韓婭新,張成明,陳雪蘭,李硯飛,岳瑞雪,姜 立,李十中※(1.清華大學(xué)核能與新能源技術(shù)研究院,北京100084;2.北京市生物燃料工程技術(shù)研究中心,北京100084;.青縣新能源辦公室,滄州062650;4.江蘇徐淮地區(qū)徐州農(nóng)業(yè)科學(xué)研究所,徐州221000;5.中國農(nóng)業(yè)科學(xué)院甘薯研究所,徐州221000)
?
不同農(nóng)業(yè)有機(jī)廢棄物產(chǎn)甲烷特性比較
韓婭新1,2,張成明1,2,陳雪蘭1,2,李硯飛3,岳瑞雪4,5,姜立1,2,李十中1,2※
(1.清華大學(xué)核能與新能源技術(shù)研究院,北京100084;2.北京市生物燃料工程技術(shù)研究中心,北京100084;3.青縣新能源辦公室,滄州062650;4.江蘇徐淮地區(qū)徐州農(nóng)業(yè)科學(xué)研究所,徐州221000;5.中國農(nóng)業(yè)科學(xué)院甘薯研究所,徐州221000)
摘要:為評(píng)估不同物料相同發(fā)酵條件下的產(chǎn)沼氣特性,該文研究了玉米秸稈、小麥秸稈、水稻秸稈、香蕉秸稈、雞糞、牛糞和豬糞7種原料的基本特性及發(fā)酵情況。元素分析結(jié)果表明7種原料均不適宜直接發(fā)酵,且糞便原料的理論產(chǎn)氣潛力優(yōu)于纖維質(zhì)原料。組分分析表明,纖維質(zhì)原料中香蕉秸稈的可降解組分含量最高,達(dá)76.13%,糞便原料中雞糞的易降解有機(jī)物含量最高,為59.72%。發(fā)酵試驗(yàn)結(jié)果表明,香蕉秸稈和雞糞的甲烷產(chǎn)率分別為186.10和224.85 mL/g,BDA(biodegradability)分別為41.42%和33.28%,消化時(shí)間(T90)分別為9.5和7 d,為兩類原料中產(chǎn)氣潛力最佳的原料?;谠吕塾?jì)甲烷產(chǎn)量和Gompertz模擬結(jié)果,雞糞和香蕉秸稈降解速率快,累計(jì)產(chǎn)氣量高,分別達(dá)867.28 mL/g和528.92 mL/g。結(jié)果表明雞糞和香蕉秸稈最適合作為沼氣發(fā)酵的原料。
關(guān)鍵詞:農(nóng)業(yè);秸稈;糞;農(nóng)業(yè)廢棄物,產(chǎn)甲烷潛力,生物降解性,消化時(shí)間
韓婭新,張成明,陳雪蘭,李硯飛,岳瑞雪,姜立,李十中.不同農(nóng)業(yè)有機(jī)廢棄物產(chǎn)甲烷特性比較[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(01):258-264.doi:10.11975/j.issn.1002-6819.2016.01.036 http://www.tcsae.org
Han Yaxin,Zhang Chengming,Chen Xuelan,Li Yanfei,Yue Ruixue,Jiang Li,Li Shizhong.Methaneproductionperformancecomparison ofdifferentagriculturalresidues[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(01): 258-264.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.036 http://www.tcsae.org
隨著化石能源不斷枯竭及環(huán)境日益惡化,清潔可再生能源的開發(fā)利用受到了全世界的關(guān)注。中國是農(nóng)業(yè)大國,每年產(chǎn)生大量的農(nóng)業(yè)有機(jī)廢棄物。根據(jù)調(diào)查研究,2009年全國農(nóng)作物秸稈理論資源量為8.20億t,禽畜糞便排放量達(dá)32.64億t[1-2]。作物秸稈及禽畜糞便的不合理處置,如秸稈露天焚燒和糞便任意堆放,導(dǎo)致了嚴(yán)重的環(huán)境污染,其危害甚至超過了工業(yè)和生活污染[3]。大量學(xué)者對(duì)這些廢棄物的資源化利用展開了研究,如利用秸稈制備可燃?xì)?、顆粒燃料、纖維素乙醇、生物沼氣等,對(duì)禽畜糞便進(jìn)行堆肥處理、厭氧消化,或進(jìn)行有機(jī)肥生產(chǎn)等[4]。在眾多處理方法中,厭氧消化處理具有良好的能量產(chǎn)出投入比(28∶1),且可以有效實(shí)現(xiàn)廢棄物的減量化,被認(rèn)為是最有潛力的處理方式之一[5]。利用農(nóng)業(yè)有機(jī)廢棄物進(jìn)行沼氣制備也符合我國的發(fā)展戰(zhàn)略。“十二五”規(guī)劃中要求大力發(fā)展沼氣行業(yè),加強(qiáng)農(nóng)林廢棄物及養(yǎng)殖廢棄物等生物質(zhì)能的利用。根據(jù)規(guī)劃要求,到2015年中國生物燃?xì)猱a(chǎn)量將達(dá)到220億m3/a[6]。
物料甲烷生產(chǎn)潛力是選擇甲烷生產(chǎn)原料時(shí)一個(gè)重要參數(shù),根據(jù)測(cè)定方法不同可以分為理論產(chǎn)甲烷潛力(theoretical methane potential,TMP)和實(shí)際產(chǎn)甲烷潛力(biochemical methane potential,BMP)。前者通過測(cè)定底物化學(xué)需氧量(chemical oxygen demand, COD)、元素組成或有機(jī)組分,并結(jié)合公式來計(jì)算[7];后者則通過發(fā)酵試驗(yàn)來測(cè)定。在底物一定的情況下,TMP測(cè)定結(jié)果較為接近;但是,BMP測(cè)定因?qū)嶒?yàn)條件不同,獲得的結(jié)果相差較大。BMP測(cè)定方法首先由Owen等[8]提出,并對(duì)接種比例、底物添加量、粉碎度、總產(chǎn)氣量控制、發(fā)酵瓶的液空比等參數(shù)進(jìn)行了確定,以最大程度上減少不同實(shí)驗(yàn)者之間造成的測(cè)定誤差。隨后,Chyoweth等[9]對(duì)該體系進(jìn)行了優(yōu)化,認(rèn)為接種比為2∶1時(shí)(基于揮發(fā)性固體含量比)可縮短測(cè)定時(shí)間,并對(duì)測(cè)定結(jié)果沒有影響。但在實(shí)際研究中,不同學(xué)者測(cè)定BMP時(shí),試驗(yàn)條件差異較大,導(dǎo)致即使同一類原料所得到的BMP相差也十分顯著。例如,Li等[10]研究了玉米秸稈和雞糞在不同發(fā)酵狀態(tài)下聯(lián)合發(fā)酵的產(chǎn)氣率,結(jié)果表明,濕法發(fā)酵時(shí)最高產(chǎn)氣率為218.8 mL/g,半固態(tài)發(fā)酵時(shí)產(chǎn)氣率為208.2 mL/g,而固態(tài)發(fā)酵時(shí)產(chǎn)氣率僅為138.6 mL/ g。Cheng等[11]在不同接種比條件下對(duì)棉花稈的BMP進(jìn)行了測(cè)定,發(fā)現(xiàn)不同接種比時(shí)(2∶1~6∶1),棉花稈的BMP介于113~180 mL/g之間。同樣以水稻秸稈為底物,Dehghani等測(cè)得的BMP為130 mL/g[12],而Teghammar等測(cè)定的結(jié)果為30 mL/g[13]。由此可見,BMP受試驗(yàn)條件影響較大,這樣導(dǎo)致不同學(xué)者報(bào)道的實(shí)驗(yàn)結(jié)果不具可比性。
為了獲得可以橫向比較的試驗(yàn)數(shù)據(jù),本文選擇了中國不同地域具有代表性的玉米秸稈、小麥秸稈、水稻秸稈和香蕉秸稈4種秸稈,以及雞糞、牛糞和豬糞3種糞便。分別考察了其元素及主要成分組成,計(jì)算并通過試驗(yàn)分別獲得其TMP和BMP,并對(duì)各底物甲烷生產(chǎn)性能和相關(guān)動(dòng)力學(xué)參數(shù)進(jìn)行了研究,以期為實(shí)際生產(chǎn)中原料的選擇提供依據(jù)。
1.1試驗(yàn)原料
秸稈選擇玉米秸稈、小麥秸稈、水稻秸稈及香蕉秸稈。秸稈自然風(fēng)干后,粉碎至40目以下,保存?zhèn)溆?。糞便類原料選取牛糞、豬糞及雞糞3種,去除石子、木棍、雜草及雞毛等雜物,風(fēng)干后密封備用。接種物取自北京市高碑店污水處理廠二級(jí)厭氧消化罐,中溫絮狀污泥,最適溫度為37℃。
1.2試驗(yàn)方法
1.2.1試驗(yàn)裝置
以500 mL血清瓶作為厭氧發(fā)酵反應(yīng)器,發(fā)酵體積400 mL,置于水浴鍋中,控制溫度為(37±1)℃。產(chǎn)生的沼氣經(jīng)2 mol/L NaOH溶液吸收酸性氣體,得到的即為甲烷,累積產(chǎn)量通過排水法測(cè)定。
1.2.2BMP分析
發(fā)酵體系總固體含量(total solid,TS)為7%,接種物與原料揮發(fā)性固體(volatile solid,VS)比2∶1,發(fā)酵溫度(37± 1)℃。向體系中加入適量NH4Cl和NaHCO3,調(diào)節(jié)體系C/N比和堿度分別為25和3000 mg/L(以CaCO3計(jì))。對(duì)照組只添加種泥和水,每組3個(gè)平行。
1.2.3分析方法
TS測(cè)定采用105℃烘干至恒重法,VS通過樣品600℃灼燒至恒重法測(cè)定。C、H、O、N和S元素含量由煤炭科學(xué)研究總院北京煤化工研究分院測(cè)定[14-15]。秸稈原料中纖維素、半纖維素、木質(zhì)素和灰分含量根據(jù)標(biāo)準(zhǔn)方法進(jìn)行測(cè)定[16]。糞便類樣品中脂肪通過酸解法測(cè)定[17],蛋白質(zhì)含量通過總有機(jī)氮含量乘以系數(shù)6.25計(jì)算得到[18]。糞便原料中結(jié)構(gòu)性碳水化合物(structural carbohydrates, SCD,包括纖維素、半纖維素和木質(zhì)素)含量通過中性洗滌纖維、酸性洗滌纖維和酸性洗滌木素的測(cè)定得到[10]。非結(jié)構(gòu)性碳水化合物(non-structural carbohydrates,NSCD)則通過糞便中揮發(fā)性固體含量減去脂肪、蛋白質(zhì)和結(jié)構(gòu)性碳水化合物含量計(jì)算得到[10]?;谟袡C(jī)質(zhì)厭氧消化轉(zhuǎn)化方程式(1)和原料中C、H、O、N元素含量,可利用公式(1)計(jì)算得TMP[19]。
根據(jù)公式(2)得到不同底物的有機(jī)質(zhì)生物可降解性(biodegradability, BDA)[20]。
根據(jù)BMP數(shù)據(jù)對(duì)產(chǎn)氣過程進(jìn)行數(shù)學(xué)擬合,采用Gompertz方程,如公式(3)所示。
式中P表示預(yù)期甲烷總產(chǎn)量,mL/g;γ表示最終甲烷產(chǎn)量,mL/g;K表示反應(yīng)速率常數(shù),mL/(g·d);λ表示遲滯時(shí)間,d;t表示試驗(yàn)時(shí)間,d。
利用可決系數(shù)R2對(duì)擬合進(jìn)行評(píng)估,公示如(4)所示。
2.1物料基本特性分析及理論產(chǎn)氣量
所選擇7種原料中秸稈類原料的VS含量較高,介于91.47%~93.53%;而糞便類原料的VS組分相對(duì)較少,介于42.98%至57.86%之間,這可能與畜禽的飼養(yǎng)方式及糞便收集方式有關(guān),基本特性如表1所示。各原料硫元素含量都很少,可以為厭氧微生物的生長提供必要的硫元素,并可以避免硫酸鹽還原菌與產(chǎn)甲烷菌產(chǎn)生底物競爭以及硫酸鹽還原產(chǎn)物(硫化氫)大量存在時(shí)對(duì)厭氧微生物的毒性作用[21]。
甲烷潛力有多種表達(dá)方式,通常計(jì)為基于COD、TS 和VS的產(chǎn)氣量。為避免底物中沙土等無機(jī)物對(duì)測(cè)定結(jié)果的影響并直接反應(yīng)底物中有機(jī)成分(VS)的產(chǎn)氣潛力,本文采用以VS計(jì)的甲烷潛力(表1)。如表1所示,秸稈類原料的TMP相差不大,其中水稻秸稈的TMP最高,為523.21 mL/g,香蕉秸稈的TMP最低,為449.25 mL/g。糞便類原料的TMP相差較大,但均顯著高于秸稈類原料的TMP。其中豬糞TMP最高,為805.98 mL/g,雞糞TMP最低,為676.09 mL/g。從TMP上看,糞便的產(chǎn)氣潛力要優(yōu)于秸稈類原料,更適合用于沼氣生產(chǎn)。需要指出的是,由于飼養(yǎng)方式和收集方式的影響,糞便類原料中含有較多的砂土等無機(jī)物,這要求在采用液態(tài)或低濃度底物發(fā)酵時(shí),需要對(duì)原料進(jìn)行嚴(yán)格的除沙處理。否則,在長期運(yùn)行條件下,沙土?xí)饾u沉積在反應(yīng)器底部,造成有效反應(yīng)體積減少,產(chǎn)氣率下降,甚至?xí)斐晒艿蓝氯?/p>
一般認(rèn)為厭氧發(fā)酵的最佳C/N比在20到30之間[22-23]。在所測(cè)底物中,除玉米秸稈的C/N比(31.88)接近最適宜范圍外,其它纖維質(zhì)原料的C/N比均遠(yuǎn)高于最優(yōu)范圍,在實(shí)際生產(chǎn)過程中宜補(bǔ)充氮源,以促進(jìn)微生物代謝。糞便類原料中蛋白質(zhì)或者尿素含量較高,C/N比遠(yuǎn)低于最優(yōu)范圍,同樣不適宜作為單一原料進(jìn)行厭氧消化。而且,大量蛋白質(zhì)或者尿素會(huì)在厭氧消化過程中被降解轉(zhuǎn)化為氨氮,有可能對(duì)厭氧消化過程產(chǎn)生氨抑制[21]。尤其是在高底物濃度或固態(tài)發(fā)酵條件下,這種潛在的氨抑制需要引起注意。
2.2原料主要組分分析
纖維質(zhì)原料主要由纖維素、半纖維素和木質(zhì)素構(gòu)成,結(jié)構(gòu)和含量可隨物種、生長階段和組織器官不同而有明顯區(qū)別[24]。植物中木質(zhì)素通常和半纖維素連接,形成木素-碳水化合物復(fù)合體(lignin-carbohydrate complexe, LCC),將纖維素包裹在內(nèi),防止酶及微生物對(duì)纖維素的降解。通常認(rèn)為,纖維質(zhì)原料中纖維素和半纖維素可被微生物降解,而木質(zhì)素則不能被厭氧消化過程中的微生物轉(zhuǎn)化為沼氣[25-26]。
根據(jù)生物學(xué)特征,可將植物可分為草本、禾本和木本植物,各類原料均可以用于沼氣發(fā)酵。本研究選擇的試驗(yàn)對(duì)象分別屬于禾本植物(玉米、小麥和水稻)和草本(香蕉),各原料主要組分含量如表2所示。禾本植物秸稈間組分含量差異較小,纖維素、半纖維素、木質(zhì)素和灰分的含量分別為28.80%~33.65%、15.02%~18.41%、20.48%~23.05%和7.44%~8.53%。香蕉秸稈與其它作物秸稈在組分含量上有顯著差異,含有較多纖維素(48.67%)和較少的半纖維素(10.90%)、木質(zhì)素(17.40%)和灰分(6.47%),其纖維素含量分別比玉米秸稈、小麥秸稈和水稻秸稈分別高44.64%、68.99%和58.59%。木本植物的木質(zhì)素含量一般高于禾本和草本植物,最高可達(dá)48%,在針葉木中含量為25%~35%,闊葉木中含量為20%~25%[27]。使用這類原料,通常為木屑等林業(yè)廢棄物,進(jìn)行沼氣生產(chǎn)時(shí)需要進(jìn)行預(yù)處理以破壞木質(zhì)素對(duì)纖維素及半纖維素的保護(hù)。通常認(rèn)為秸稈原料中除木質(zhì)素和灰分外,均可被厭氧微生物轉(zhuǎn)化為沼氣。據(jù)此計(jì)算,在本研究調(diào)查的4種秸稈中,香蕉秸稈的可降解組分最高,為76.13%。此外,香蕉桿中木質(zhì)素和灰分含量最低,意味著LCC對(duì)纖維素的包裹作用較弱,因而可能會(huì)具有更好的產(chǎn)甲烷性能。
根據(jù)不同組分降解的難易程度,可將糞便中的成分分為易降解有機(jī)物和難降解有機(jī)物,前者包括蛋白質(zhì)、脂肪和NSCD等[20,28];后者主要指結(jié)構(gòu)性碳水化合物,包括纖維素、半纖維素、木質(zhì)素等。
表2 纖維質(zhì)原料的主要組分分析Table 2 Main components of lignocellulosic materials
如表3所示,糞便類底物中易降解組分含量由高到低依次為雞糞(59.73%)、豬糞(47.08%)和牛糞(39.49%)。雞糞中蛋白質(zhì)含量最高,且顯著高于豬糞和牛糞中的蛋白質(zhì)含量,占易降解組分的64.17%。豬糞中脂肪含量(11.18%)顯著高于其它2種原料。牛糞中易降解組分含量最低(39.49%),而結(jié)構(gòu)性碳水化合物含量最高(60.52%)。糞便原料中蛋白質(zhì)含量普遍較高,與已有報(bào)道較為相符(15.01%~45.7%)[10,28-29]。蛋白質(zhì)代謝產(chǎn)物氨氮是厭氧消化過程中常見的抑制因子,可通過改變微生物胞內(nèi)pH、增加細(xì)胞維持能量或抑制特定酶活對(duì)甲烷生成造成抑制[30]。因此,糞便類原料發(fā)酵時(shí)應(yīng)注意調(diào)節(jié)有機(jī)負(fù)荷、控制反應(yīng)pH或添加Ca2+、Mg2+等離子以減少潛在的氨氮抑制。
盡管雞糞的TMP是3種糞便中最低的,但由于其易降解組分組分含量最高,意味著其沼氣發(fā)酵性能會(huì)優(yōu)于另外2種原料。此外,根據(jù)不同原料組分特性,可采用相應(yīng)措施以提升原料的產(chǎn)氣性能。以雞糞為例,在發(fā)酵過程中添加蛋白酶,或者有目的地富集可產(chǎn)蛋白水解酶的微生物均有望提升雞糞的產(chǎn)氣性能。
表3 豬糞、雞糞和牛糞中主要組分分析Table 3 Main components of swine, chicken and cow manure
2.3各原料產(chǎn)氣性能分析
在發(fā)酵過程中,4種秸稈原料均出現(xiàn)2~3個(gè)產(chǎn)氣高峰,與已有報(bào)道保持一致[31],見圖1a。產(chǎn)氣高峰分別出現(xiàn)在第1、3和6~8 d(水稻秸稈僅在第1、3天出現(xiàn)2個(gè)產(chǎn)氣高峰)。試驗(yàn)中秸稈粉碎粒度較小(40目)且接種比較高(2∶1)使得試驗(yàn)中未觀察到延滯期。各原料第1個(gè)產(chǎn)氣高峰數(shù)值差異較小,在130~145 mL/d之間。但香蕉秸稈的第2、3個(gè)產(chǎn)氣高峰顯著高于另外3種原料,為其平均值的2.41和2.23倍。這應(yīng)該是由于香蕉秸稈中半纖維及木質(zhì)素含量較少,減少了LCC對(duì)纖維素的包裹作用,使得酶及厭氧消化微生物對(duì)其降解速率較快。而且,香蕉秸桿的甲烷累積產(chǎn)量也明顯高于另外3種原料(3者之間數(shù)值差異較小,介于126.55~142.68 mL/g),達(dá)到186.10 mL/ g,是另外3種原料平均值的1.37倍,見圖1b。數(shù)據(jù)表明,香蕉秸稈比另外3種秸稈原料更適合作為沼氣生產(chǎn)原料。
圖1 纖維質(zhì)原料的日甲烷產(chǎn)量和甲烷產(chǎn)率Fig.1 Daily and methane production of lignocellulosic substrates
糞便原料的厭氧消化過程中,均出現(xiàn)2個(gè)明顯的產(chǎn)氣高峰,分別出現(xiàn)在第2和第6天。從最高日產(chǎn)氣及累積產(chǎn)氣量上看,雞糞的產(chǎn)氣性能明顯優(yōu)于豬糞及牛糞,如圖2所示。雞糞的最高日產(chǎn)量為236.67 mL/d,分別為豬糞和牛糞的1.57倍(150.78 mL/d)和4.12倍(57.50 mL/d);雞糞的累積產(chǎn)氣量為224.85 mL/g,分別為豬糞和牛糞的1.85倍和2.81倍。糞便類原料的產(chǎn)氣性能與其主要成分組成保持一致,即,所含易降解成分越多,其產(chǎn)氣性能越好。由于雞糞產(chǎn)氣速率較快,這意味著在高濃度發(fā)酵條件下,其發(fā)生酸化的風(fēng)險(xiǎn)也越大。此外,由于糞便中含有大量來源于飼料添加劑的有機(jī)砷、銅、鋅等元素,及過量使用的獸藥和抗生素,會(huì)一定程度上抑制產(chǎn)甲烷微生物活性[21, 30, 32],實(shí)際發(fā)酵過程中應(yīng)采取相應(yīng)措施,以排除抑制并改善產(chǎn)氣性能。
圖2 糞便原料的日甲烷產(chǎn)量和甲累積產(chǎn)量Fig.2 Daily and cumulative methane production of manures
2.4生物可降解性(biodegradability,BDA)及消化時(shí)間(T90)
BDA可以反應(yīng)厭氧消化過程中底物中的有機(jī)物被降解轉(zhuǎn)化成甲烷的能力,是評(píng)價(jià)原料甲烷轉(zhuǎn)化率的一項(xiàng)重要指標(biāo)[18],結(jié)果如圖3a所示??傮w上看,秸稈類原料略優(yōu)于糞便類原料。其中,香蕉秸稈的生物可降解性最高,為41.42%;玉米秸稈、小麥秸稈和水稻秸稈的BDA接近,分別為25.26%、27.37%和26.32%。糞便類原料中,雞糞、豬糞和牛糞的BDA分別為33.28%、15.98%和10.36%,該結(jié)果與Matulaitis得出的結(jié)論一致,即糞便原料的生物可降解性為雞糞>豬糞>牛糞[18]。
消化時(shí)間也是原料生物消化性能的一項(xiàng)重要指標(biāo),對(duì)于工業(yè)生產(chǎn)意義重大。本研究中將各原料產(chǎn)生甲烷總產(chǎn)量90%所用的時(shí)間定義為T90。消化時(shí)間短,意味著在同樣產(chǎn)氣量條件下,生產(chǎn)效率更高、反應(yīng)器處理量更大,進(jìn)而可以獲得更好的經(jīng)濟(jì)效益[33]。結(jié)果表明,雞糞的消化時(shí)間最短,為7 d。玉米和小麥秸稈的發(fā)酵周期最長,達(dá)到15 d。水稻秸稈、香蕉秸稈、牛糞和豬糞的消化時(shí)間分別為11、9.5、9和10 d。在實(shí)際生產(chǎn)中,秸稈類原料的厭氧消化周期長達(dá)一個(gè)月或更長時(shí)間,而糞便類原料的消化時(shí)間相對(duì)較短。本研究中消化時(shí)間整體較短是因?yàn)樵系姆鬯槌潭雀?,并采用高接種比造成的。整體而言,糞便原料的消化時(shí)間比秸稈原料短,說明因?yàn)榧S便原料中有機(jī)物更容易被微生物降解,這與原料組分分析的結(jié)果一致(表3)。
為了橫向比較所有原料的產(chǎn)氣性能,根據(jù)各原料的消化時(shí)間及甲烷產(chǎn)率,可得到相同發(fā)酵時(shí)間內(nèi)(30 d)的累積甲烷產(chǎn)率,結(jié)果如圖3b所示。雞糞由于甲烷產(chǎn)率高且消化時(shí)間短,因此累積甲烷產(chǎn)率遠(yuǎn)高于其他原料,達(dá)867.28 mL/g。其次是香蕉秸稈,累積甲烷產(chǎn)率為528.92mL/g。其他各原料的累積甲烷產(chǎn)率接近,在227.79~338.02 mL/g之間。根據(jù)試驗(yàn)結(jié)果,在所測(cè)原料中,雞糞和香蕉秸稈的產(chǎn)沼氣性能最佳,最適合作為沼氣生產(chǎn)原料。
圖3 不同原料生物可降解性(BDA)、消化時(shí)間(T90)及每月甲烷產(chǎn)率Fig.3 Biodegradability(BDA), digestion time(T90)and methane monthly production of different substrates
表4 7種原料的Gompertz擬合結(jié)果Fig.4 Gompertz model estimation results of 7 substrates
2.5各原料的動(dòng)力學(xué)參數(shù)評(píng)估
Gompertz方程被廣泛應(yīng)用于序批式厭氧消化過程的擬合[7],本文利用該模型對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了擬合,以研究各原料的動(dòng)力學(xué)參數(shù)。各原料可決系數(shù)R2在0.97~1.00之間,說明方程擬合程度較好。而且,擬合γ值與BMP接近,即各原料實(shí)際甲烷產(chǎn)率與預(yù)測(cè)產(chǎn)率極為接近,說明該模型可以較好地反應(yīng)各原料的發(fā)酵情況。方程中,反應(yīng)速率常數(shù)K可以反映反映速率,其值越高代表反應(yīng)速率越快。7種原料中,雞糞的K值最高,達(dá)44.36 mL/(g·d);其次是香蕉秸稈,為36.78 mL/(g·d),即雞糞和香蕉的降解速率最快,該擬合結(jié)果與實(shí)驗(yàn)結(jié)果一致。結(jié)合2.4節(jié)中的結(jié)果,說明雞糞和香蕉秸稈的產(chǎn)氣特性最佳。
1)在本研究選取的原料中,秸稈類原料的有機(jī)質(zhì)含量均達(dá)到90%以上,遠(yuǎn)高于糞便原料。秸稈類原料中,草本植物可降解組分含量高于禾本植物。糞便原料中,雞糞易降解有機(jī)物含量最高。
2)各原料理論產(chǎn)甲烷潛力與試驗(yàn)產(chǎn)甲烷潛力相差較大,在原料選擇時(shí),應(yīng)以試驗(yàn)產(chǎn)甲烷潛力值為準(zhǔn)。
3)香蕉秸稈和雞糞的綜合產(chǎn)氣性能最佳,并可作為單獨(dú)的原料進(jìn)行沼氣發(fā)酵。
4)Gompertz方程可以較好地模擬各原料的產(chǎn)氣情況,并可用于實(shí)際發(fā)酵過程甲烷產(chǎn)率的預(yù)測(cè)和反應(yīng)速率的判斷。
[參考文獻(xiàn)]
[1]農(nóng)業(yè)部科技教育司.全國農(nóng)作物秸稈資源調(diào)查與評(píng)價(jià)報(bào)告[R].2011.
[2]張?zhí)?卜美東,耿維.中國畜禽糞便污染現(xiàn)狀及產(chǎn)沼氣潛力[J].生態(tài)學(xué)雜志,2012,31(5):1241-1249.Zhang Tian, Bo Meidong, Gengwei.Pollution status and biogasproducing potential of livestock and poultry excrements in China [J].Chinese Journal of Ecology, 2012, 31(5): 1241-1249.(in Chinese with English abstract)
[3] Cheng Xu.Innovative approach to utilizing agro-organic wastes and Chinese ecological agriculture[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2002, 18(5): 1-6.
[4]田宜水,趙立欣,孟海波,等.中國農(nóng)村生物質(zhì)能利用技術(shù)和經(jīng)濟(jì)評(píng)價(jià)[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(增1):1-5.Tian Yishui, Zhao Lixin, Meng Haibo, et al.Technical-economic assessment on rural bio-energy utilization technologies in China [J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2011, 27(supp.1): 1-5.(in Chinese with English abstract)
[5] Deublein D, Steinhauser A.Biogas from waste and renewable resources: an introduction[M].New York: John Wiley & Sons, Inc, 2011.
[6]國家能源局.能源發(fā)展“十二五”規(guī)劃[EB/OL].http://www.chinaero.com.cn/rdzt/sewghzt/ghdt/2013/01/133268.shtml, 2012.
[7] Nielfa A, Cano R, Fdz-Polanco M.Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge[J].Biotechnology Reports, 2015, 5: 14-21.
[8] Owen W, Stuckey D, Healy J, et al.Bioassay for monitoring biochemical methane potential and anaerobic toxicity[J].Water Research, 1979, 13(6): 485-492.
[9] Chynoweth D, Turick C, Owens J, et al.Biochemical methane potential of biomass and waste feedstocks[J].Biomass and Bioenergy, 1993, 5(93): 95-111.
[10] Li Y, Zhang R, Chen C, et al.Biogas production from codigestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions[J].Bioresource Technology 2013, 149c(4): 406-412.
[11] Cheng X, Zhong C.Effects of feed to inoculum ratio, codigestion, and pretreatment on biogas production from anaerobic digestion of cotton stalk[J].Energy and Fuels, 2014, 28(5): 3157-3166.
[12] Dehghani M, Karimi K, Sadeghi M.Pretreatment of rice straw for the improvement of biogas production[J].Energy and Fuels, 2015, 29: 3770-3775.
[13] Teghammar A, Karimi K, Horváth I S, et al.Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment[J].Biomass & Bioenergy, 2012, 36(1): 116-120.
[14] GB/T476-2008,煤中碳和氫的測(cè)定方法[S].
[15] GB/T214,煤中全硫的測(cè)定方法[S].
[16] Chen X, Gu Y, Zhou X, et al.Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: Increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment[J].Bioresource Technology, 2014, 164: 78-75.
[17] Xu F, Li Y.Solid-state co-digestion of expired dog food and corn stover for methane production[J].Bioresource Technology, 2012, 118(4): 219-226.
[18] Matulaitis R, Juskiene V, Juska R.Measurement of methane production from pig and cattle manure in Lithuania [J].Zemdirbyste-Agriculture, 2015, 102(1): 103-110.
[19] Symons G , Buswell A .The methane fermentation of carbohydrates[J].Journal of American Chemistry Society, 1933, 55: 2028-2036.
[20] Lesteur M, Bellon-Maurel V, Gonzalez C, et al.Alternative methods for determining anaerobic biodegradability: A review[J].Process Biochemistry, 2010, 45(4): 431-440.
[21] Chen Y, Cheng J, Creamer K.Inhibition of anaerobic digestion process: a review[J].Bioresource technology, 2008, 99(10): 4044-4064.
[22] Zhang T, Liu L, Song Z, et al.Biogas production by co-digestion of goat manure with three crop residues[J].Plos One, 2013, 8(6): e66845.
[23] Pu?al A, Trevisan M, Rozzi A, et al.Influence of C:N ratio on the start-up of up-flow anaerobic filter reactors[J].Water Research, 2000, 34(9): 2614-2619.
[24] Girolamo G, Bertin L, Capecchi L, et al.Mild alkaline pretreatments loosen fibre structure enhancing methane production from biomass crops and residues[J].Biomass and Bioenergy, 2014, 71: 318-329.
[25] Hendriks A,Zeeman G.Pretreatments to enhance the digestibility of lignocellulosic biomass[J].Bioresource technology, 2009, 100 (1): 10-18.
[26] Taherzadeh M, Karimi K.Pre-treatment of ligno-cellulosic wastes to improve ethanol and biogas production: a review [J].International Journal of Mollecular Science, 2008, 9(9):1621-1651.
[27]裴繼誠.植物纖維化學(xué)[M].北京:中國輕工業(yè)出版社,2012.
[28] Moller H.Methane productivity of manure, straw and solid fractions of manure[J].Biomass and Bioenergy, 2004, 26(5): 485-495.
[29] Zhang C, Li J, Liu C, et al.Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion[J].Bioresource technology, 2013, 149: 353-358.
[30] Wittmann C.Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum[J].Applied Microbiology and Biotechnology, 1995, 44(3-4): 519-525.
[31]羅娟,董寶成,陳羚,等.畜禽糞便與玉米秸稈厭氧消化的產(chǎn)氣特性試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(10):219-224.Luo Juan, Dong Baocheng, Chen Ling, et al.Experiments on aerogenesisi characteristics of anaerobic digestion of animal manure and corn straw[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2012, 28 (10): 219-224.(in Chinese with English abstract)
[32]毛靜靜.幾種獸藥添加劑對(duì)高溫厭氧消化的影響研究[D].合肥工業(yè)大學(xué),2014.Mao Jingjing.Effect of Several Feed Additives on Thermophilic Anaerobic Digestion[D].Hefei: Hefei University of Technology, 2014.
[33] Zheng M, Li X, Li L, et al.Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment [J].Bioresource technology, 2009, 100(21): 5140-5145.
Methane production performance comparison of different agricultural residues
Han Yaxin1,2, Zhang Chengming1,2, Chen Xuelan1,2, Li Yanfei3, Yue Ruixue4,5, Jiang Li1,2, Li Shizhong1,2※
(1.Institute of Nuclear and New Energy Technology, Tsinghua University, Tsinghua Garden, Beijing 100084, China; 2.Beijing Engineering Research Centre for Biofuels, Beijing 10084, China; 3.Qingxian Office of New Energy, Cangzhou 062650; 4.Xuzhou Institute of Agricultural Sciences of the Xuhuai District, Xuzhou 221000; 5.Institute of Sweet potato Research, Chinese Academy of Agricultural Sciences, Xuzhou 221000)
Abstract:Agricultural organic residues are considered as excellent substrates for anaerobic fermentation, producing clean energy and reducing environmental problems.Many researches have proved that agriculture residues can yield substantial biogas.Methane production performance of 7 typical agriculture residues including corn stover(CS), wheat straw(WS), rice straw(RS), banana stem(BS), chicken manure(ChM), cow manure(CM)and swine manure(SM)were investigated under the same fermentation conditions.The volatile solid(VS)of lignocellulosic materials was 91.47%~93.53%, higher than manure residues(42.98%~57.86%), which meant more biodegradable mass could be fermented to biogas in lignocellulosic materials.The unbalanced nutrient would limit biogas production when the substrates were anaerobically digested directly due to the inappropriate C/N.Adjusting C/N to 25~30 by co-digestion and adding urea would be necessary.Contents of sulphur were low in all 7 substrates, which avoided substrate competition between methanogens and sulfate-reducing bacteria, and was beneficial for methanogenesis procedure.Theoretical methane potential(TMP)based on the elemental composition, and biochemical methane potential(BMP)based on the fermentation results were evaluated.The TMP values of the different substrates mentioned above were 500.99, 521.36, 523.21, 449.25, 676.09, 771.63 and 805.98 mL/g, respectively.Data showed that the methane production potential from the substrates of manure was higher than that of lignocellulose.Structural carbohydrates and lignin of CS, WS, RS and BS were investigated in this paper.Results showed that CS, WS and RS, belonging to grass family, had little difference in cellulose, hemicellulose and lignin content.BS, belonging to herbage, contained more cellulose(48.67%)and less lignin(17.40%)than grass family.Biodegradable component in BS was the highest(76.13%), which indicated better methane production potential of BS.EBC(easily biodegradable component)including protein, lipid and NSCD(non-structural carbohydrate)in manure was analyzed.Protein content in ChM was the highest and reached 38.32%.Lipid content in SM was higher than ChM and CM, and the lipid contents for the 3 materials were 11.18% , 1.51% and 4.14% , separately.EBC content in ChM, SM and CM was 59.73% , 47.08% and 39.49% , respectively.The high content of EBC in ChM was evidence of better methane production potential, and adding protease or microorganism that could produce protease would improve methane production from ChM.Anaerobic digestion of lignocellulosic materials was investigated, with the substrate particle size under 40 mesh and the inoculum-substrate ratio of 2∶1.A total of 2~3 peaks appeared in all experiments.For the 1st peak observed, no significant difference existed among the 4 materials.The 2ndand 3rdpeaks from BS were higher than other materials.Cumulative methane production of BS was 186.10 mL/g, 1.37 times of the average methane production of other 3 materials.Manure substrates were also anaerobically digested, and 2 peaks were observed during procedure.Daily and cumulative methane production from ChM were higher than SM and CM.Final methane produced from ChM was 224.85 mL/g, which was 1.85 and 2.81 times of SM and CM.Biodegradability(BDA)and digestion time were calculated for 7 substrates, and the results showed that the BDA of BS and ChM was significantly higher than other substrates, which reached 41.42% and 33.28%, separately.Generally, the BDA of lignocellulosic materials was higher than manure.The digestion time of ChM was the shortest(7 d), and that of CS and WS was the longest(15 d).Based on methane production and digestion time, monthly production of methane was calculated, and the results showed that ChM was the best anaerobic fermentation substrate(867.28 mL/g).The BMP data were used by the Gompertz model to determine the optimum parameters to fit 7 substrates, and the maximum methane production was close to the BMP.The reaction rate constant values of ChM and BS were 44.36 and 36.78 mL/(g·d), separately, which were obviously high than other substrates(10.18~18.34 mL/(g·d).Data in this paper show that BMP can be a better standard compared to TMP, and BS and ChM are more suitable for anaerobic digestion.
Keywords:agriculture; straw; manures; agriculture residues; biological methane potential; biodegradability; digestion time
通信作者:※李十中(1962-),男,天津人,教授,博士生導(dǎo)師,從事生物質(zhì)能源研究。北京清華大學(xué)核能與新能源技術(shù)研究院,100084。Email:szli@mail.tsinghua.edu.cn
作者簡介:韓婭新(1988-),女,河北人,助理工程師,從事生物燃?xì)庋芯?。北京清華大學(xué)核能與新能源技術(shù)研究院,100084。Email:yxhan2015@126.com;
基金項(xiàng)目:生物燃?xì)饧把h(huán)農(nóng)業(yè)科技促進(jìn)培育專項(xiàng)(Z141100000614005);科技惠民計(jì)劃(2013GS460202-3)
收稿日期:2015-07-29
修訂日期:2015-11-26
中圖分類號(hào):S216.4 X712
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-6819(2016)-01-0258-07
doi:10.11975/j.issn.1002-6819.2016.01.036