln(Ⅱ)complexes weresynthesized according to the literature method[10-11].

1:Colorlessblocks.Anal.Calcd.for C36H29Cl2N8O13La(%):C,43.61;H,2.95;N,11.30. Found(%):C,43.33;H,3.09;N,11.42.FTIR(cm-1): ν(C=O)1 670,ν(C=N)1 582,ν(Ar-O-C)1 174,ν1(NO3)1 500,ν4(NO3)1 283.

2:Colorlessblocks.Anal.Calcd.for C17H15ClN5O12Tb(%):C,30.22;H,2.24;N,10.36. Found(%):C,30.20;H,2.16;N,10.43.FTIR(cm-1): ν(O-H)3403,ν(C=O)1 660,ν(C=N)1 571,ν(Ar-O-C) 1 172,ν1(NO3)1 505,ν4(NO3)1 293,ρ(O-H)879.

3:Colorlessblocks.Anal.Calcd.for C17H15ClN5O12Dy(%):C,30.06;H,2.23;N,10.31. Found(%):C,30.19;H,1.96;N,10.22.FTIR(cm-1): ν(O-H)3 402,ν(C=O)1 664,ν(C=N)1 573,ν(Ar-OC)1168,ν1(NO3)1 503,ν4(NO3)1 289,ρ(O-H)877. 1.3.1X-ray crystallography

The X-ray diffraction measurement for complexes 1~3 were performed on a Bruker SMART APEXⅡCCDdiffractometerequippedwithagraphite monochromatized Mo Kα radiation(λ=0.071 073 nm) by using φ-ω scan mode.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[12].The structures were solved by direct methods and refined by fullmatrixleast-square on F2using the SHELXTL-97 program[13].All nonhydrogen atoms were refined anisotropically.The H atoms for water molecules are located from difference Fourier map and refined with restraints in bond length and thermal parameters.All the other H atoms were positioned geometrically and refined using a riding model.SQUEEZE procedure was applied to deal with the crystal solvent molecules of the complex 1.Details ofthecrystalparameters,datacollectionand refinements for complexes 1~3 are summarized in Table 1.

CCDC:1438578,1;1438579,2;1438580,3.

Table 1Selected crystallographic data for complexes 1~3

Continued Table 1

2 Results and discussion

2.1 Crystal structure of the complexes

Generally,N-phenyl-2-(5-chloro-quinolin-8-yloxy) acetamide ligand coordinates to Ln(Ⅱ)ions with molar ratio of ligand and metal being 1∶1[10-11].By contrast,it forms stable 2∶1 type complex with La(Ⅱ)ion.As shown in Fig.1a,La(Ⅱ)ion in complex 1 is surrounded by two tridentate amide ligands with NO2donor set andthreebidentatenitrateanions,thusgiving distorted icosahedron coordination geometry(Fig.1d). The La-O/N bond lengths are in the range of 0.254 8(4)~0.283 1(4)nm(Table 2),comparable to the La(Ⅱ) complexes with similar donor sets[6-7].The crystal structure of 1 is similar as that of[LaLa2(NO3)3]and [LaLb2(NO3)3]·H2O in our previous work[6-7](La=N,N-diphenyl-2-(quinolin-8-yloxy)acetamide,Lb=N-(naphthalene-1-yl)-2-(quinolin-8-yloxy)acetamide).In the crystal,pairs of intermolecular N-H…O hydrogen bonds between the amide N atoms and adjacent nitrate O atoms link the complexes into chains along c axis(Fig.1e).

Complexes 2(Fig.1b)and 3(Fig.1c)are isostructural and crystallize in the monoclinic,space group P21/c,same as the Pr(Ⅱ),Nd(Ⅱ),Sm(Ⅱ),Eu(Ⅱ),Gd(Ⅱ) and Er(Ⅱ)complexes with same ligand[10-11].The center Ln(Ⅱ)ion with bicapped square antiprism coordination geometry is coordinated by one tridentate L,three bidentate nitrate anions and one water molecule. Similarly,inthecrystalofeachcomplex, intermolecular O-H…O(O12-H12A…O4iiiand O12-H12B…O8iv)and N-H…O(N2-H2A...O3v)hydrogen bonds link the complex into a 2D supramolecular network(Fig.1f,Symmetry codes:iii-x+1,y+1/2,-z+1/2;iv-x+1,y-1/2,-z+1/2;v-x+1,-y,-z.

Table 2Selected bond lengths(nm)in complexes 1~3

Fig.1Molecular structures of complexes 1~3(a~c)shown with 30%probability displacement ellipsoids;(d)Coordination geometry of the center La(Ⅱ)ion in complex 1,atoms shown with 30%probability displacement ellipsoids;(e)Extended chain-like structure along c axis in complex 1 formed by intermolecular N-H…O hydrogen bonds;(f)Extended 2D supramolecular structure in complex 2 formed by intermolecular hydrogen bonds.

Table 3Hydrogen bonds information in complexes 1~3

Continued Table 3

2.2 IR spectra

The spectral regions for all the complexes are moreorlesssimilarduetothesimilarityin coordination modes of the ligand with the metal center.The free ligand L exhibit three absorption bands at 1 682,1 598 and 1 241 cm-1,assigned to ν(C=O),ν(C=N)and ν(C-O-C),respectively[10]. However,in the complexes,such bands shift evidently to lower frequency,indicating that the oxygen atoms of the carbonyl group,quinoline nitrogen atoms and ethereal oxygen atoms take part in coordination to the central Ln(Ⅱ)ion[3-5].Additionally,the general pattern oftheIRspectroscopysupportsthenormal coordination of the bidentate nitrate group[6-7].It is in accordance with the result of the crystal structure study.

2.4 UV spectra

Fig.2UV spectra of the ligand L(a),1(b),2(c)and 3 (d)in the acetone solution at room temperature

The UV spectra of the ligand L and complexes 1~3 in acetone solution(1×10-5mol·L-1)were measured at room temperature(Fig.2).The spectra of L features two main bands located around 240(ε= 304 366 L·mol-1·cm-1)and 272 nm(ε=169 788 L·mol-1·cm-1).The bands could be assigned to characteristic π-π*transitions centered on benzene and quinoline units,respectively[6].Similar bands can be observed in the spectra of 1(241 nm,ε=174 235 L·mol-1· cm-1;273 nm,ε=168 132 L·mol-1·cm-1),2(241 nm, ε=107 529 L·mol-1·cm-1;273 nm,ε=146 195 L·mol-1·cm-1)and 3(242 nm,ε=98 529 L·mol-1·cm-1;273 nm,ε=145 803 L·mol-1·cm-1).However,the hyperchromicities indicate that the ligand L takes part in the coordination in all complexes.

Fig.3Fluorescence emission spectra of the ligand L(a), 1(b),2(c)and 3(d)in solid state at room temperature

2.4 Fluorescence spectra

The fluorescence spectra of the ligand L and complexes 1~3 have been studied in solid state at room temperature.The results show that the emission spectra of the ligand L and complex 1 exhibit similar emission peak at about 400 nm when excited at 310 nm.It also can be seen that the emission intensity of the complex 1 is much higher than that of L,which may be explained from two aspects:first,in the complex 1,the molar ratio of the ligand and La(Ⅱ) ion is 2∶1;second,the coordination of La(Ⅱ)ion may enhancetheπ→π*electrontransitionofthe acetamide ligand[6].By contrast,complexes 2 and 3 show quite different peak at about 500 nm.Thebehavior of Tb(Ⅱ)and Dy(Ⅱ)ions coordinated to the ligand is regarded as that of emissive species resulted from a CHEF effect(chelation enhancement of the fluorescence emission)[7].

[1]Yan Z Z,Hou N,Wang C M.Spectrochim.Acta A,2015, 137:1265-1269

[2]Song X Q,Xing D Y,Lei Y K,et al.Inorg.Chim.Acta, 2013,404:113-122

[3]Wu W N,Tang N,Yan L.Spectrochim.Acta A,2008,71: 1461-1465

[4]Wu W N,Cheng F X,Yan L,et al.J.Coord.Chem., 2008,61:2207-2215

[5]Wu W N,Tang N,Yan L.J.Fluoresc.,2008,18:101-107

[6]ZHANG Zhao-Po(張照坡),WANG Yuan(王元),WU Wei-Na (吳偉娜),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2013,29:2239-2244

[7]YE Xing-Pei(葉行培),CAI Hong-Xin(蔡紅新),WU Wei-Na (吳偉娜),et al.Chinese J.Struct.Chem.(結(jié)構(gòu)化學(xué)), 2014,33:1057-1062

[8]Binnemans K.Coord.Chem.Rev.,2015,295:1-45

[9]Bünzli J-C G.Coord.Chem.Rev.,2015,293-294:19-47

[10]CAI Hong-Xin(蔡紅新).Thesis for the Master of Henan Polytechnic University(河南理工大學(xué)碩士論文).2014.

[11]MAO Pan-Dong(毛盼東),CHEN Liang(陳亮),WU Wei-Na (吳偉娜),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2016,32:336-342

[12]Sheldrick G M.SADABS,University of G?ttingen,Germany, 1996.

[13]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen, Germany,1997.

鑭系元素(La、Tb、Dy)的喹啉氧基乙酰胺配合物的結(jié)構(gòu)及熒光性質(zhì)

毛盼東1閆玲玲*,1吳偉娜*,1劉珉琦2周利華2伏思連2
(1河南理工大學(xué)物理化學(xué)學(xué)院,焦作454000)
(2河南理工大學(xué)材料科學(xué)與工程學(xué)院,焦作454000)

合成并通過單晶衍射表征了3個(gè)稀土配合物[LaL2(NO3)3]·CH3CN(1),[Ln(L)(NO3)3(H2O)](Ln=Tb(2),Dy(3),L=N-苯基-2-(5-氯-8-喹啉氧基)乙酰胺)。在配合物1中,十二配位的La(Ⅱ)離子采取扭曲的二十面體配位構(gòu)型,分別與來自2個(gè)酰胺配體L的4個(gè)氧原子和2個(gè)氮原子,及3個(gè)雙齒配位硝酸根配位。配合物2和3的結(jié)構(gòu)與擁有相同有機(jī)配體的Pr、Nd、Sm、Eu、Gd和Er配合物同構(gòu)。在每個(gè)配合物中,十配位的稀土離子與來自1個(gè)配體L的2個(gè)氧原子和1個(gè)氮原子,3個(gè)雙齒配位硝酸根和1個(gè)水分子配位,擁有扭曲的雙帽四方反棱柱配位構(gòu)型。固態(tài)配合物2和3在可見區(qū)發(fā)射強(qiáng)熒光。

酰胺配體;喹啉;稀土配合物;熒光;晶體結(jié)構(gòu)

O614.33+1;O614.341;O614.342

A

1001-4861(2016)06-1095-06

2015-12-04。收修改稿日期:2016-03-17。

10.11862/CJIC.2016.130

國家自然科學(xué)基金(No.21001040)和河南省教育廳自然科學(xué)基金(No.12B150011,14B150029)資助項(xiàng)目。

*通信聯(lián)系人。E-mail:yll@hpu.edu.cn;wuwn08@hpu.edu.cn;會員登記號:S06N6704M1112。

猜你喜歡
喹啉氧基配位
[Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
德不配位 必有災(zāi)殃
2-(2-甲氧基苯氧基)-1-氯-乙烷的合成
HPLC-Q-TOF/MS法鑒定血水草中的異喹啉類生物堿
中成藥(2017年7期)2017-11-22 07:33:25
喹啉和喹諾酮:優(yōu)秀的抗結(jié)核藥物骨架
兩種乙氧基化技術(shù)及其對醇醚性能的影響
新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
六苯氧基環(huán)三磷腈的合成及其在丙烯酸樹脂中的阻燃應(yīng)用
中國塑料(2015年2期)2015-10-14 05:34:31
HPLC測定5,6,7,4’-四乙酰氧基黃酮的含量
間歇精餾分離喹啉和異喹啉的模擬
久治县| 华亭县| 九江市| 桃源县| 郎溪县| 琼结县| 湖州市| 雅安市| 阿瓦提县| 桃源县| 大关县| 宽城| 浦城县| 孝昌县| 兴宁市| 革吉县| 阿克陶县| 渭源县| 泾川县| 治县。| 九江市| 通辽市| 肃北| 赤水市| 竹溪县| 沛县| 改则县| 牡丹江市| 三都| 绥宁县| 白银市| 济阳县| 甘洛县| 山东省| 海口市| 乌苏市| 车致| 万全县| 荃湾区| 贞丰县| 恩平市|