王 飛, Reza Shahneam
(1.中國(guó)地震局地球物理研究所,北京 100081; 2.北京市地震局,北京100080; 3.美國(guó)地質(zhì)調(diào)查局,美國(guó) 加州 94025)
?
基于振動(dòng)臺(tái)實(shí)驗(yàn)的結(jié)構(gòu)損傷識(shí)別研究①
王飛1,2, Reza Shahneam3
(1.中國(guó)地震局地球物理研究所,北京 100081; 2.北京市地震局,北京100080; 3.美國(guó)地質(zhì)調(diào)查局,美國(guó) 加州 94025)
摘要:選擇美國(guó)加州大學(xué)圣地亞哥分校7層鋼筋混凝土剪力墻足尺結(jié)構(gòu)振動(dòng)臺(tái)實(shí)驗(yàn),開(kāi)展結(jié)構(gòu)損傷識(shí)別研究,實(shí)驗(yàn)采用白噪聲、環(huán)境振動(dòng)和不同強(qiáng)度的地震動(dòng)交替激發(fā),記錄地震動(dòng)激發(fā)實(shí)驗(yàn)前后的結(jié)構(gòu)反應(yīng)?;谠撚涗浻?jì)算和對(duì)比自振頻率和振型曲率的變化、剪切波走時(shí)及其變化和結(jié)構(gòu)層間位移角,分析發(fā)現(xiàn)一層和二層振型曲率較大,走時(shí)較長(zhǎng),走時(shí)變化也較大,現(xiàn)場(chǎng)檢查發(fā)現(xiàn)一層和二層的破壞也較為嚴(yán)重,這些參數(shù)可用于識(shí)別結(jié)構(gòu)損傷程度和定位損傷位置,而自振頻率和層間位移角變化僅可反映出結(jié)構(gòu)損傷程度,難以揭示結(jié)構(gòu)損傷位置。
關(guān)鍵詞:振動(dòng)臺(tái)實(shí)驗(yàn); 損傷識(shí)別; 模態(tài)參數(shù); 等效剪切走時(shí); 層間位移角
0引言
近年來(lái)地震摧毀了許多不同類型的建筑結(jié)構(gòu),因此針對(duì)建筑結(jié)構(gòu)的地震反應(yīng)觀測(cè)研究逐漸引起地震工程學(xué)家的重視,建筑抗震設(shè)計(jì)規(guī)范[1]和許多地方法規(guī)[2]要求重大建筑結(jié)構(gòu)安裝結(jié)構(gòu)地震反應(yīng)觀測(cè)臺(tái)陣。結(jié)構(gòu)地震反應(yīng)觀測(cè)旨在了解和掌握結(jié)構(gòu)體系在強(qiáng)地震作用下的反應(yīng)性狀[3]。一旦獲得結(jié)構(gòu)強(qiáng)震反應(yīng)記錄,就相當(dāng)于對(duì)該結(jié)構(gòu)進(jìn)行了一次原型實(shí)驗(yàn),大量信息可用來(lái)揭示結(jié)構(gòu)的抗震性能,這有助于提高結(jié)構(gòu)抗震設(shè)計(jì)水平,改進(jìn)抗震設(shè)計(jì)標(biāo)準(zhǔn),幫助減輕未來(lái)的地震災(zāi)害[4]。結(jié)構(gòu)地震反應(yīng)記錄還能通過(guò)重建結(jié)構(gòu)地震反應(yīng)的方式來(lái)檢驗(yàn)結(jié)構(gòu)地震反應(yīng)分析中數(shù)值模型或?qū)嶒?yàn)?zāi)P偷目煽啃訹5]。健康建筑結(jié)構(gòu)能有效保障人們生命財(cái)產(chǎn)安全,這就需要對(duì)結(jié)構(gòu)開(kāi)展定期安全性能評(píng)估,尤其是在遭受破壞性地震后,評(píng)估結(jié)果可作為結(jié)構(gòu)使用決策的重要依據(jù)[6]。然而當(dāng)前很多工作都集中在基于設(shè)計(jì)方法的結(jié)構(gòu)抗震能力的理論分析或數(shù)值模擬,很少開(kāi)展基于振動(dòng)臺(tái)實(shí)驗(yàn)的整體結(jié)構(gòu)抗震性能評(píng)價(jià)。
基于振動(dòng)的結(jié)構(gòu)健康監(jiān)測(cè)和損傷識(shí)別是以定量方式評(píng)估結(jié)構(gòu)安全性能的有效工具。結(jié)構(gòu)健康監(jiān)測(cè)通常采用現(xiàn)場(chǎng)無(wú)損探測(cè)和系統(tǒng)特性分析方法,通過(guò)分析時(shí)間域或頻率域中系統(tǒng)特性的變化來(lái)表明體系存在損傷或者抗震性能退化[7]。本研究調(diào)研了過(guò)去幾十年工程專家們發(fā)展的基于振動(dòng)的結(jié)構(gòu)健康監(jiān)測(cè)和損傷識(shí)別方法[8-10]。這些方法中多數(shù)僅通過(guò)某個(gè)結(jié)構(gòu)構(gòu)件或簡(jiǎn)單結(jié)構(gòu)體系的數(shù)值模擬構(gòu)建多個(gè)損傷情景進(jìn)行分析驗(yàn)證。由于結(jié)構(gòu)建模中的不確定性和測(cè)試結(jié)果的簡(jiǎn)化,這種單純基于數(shù)值模型的分析驗(yàn)證并不充分,需通過(guò)實(shí)驗(yàn)或?qū)嶋H記錄分析驗(yàn)證,如果可能,開(kāi)展基于破壞性地震中的現(xiàn)場(chǎng)原型實(shí)驗(yàn)數(shù)據(jù)的分析驗(yàn)證將成為檢驗(yàn)損傷識(shí)別方法的有力工具。盡管當(dāng)前國(guó)內(nèi)外建成了一些結(jié)構(gòu)地震反應(yīng)觀測(cè)臺(tái)陣,但目前很難獲得破壞性地震作用下的數(shù)據(jù)記錄,尚不能用于開(kāi)展損傷識(shí)別的系統(tǒng)研究。因此本工作選擇原型破壞性振動(dòng)臺(tái)實(shí)驗(yàn)來(lái)開(kāi)展結(jié)構(gòu)損傷識(shí)別研究。
1損傷識(shí)別依據(jù)
關(guān)于彈性波理論的有關(guān)研究表明[11-12],系統(tǒng)的剪切模量G和系統(tǒng)內(nèi)剪切波速密切相關(guān),其統(tǒng)計(jì)關(guān)系為:
其中:ρ為材料密度;vS為等效剪切波速。而彈性模量E和剪切模量G之間的關(guān)系為:
式中:μ為泊松比。
系統(tǒng)剛度K是彈性模量E或剪切模量G與質(zhì)量慣性矩的乘積,而在經(jīng)典動(dòng)力學(xué)中,質(zhì)量慣性矩I只跟剛體形狀、剛體自身質(zhì)量分布和慣性轉(zhuǎn)軸的位置有關(guān),與剛體的轉(zhuǎn)動(dòng)狀態(tài)無(wú)關(guān)。其表達(dá)式為:
其中:mi為第i個(gè)質(zhì)量元的質(zhì)量;ri為第i個(gè)質(zhì)量元到慣性轉(zhuǎn)軸的垂直距離。因此體現(xiàn)系統(tǒng)運(yùn)動(dòng)狀態(tài)的剪切波速vS也直接決定著系統(tǒng)剛度。根據(jù)系統(tǒng)自振頻率ω:
式中:K表示系統(tǒng)剛度;M表示系統(tǒng)質(zhì)量。在系統(tǒng)質(zhì)量保持不變的情況下,系統(tǒng)的等效剪切波速vS、系統(tǒng)剛度K和自振頻率ω等特性參數(shù)存在正相關(guān)性,即體系一旦受到損傷,層間位移角將增大,體系的剛度減小,等效剪切波速和自振頻率也相應(yīng)減小。隨著損傷逐漸加重,上述自振特性改變更加顯著。因此結(jié)構(gòu)模態(tài)參數(shù)、剪切波走時(shí)和層間位移角可作為結(jié)構(gòu)損傷識(shí)別參數(shù)用于結(jié)構(gòu)損傷識(shí)別。基于上述原理,開(kāi)展根據(jù)振動(dòng)臺(tái)試驗(yàn)中的記錄數(shù)據(jù)分析出損傷識(shí)別參數(shù)的變化,以確定結(jié)構(gòu)損傷的程度和可能位置的深入分析。
2振動(dòng)臺(tái)實(shí)驗(yàn)
2.1 測(cè)試結(jié)構(gòu)概況
建造某足尺的7層結(jié)構(gòu)的薄片進(jìn)行不同地震輸入下的振動(dòng)測(cè)試,該原型測(cè)試結(jié)構(gòu)如圖1。測(cè)試在加州大學(xué)圣地亞哥分校的高性能室外振動(dòng)臺(tái)上進(jìn)行。測(cè)試的目的在于驗(yàn)證鋼筋混凝土墻體的地震反應(yīng)。
圖1 某足尺7層原型測(cè)試結(jié)構(gòu) Fig.1 The 7-story full-scale test structure
該墻體中的橫向力由基于位移設(shè)計(jì)方法獲得[9]。承重腹墻是該測(cè)試墻體中的主要單元,墻體截面尺寸為3.65 m×0.20 m,可大大提高該測(cè)試結(jié)構(gòu)在振動(dòng)方向的橫向剛度。每一層設(shè)置矩形樓板,尺寸為8.15 m×3.65 m,腹墻單元和樓板四角處有鋼管立柱支撐樓板。一組翼墻和預(yù)應(yīng)力墻為該體系提供了扭轉(zhuǎn)和水平剛度,這兩組墻通過(guò)開(kāi)槽和鋼支撐跟樓板相連,另外還有橫墻用于維持結(jié)構(gòu)在振動(dòng)實(shí)驗(yàn)中的穩(wěn)定性。該測(cè)試結(jié)構(gòu)的總高度約為19.20 m,總重量約為2 450 kN[13]。振動(dòng)臺(tái)和測(cè)試結(jié)構(gòu)及其周圍總共布設(shè)139個(gè)加速度計(jì),88個(gè)位移傳感器,314個(gè)應(yīng)變計(jì)和23個(gè)壓力傳感器。設(shè)置在每一層上的三個(gè)加速度計(jì)記錄結(jié)構(gòu)在振動(dòng)方向的橫向反應(yīng),固定在腹墻上的加速度計(jì)記錄每層中部的反應(yīng),樓板處正交于振動(dòng)方向的兩個(gè)加速度計(jì)記錄該方向的相應(yīng)振動(dòng),兩個(gè)放置在樓板上的加速度計(jì)用于記錄垂直振動(dòng)。所有加速度數(shù)據(jù)的采樣頻率為240 sps。
2.2測(cè)試進(jìn)程
比對(duì)兩組臨床免疫檢驗(yàn)的質(zhì)量以及真受控率、檢驗(yàn)環(huán)境等,采用SPSS 18.0統(tǒng)計(jì)學(xué)軟件對(duì)數(shù)據(jù)進(jìn)行處理,計(jì)量資料以“±s”表示,采用t檢驗(yàn),以P<0.05)為差異有統(tǒng)計(jì)學(xué)意義。
實(shí)驗(yàn)中選擇一系列地震動(dòng)時(shí)程和白噪聲作為振動(dòng)方向的振動(dòng)輸入,其中天然地震動(dòng)時(shí)程為1971年圣費(fèi)南多和1999年北嶺的地震記錄。在實(shí)驗(yàn)過(guò)程中地震動(dòng)輸入峰值不斷增大,使得結(jié)構(gòu)逐漸產(chǎn)生破壞。兩次地震激發(fā)振動(dòng)以后,記錄結(jié)構(gòu)的環(huán)境振動(dòng)反應(yīng)。測(cè)試進(jìn)程的順序如表1所示。
表 1 實(shí)驗(yàn)進(jìn)程的順序
3測(cè)試結(jié)果分析
基于上述的實(shí)驗(yàn)進(jìn)程,加速度計(jì)記錄了全實(shí)驗(yàn)過(guò)程中的結(jié)構(gòu)反應(yīng),這些記錄被用于開(kāi)展結(jié)構(gòu)損傷識(shí)別方法分析。通過(guò)白噪聲實(shí)驗(yàn)計(jì)算出結(jié)構(gòu)的自振頻率和振型,并估算剪切波從該結(jié)構(gòu)基底傳播至頂部的時(shí)間,而層間位移角則根據(jù)四次地震激發(fā)實(shí)驗(yàn)的結(jié)構(gòu)反應(yīng)記錄數(shù)據(jù)得出。結(jié)構(gòu)損傷識(shí)別參數(shù)的變化反映出結(jié)構(gòu)的損傷程度,對(duì)于能夠用于定位損傷的參數(shù),其變化明顯的位置即為結(jié)構(gòu)損傷所在的樓層。
3.1模態(tài)參數(shù)變化
首先從第一次白噪聲測(cè)試數(shù)據(jù)識(shí)別出結(jié)構(gòu)的前三階模態(tài),它們只與無(wú)損傷的結(jié)構(gòu)有關(guān),為后續(xù)比較提供了一系列的基線值。地震激發(fā)實(shí)驗(yàn)以后,利用實(shí)驗(yàn)后的白噪聲數(shù)據(jù)重復(fù)計(jì)算結(jié)構(gòu)模態(tài)識(shí)別參數(shù)。規(guī)準(zhǔn)處理后的頻率識(shí)別結(jié)果列于表2中。隨著結(jié)構(gòu)損傷的不斷加重,每次地震激發(fā)實(shí)驗(yàn)后前三階模態(tài)頻率估算值逐漸減小。分析表明地震1激發(fā)后,結(jié)構(gòu)第一階模態(tài)頻率降低9%,結(jié)構(gòu)構(gòu)件的裂縫不斷發(fā)展使得結(jié)構(gòu)的有效截面剛度減小[13]。隨著裂縫更多更大,結(jié)構(gòu)的有效剛度進(jìn)一步減小,結(jié)構(gòu)自振特性變化非常明顯。地震2和3激發(fā)實(shí)驗(yàn)后,自振頻率規(guī)準(zhǔn)值減小為66%和74%,直到地震4激發(fā)實(shí)驗(yàn)后,結(jié)構(gòu)的自振頻率規(guī)準(zhǔn)值減小到49%。此時(shí)結(jié)構(gòu)的剩余剛度僅僅只有初始剛度的一半。
圖2 第一階模態(tài)的振型曲率隨著地震激發(fā)實(shí)驗(yàn) 順序的變化Fig.2 Changes of the modal curvature with different earthquake test procedure in the first mode
白噪聲實(shí)驗(yàn)振型1估算頻率/Hz規(guī)準(zhǔn)頻率振型2估算頻率/Hz規(guī)準(zhǔn)頻率振型3估算頻率/Hz規(guī)準(zhǔn)頻率11.721.0010.171.0023.571.0031.560.919.840.9724.131.0251.270.748.660.8523.430.9971.140.667.910.7721.110.9090.850.495.100.5015.260.65
模態(tài)分析結(jié)果表明自振頻率的變化可以作為識(shí)別結(jié)構(gòu)是否損傷的有效參數(shù),但不能用來(lái)定位結(jié)構(gòu)損傷。本研究采用結(jié)構(gòu)振型曲率來(lái)定位結(jié)構(gòu)損傷,以作為主導(dǎo)結(jié)構(gòu)振動(dòng)的第一階振型進(jìn)行振型曲率分析,如圖2所示。結(jié)果表明,振型曲率的變化率對(duì)損傷更敏感,且能夠準(zhǔn)確地定位損傷的位置。振型曲率的變化主要集中在一層和二層上,變化值詳見(jiàn)表3。變化結(jié)果與地震激發(fā)強(qiáng)度變化規(guī)律和現(xiàn)場(chǎng)觀測(cè)到的損傷程度一致。
表 3 第一階振型在第二層處振型曲率變化
3.2剪切波走時(shí)
一維波動(dòng)模型可以用來(lái)分析建筑結(jié)構(gòu)的振動(dòng)特性[14]。通過(guò)對(duì)不同樓層記錄的反卷積分析,可以獲得剪切波在結(jié)構(gòu)的走時(shí)和平均等效剪切波速。剪切波在結(jié)構(gòu)某樓層中的走時(shí)主要取決于該樓層的質(zhì)量和剛度,因此根據(jù)結(jié)構(gòu)中的走時(shí)變化也可以識(shí)別結(jié)構(gòu)的損傷。結(jié)構(gòu)某位置上的剛度變化使得該樓層上的走時(shí)變化,說(shuō)明結(jié)構(gòu)該位置上存在損傷[15-16]。同樣可利用每次地震激發(fā)實(shí)驗(yàn)后的白噪聲數(shù)據(jù)來(lái)計(jì)算剪切波走時(shí)。本文將所有樓層上的白噪聲數(shù)據(jù)對(duì)頂層數(shù)據(jù)進(jìn)行反卷積分析,通過(guò)12.5 s的移動(dòng)時(shí)間窗來(lái)計(jì)算走時(shí),如圖3(a)所示。
根據(jù)反卷積干涉法構(gòu)建的波場(chǎng)如圖3(b), 波場(chǎng)中顯示了各層數(shù)據(jù)與頂層數(shù)據(jù)之間的脈沖響應(yīng)函數(shù)。地震波以脈沖方式從一層樓板進(jìn)入該結(jié)構(gòu)向上傳播至頂層,在頂層反射下行并傳播至一層。這種具有明顯的上行波和下行波的波場(chǎng)可用于計(jì)算等效剪切波速。分析表明,通過(guò)該時(shí)間窗計(jì)算出的走時(shí)與其他時(shí)間窗的計(jì)算結(jié)果基本一致,因此可基于該時(shí)間窗方法計(jì)算分層等效剪切波速及其變化。
圖3 用于開(kāi)展反卷積干涉分析和走時(shí)計(jì)算的白噪 聲速度時(shí)程及時(shí)間窗和反卷積干涉波場(chǎng)Fig.3 Velocity time history and time window of the white noise for the deconvolution analysis and travel-times,calcula- tion and the deconvolved interferometric waveforms
圖4 原結(jié)構(gòu)與四次地震激發(fā)實(shí)驗(yàn)后的地震波絕 對(duì)走時(shí)及其走時(shí)變化Fig.4 The absolute travel-time of seismic wave and its change before and after the four earthquake excitations
白噪聲實(shí)驗(yàn)基礎(chǔ)輸入面剪切波走時(shí)絕對(duì)走時(shí)/s變化率(%)10.05726-3(地震1)0.058562.25(地震2)0.062168.67(地震3)0.0657014.79(地震4)0.0827644.5
在結(jié)構(gòu)遭受地震作用后,不單絕對(duì)走時(shí)受到影響,走時(shí)變化也比較明顯[圖4(b)]。四次地震激發(fā)實(shí)驗(yàn)后,走時(shí)變化同樣表現(xiàn)在底部?jī)蓪由?,其中?次地震激發(fā)實(shí)驗(yàn)后基礎(chǔ)輸入面上的走時(shí)變化為0.001 3 s,而在第4次地震激發(fā)實(shí)驗(yàn)后走時(shí)變化為0.025 s,增大為前者的約20倍。由于地震作用水平的不斷增加,結(jié)構(gòu)損傷逐漸加重,走時(shí)變化同樣表現(xiàn)為逐漸增加的趨勢(shì)。剪切波走時(shí)和走時(shí)變化同樣反映出結(jié)構(gòu)在一二層上損傷較上部各層嚴(yán)重,因此可用走時(shí)和走時(shí)變化來(lái)識(shí)別結(jié)構(gòu)的損傷程度并確定結(jié)構(gòu)損傷的位置。
3.3層間位移角
層間位移角是結(jié)構(gòu)設(shè)計(jì)和抗震性能鑒定中的常用參數(shù)。美國(guó)聯(lián)邦法律規(guī)定了結(jié)構(gòu)在地震作用下的4種極限狀態(tài):可以使用、直接入住、生命安全和防止倒塌。根據(jù)FEMA 45014和ASCE 41-615規(guī)定,對(duì)于測(cè)試結(jié)構(gòu),其直接入住、生命安全和防止倒塌三種極限狀態(tài)下的瞬態(tài)層間位移角限值分別為0.5%、1%和2%,這些限值可直接用于判定結(jié)構(gòu)在地震作用下的損傷狀況。本研究中的層間位移角是根據(jù)實(shí)驗(yàn)中的加速度時(shí)程記錄,通過(guò)基線校正和二次積分獲得的層位移時(shí)程得到,將相連樓層的層位移時(shí)程相減除以對(duì)應(yīng)樓層的高度即可得出該層的層間位移角。取最大層間位移角進(jìn)行對(duì)比分析,4次地震激發(fā)后的結(jié)構(gòu)最大層間位移角如圖5所示。在第1次地震激發(fā)實(shí)驗(yàn)后,層間位移角最大值為0.39%,小于0.5%,結(jié)構(gòu)處于直接入住的極限狀態(tài)下。在第2和第3次地震作用下,層間位移角逐漸增大,除一層外,上部各層全部進(jìn)入生命安全的極限狀態(tài)階段,表明此時(shí)該結(jié)構(gòu)不能直接使用,需經(jīng)過(guò)一定的修補(bǔ)或加固后方可使用;結(jié)構(gòu)五層上的層間位移角最大值分別為0.91%和0.96%,接近1%,即將進(jìn)入防倒塌極限狀態(tài)。而第4個(gè)地震激發(fā)實(shí)驗(yàn)后,層間位移角全部超過(guò)了1%,完全進(jìn)入防止倒塌的極限狀態(tài),最大層間位移角為1.7%,并未超限值2%,結(jié)構(gòu)尚未倒塌?,F(xiàn)場(chǎng)檢查同樣表明第四次地震激發(fā)后測(cè)試結(jié)構(gòu)遭受了嚴(yán)重?fù)p傷,但由于其腹墻的存在使得結(jié)構(gòu)并沒(méi)有倒塌。分析表明層間位移角也可用于識(shí)別結(jié)構(gòu)的損傷程度。
圖5 結(jié)構(gòu)不同極限狀態(tài)下的層間位移角限值和 地震激發(fā)實(shí)驗(yàn)后的結(jié)構(gòu)最大層間位移角Fig.5 Limit values inter-story drift ratio for various limit states and the maximum ratios after 4 earthquake excitations
4結(jié)論和展望
本研究基于美國(guó)加州大學(xué)圣地亞哥分校的7層鋼筋混凝土剪力墻結(jié)構(gòu)的原型振動(dòng)實(shí)驗(yàn),檢驗(yàn)了三種方法的有效性。該實(shí)驗(yàn)為基于結(jié)構(gòu)地震反應(yīng)觀測(cè)臺(tái)陣記錄的結(jié)構(gòu)損傷識(shí)別研究提供了強(qiáng)大的數(shù)據(jù)庫(kù)支持和現(xiàn)場(chǎng)檢驗(yàn)對(duì)比平臺(tái)。利用結(jié)構(gòu)上安裝的結(jié)構(gòu)地震反應(yīng)觀測(cè)設(shè)備獲得結(jié)構(gòu)反應(yīng)記錄分析結(jié)構(gòu)的模態(tài)參數(shù)、剪切波走時(shí)和層間位移角等參數(shù),并利用其變化來(lái)綜合判定結(jié)構(gòu)損傷程度及其損傷位置,損傷識(shí)別的結(jié)果和實(shí)驗(yàn)數(shù)據(jù)的對(duì)比表明定性的結(jié)構(gòu)損傷描述與損傷識(shí)別方法給出的定量結(jié)果相同,分析表明上述參數(shù)可用于開(kāi)展結(jié)構(gòu)損傷識(shí)別分析,并設(shè)定了對(duì)應(yīng)于不同損傷狀態(tài)下的損傷識(shí)別參數(shù)的閾值。下一步將挖掘更多的結(jié)構(gòu)損傷識(shí)別參數(shù)并檢驗(yàn)各閾值的合理性,確定更準(zhǔn)確的結(jié)構(gòu)損傷閾值,以此推進(jìn)結(jié)構(gòu)地震反應(yīng)觀測(cè)臺(tái)陣的工程應(yīng)用,為結(jié)構(gòu)抗震設(shè)計(jì)和建筑結(jié)構(gòu)的抗震性能鑒定等工作提供參考。
致謝:感謝Ulusoy Hasan為本研究中使用的損傷識(shí)別方法提供的指導(dǎo)和幫助,同時(shí)也感謝Babak Moaveni為本研究提供的振動(dòng)臺(tái)實(shí)驗(yàn)數(shù)據(jù)。
參考文獻(xiàn)(References)
[1]GB50011-2010,建筑抗震設(shè)計(jì)規(guī)范[S].北京:中國(guó)建筑工業(yè)出版社, 2010.
GB50011-2010,Code for Seismic Design of Buildings[S].Beijing: Building Industry Press of China, 2010. (in Chinese)
[2]北京市地震局. 北京市實(shí)施《中華人民共和國(guó)防震減災(zāi)法》規(guī)定[S].北京, 2013.
Earthquake Administration of Beijing Municipality.Provisions for Implementing Law of China on Protecting Against and Mitigating Earthquake Disasters[S].Beijing,2013. (in Chinese)
[3]謝禮立,于雙久.強(qiáng)震觀測(cè)與分析原理[M].北京:地震出版社,1982.
XIE Li-li,YU Shuang-jiu.Strong Motion Observation and Analyzing Theory[M].Beijing: Seismological Press,1982. (in Chinese)
[4]李鴻晶,朱士云, Mehmet C.強(qiáng)震觀測(cè)建筑結(jié)構(gòu)的地震反應(yīng)分析[J].地震工程與工程振動(dòng),2003,23(6): 31-36.
LI Hong-jing,ZHU Shi-yun, Mehmet C.Seismic Response Analysis of an Instrumented Building Structure[J].Earthquake Engineering and Engineering Vibration,2003,23(6):31-36.(in Chinese)
[5]Mehmet C. Current Practice and Guidelines for USGS Instrumentation of Buildings Including Federal Buildings[R]//Prepared for 2001 Workshop on Structural Instrumentation for Consortium of Organizations for Strong-motion Observation Systems.2001.
[6]鄭山鎖,田進(jìn),韓言召,等.考慮銹蝕的鋼結(jié)構(gòu)地震易損性分析[J].地震工程學(xué)報(bào),2014,36(1):1-6.
ZHENG Shan-suo,TIAN Jin, HAN Yan-zhao,et al.Steel Structure Seismic Vulnerability Analysis Considering Steel Corrosion[J].China Earthquake Engineering Journal,2014,36(1):1-6. (in Chinese)
[7]鄭山鎖,代曠宇,孫龍飛,等.鋼框架結(jié)構(gòu)的地震損傷研究[J].地震工程學(xué)報(bào),2015,37(2):290-297.
ZHENG Shan-suo,DAI Kuang-yu,SUN Long-fei,et al.Research on the Seismic Damage of Steel Frame Structure[J].China Earthquake Engineering Journal,2015,37(2):290-297. (in Chinese)
[8]Carden E P,Fanning P.Vibration Based Condition Monitoring: A Review[J].Structural Health Monitoring,2004,3(4):355-377.
[9]Doebling S W,Farrar C R,Prime M B,et al.Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: a Literature Review[R].Los Alamos National Laboratory,Los Alamos,NM,1996.
[10]Sohn H,Farrar C R,Hemez F M,et al.A Review of Structural Health Monitoring Literature:1996-2001[R].Los Alamos National Laboratory,Los Alamos,NM,2003.
[11]Schneider J A,Hoyos L,Mayne P W,et al.Field and laboratory Measurements of Dynamic Shear Modulus of Piedmont Residual Soils[C]//Behavioral Characteristics of Residual Soils,GSP92,American Society of Civil Engineers,Reston,VA.1999.
[12]Suleyman K,Yalcin M.A Simple Soil-structure Interaction Model[J].Applied Mathematical Modelling,2000,24:607-635.
[13]Panagiotou M,Restrepo J I,Conte J P.Shake-table Test of 7-Story Building Slice. Phase I:Rectangular Wall[J].Journal of Structural Engineering,2011,137(6):691-704.
[14]Snieder R,Safak E.Extracting the Building Response Using Seismic Interferometry:Theory and Application to the Millikan Library in Pasadena, California[J].Bulletin of the Seismological Society of America,2006,96(2):586-598.
[15]Todorovska M I,Trifunac M D.Impulse Response Analysis of the Van Nuys 7-story Hotel during 11 Earthquakes and Earthquake Damage Identification[J].Structural Control and Health Monitoring,2008,15(1):90-116.
[16]Todorovska M I,Trifunac M D.Earthquake Damage Identification in the Imperial County Services Building-I:The Data and Time-frequency Analysis[J].Soil Dynamics and Earthquake Engineering,2007,27(6):564-576.
Structural Damage Identification Based on Shaking Table Tests
WANG Fei1, 2, REZA Shahneam3
(1.InstituteofGeophysics,CEA,Beijing100081,China;2.EarthquakeAdministrationofBeijingMunicipalityBeijing100080,China; 3.U.S.GeologicalSurvey,California94025,USA)
Abstract:In this study, we chose high-performance shaking-table tests of a full-scale seven-story reinforced-concrete shear wall structure at the University of California, San Diego to test this method with respect to damage identification. We alternately tested the structure under the excitations of white noise, the environment, and nine earthquakes. For each case, we scaled the amplitudes of the input ground motions to various levels. We recorded the acceleration responses before and after the earthquake excitations with seismometers located on the seven floors. We determined the vibration characteristics for each earthquake excitation by analyzing the acceleration responses mentioned above. These characteristics include the modal information, the shear-wave propagation characteristics, and the inter-story drift ratio. We estimated the modal frequencies of the first three modes from the recordings when white noise was first applied to the building, and considered these as the criterion. The subsequent modal frequencies were then normalized and compared with this criterion. The normalized frequencies diminished gradually with the load case tests and the normalized frequency reduced by 51 percent for the first mode. The reduction in the modal characteristics indicates that crevices develop as the amplitude of the input ground motions increase, and thereby decrease the rigidity. Lower rigidity suggests that damage throughout the building has been aggravated. However, changes in modal frequencies cannot be used to locate damage. Mode shape curvatures of the building were similarly applied to identify the building damage. Test results demonstrate that the mode shape curvatures increase significantly with the test process and the main changes were concentrated on the second floor. After the excitations of earthquakes 1, 2, 3, and 4, the curvature values were 0.214, 1.214, 7.101, and 9.641, respectively. Therefore, we conclude that the damage on the second floor was more severe. Subsequently, we used a one-dimensional shear-wave propagation model to form the virtual waveform by deconvolving the recordings on each floor with the signal on the seventh floor. This waveform has a wave equation that is identical with that of a physical waveform and reflects the propagation characteristics of the shear wave in the building. Upward traveling and downward traveling waves are recognized in the virtual waveform. The travel time of the shear waves is inferred from the upward and downward traveling waves. At the same time, we obtained the changes in the travel time. The travel time and its changes both increase with the amplitude of the input ground motions. The travel change after the earthquake-4 excitation rose by 44.5 percent on the first floor. The travel time and its changes suggest that the lower two floors were more damaged than the upper floors, and are appropriate for damage identification as well. Finally, we computed the inter-story drift ratio and compared the results with the response after the excitations of the four earthquakes. The inter-story drift ratio increases after the input ground motions and breaks through the limit values of immediate occupancy of 0.5 percent and life safety of 1.0 percent for a reinforced concrete building. After excitation by earthquake 4, the drift ratio approaches the limit value of collapse prevention of 2.0 percent. Our analysis indicates that the parameters described above are sufficient to identify the damage.
Key words:shaking table test; damage identification; modal parameters; equivalent travel time of shear wave; inter-story drift ratio
DOI:10.3969/j.issn.1000-0844.2016.01.0129
中圖分類號(hào):TU317
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-0844(2016)01-0129-07
作者簡(jiǎn)介:王飛(1979-),男,副研究員,碩士,主要從事結(jié)構(gòu)地震反應(yīng)觀測(cè)研究。E-mail: wangfei@bjseis.gov.cn。
基金項(xiàng)目:中國(guó)地震局青年科技骨干人才項(xiàng)目(201204190030)
收稿日期:①2015-01-05