劉 平,許 慧,璆 瑋
(1.江蘇科技大學 土木工程與建筑學院,江蘇 鎮(zhèn)江 212003;
2.安徽理工大學 土木工程學院,安徽 淮南 232000)
?
大跨度斜拉索自重下的垂度分析
劉平1,許慧2,璆瑋1
(1.江蘇科技大學土木工程與建筑學院,江蘇鎮(zhèn)江212003;
2.安徽理工大學土木工程學院,安徽淮南232000)
摘要:為研究斜拉索垂度對大跨、超高斜拉橋拉索長度及索力的影響,采用解析方法研究了斜拉索伸長量及索力與斜拉索荷載、拉索長度及高度的關系,并給出其理論表達式。采用同時考慮斜拉索張拉預應力與重力耦合作用的方法,從而無需假設斜拉索在垂度方向上的變形為懸鏈線曲線。分析結果表明,斜拉索垂度的關鍵影響因素是拉重比,即拉索重度與拉索高度之積與拉索應力比;拉索最大撓度處不在拉索中點位置,而是向重力方向有一些偏移,偏移量大小與拉重比成正比;拉索最大撓度值與拉索長度的二次方成正比,與拉重比成反比;當拉重比較小時,本文結果可簡化為Ernst公式。
關鍵詞:橋梁工程;大跨斜拉橋;Ernst公式;垂度分析;非線性
0引言
斜拉索以其優(yōu)越的跨越能力、合理的受力特點及新穎的結構形式、美觀的表觀造型,成為現(xiàn)代橋梁工程中發(fā)展最快、革新最快、最具競爭力的橋型之一[1-4]。斜拉索作為斜拉索橋梁當中最重要的受力構件,承擔著結構大部分的荷載。由于斜拉索剛度小、重力拉力比低等特點,其幾何非線性特點非常突出[5-6]。在各種非線性影響因素中,以大位移與斜拉索垂度的影響最大[7-10]。傳統(tǒng)考慮垂度影響的方法是采用Ernst公式,該公式由德國工程師Ernst于1932年首先提出,考慮了重力對于斜拉索垂直方向影響效應。該方法形式簡單,物理意義明確,為業(yè)界廣泛接受。但是,在他的方法中,忽略了重力在斜拉索方向分量的影響,因此,斜拉索撓度曲線為懸鏈線。在最大撓度與拉索長度比為小量的情況下,進一步假設拉索撓度曲線為二次拋物線。事實上,在工程上拉索應力、密度、長度范圍內,以拋物線代替懸鏈線是合理的,而忽略重力在斜拉索方向分量的影響卻值得商榷。
1方程與求解
斜拉索作為斜拉橋的主要受力構件,在施工過程中及橋梁成形后,所受的力主要有自重及張拉力(風、雨荷載不直接作用于張拉索)及拉索端點振動力或偶爾如地震等作用。在靜力分析時,不考慮拉索端點約束及偶然振動,其受力示意如圖1所示。其中,L為拉索直線長度(也就是兩端點距離),H為拉索豎直方向投影長度,B為拉索水平方向投影長度,α為拉索長度方向與水平方向的夾角,y為拉索撓度,fm為撓度最大值。
圖1 斜拉索受力示意Fig.1 Schematic diagram of cable force
1.1平衡方程
(1)
顯然,如果α=0,則方程簡化為水平拉索,可以知道,此解為懸鏈線方程[11];如果α=π/2,此解為一直線(加上邊界條件,可以確定其解為豎直直線)。
1.2方程討論與求解
在α≠0的情況下,從理論上講,式(1)也可以求得解析解。不過,由于解過于復雜,物理意義不明顯。因此,根據(jù)實際物理條件限制,對此方程作一些適當簡化,以突出方程及解的物理意義,適應工程需要。
式中,σ0為拉應力值,取值為700~1 100 MPa;ρ為拉索折合密度(包括套管、油脂及裝飾物重量),可取20×103kg/m3;g為重力加速度,可取10[12-14]。將此假定與變換式代入式(1),有:
(2)
邊界條件為:左右兩端端點值y(x1)=y(x2)=0, 且有x2-x1=L。求解式(2)并且代入邊界條件可得拉索撓度方程為:
(3)
1.3方程解的討論
(4)
同時,由式(3)可知,方程的形式為對數(shù)函數(shù),與一般常用假設撓度為二次拋物線是不同的。但是,如果忽略二階小量,將式(4)代入式(3)中,有:
則式(3)有:
(5)
對于x1,x2,C分別忽略二階小量,可以有:
(6)
可以看出,x1,x2的值相當于在拉索中心有個偏移量,此偏移數(shù)值與拉索半長的比值為|x1-L|=β/6。此偏移值也可以認為是撓度最低點位置由拉索中心處向重力方向的偏移值。從圖2可以看出,偏移比在拉重比β<1.5時,呈一次線性關系;只有在β較大時,與一階理論值誤差才逐步增大。
圖2 偏移比與拉力/重力比曲線Fig.2 Curves of offset ratio vs. tensile-weight ratio
2方程解與Ernst公式比較
在工程應用中考慮拉索垂度效應最常用的方法是利用Ernst公式,其基本考慮是假定垂度引起的拉索曲線為左右對稱二次拋物線;并且,其垂度與拉索長度相比為小量。這種假定實際上只考慮了拉索重力在拉索法向上的分量而忽略了重力在拉索長度方向分量的影響。根據(jù)其基本假定,由于垂度效應所引起的拉索撓度與拉索伸長量為[15-16]:
(7)
本文綜合考慮拉索自重在拉索方向與垂直拉索方向的影響,在忽略β的二階項時,垂度影響下的撓度值為:
由于假定x/A為小量,因此忽略L中的x/A高階小量后的結果為:L=x+x3/6A,代入積分上下限x1,x2后的化簡結果為:
與Ernst公式相比,即相當于乘以一個系數(shù)值(1+β2/12)。值得注意的是,考慮重力橫向效應時,拉索的撓度減小,而伸長量卻是增加的。
3結論
斜拉索在張拉力與重力作用下的垂度效應是一種典型的幾何非線性現(xiàn)象。一般做法是考慮拉索重力對于垂直拉索的影響,而忽略拉索重力在拉索方向上的分量。在這種假設下,拉索方向上的拉力分量為定值,所得的拉索形狀為懸鏈線[17]。本文綜合考慮到重力在垂直拉索方向與平行拉索方向的效應,計算結果表明決定能否忽略此項分量的關鍵參數(shù)為β=ρg·H/σ0;在理論結果基礎上,與Ernst公式比較,得出以下結論:
(1)拉索最大撓度處不在拉索長度中點位置,而是向重力方向有一些偏移。偏移量大小與β值成正比,偏移量與拉索半長比值為:β/6。
參考文獻:
References:
[1]ACAMPORA A, MACDONALD J H G, GEORGAKIS C T, et al. Identification of Aeroelastic Forces and Static Drag Coefficients of a Twin Cable Bridge Stay from Full-scale Ambient Vibration Measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014,124:90-98.
[2]ACAMPORA A, MACDONALD J H G, GEORGAKIS C T, et al. Identification of Aeroelastic Forces and Static Drag Coefficients of a Twin Cable Bridge Stay from full-Scale Ambient Vibration Measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014,124(1):90-98.
[3]HU L, XU Y, HUANG W. Typhoon-induced Non-Stationary Buffeting Response of Long-Span Bridges in Complex Terrain[J]. Engineering Structures, 2013,57(4):406-415.
[4]張興標, 沈銳利, 唐茂林,等. 懸索橋錨跨索股索力的精確計算與調整方法[J]. 西南交通大學學報, 2012,47(4):551-559.
ZHANG Xing-biao, SHEN Rui-li, TANG Mao-lin,et al. Accurate Calculation and Adjustment Methods for Cable Forces of Anchor-Span Strands for Suspension Bridges [J]. Journal of Southwest Jiaotong University, 2012,47(4):551-559.
[5]劉志軍, 芮筱亭, 王國平,等. 考慮垂度效應的索力振動測量的傳遞矩陣法[J]. 南京理工大學學報, 2013,37(4):608-615.
LIU Zhi-jun, RUI Xiao-ting, WANG Guo-ping,et al. Transfer Matrix Method for Vibration Measurement of Cable Tension Considering Sag[J]. Journal of Nanjing University of Science and Technology, 2013,37(4):608-615.
[6]王榮輝, 薛禮建. 矮塔斜拉橋索力測試方法研究[J]. 中外公路, 2011,31(2):116-123.
WANG Rong-hui, XUE Li-jian. Research on Test Method of Cable Force of Low Pylon Cable-stayed Bridge[J]. Journal of China & Foreign Highway, 2011,31(2):116-123.
[7]李平利. 大跨度斜拉橋施工階段幾何非線性靜力分析[D]. 成都: 西南交通大學, 2004.
LI Ping-li. Geometric Nonlinear Static Analysis of Long-span Cable-stayed Bridge at Construction Stage [D]. Chengdu: Southwest Jiaotong University, 2004.
[8]許立強. 確定斜拉橋合理成橋索力的綜合方法與施工控制研究[D]. 武漢: 武漢理工大學, 2007.
XU Li-qiang. Study of Comprehensive Method for Determining Reasonable Cable Force of Cable-stayed Bridge and Construction Control[D]. Wuhan: Wuhan University of Technology, 2007.
[9]AHMAD J, CHENG S. Effect of Cross-Link Stiffness on the In-Plane Free Vibration Behaviour of a Two-Cable Network[J]. Engineering Structures, 2013,52(9):570-580.
[10]ANISTOROAIEI C, HEYMEL U, JUNG R, et al. A Cable Stayed Bridge with Parallel Strand Cables: Elbe Bridge Schnebeck (Germany)-Detailed Design (part 2)[J]. Stahlbau, 2013,82(7):522-530.
[11]CHENG B, WANG J, LI C. Compression Behavior of Perforated Plates in Steel Tower Anchorage Zones of Cable-Stayed Bridges[J]. Journal of Constructional Steel Research, 2013,90(5):72-84.
[12]陳政清. 斜拉索風雨振現(xiàn)場觀測與振動控制[J]. 建筑科學與工程學報, 2005,22(4):5-10.
CHEN Zheng-qing. On-site Observation of Wind-rain Induced Vibration of Stay Cables and Its Control[J]. Journal of Architecture and Civil Engineering, 2005,22(4):5-10.
[13]谷音, 鐘華, 卓衛(wèi)東. 基于性能的矮塔斜拉橋結構地震易損性分析[J]. 土木工程學報, 2012,45(增1):218-222.
GU Yin, ZHONG Hua, ZHUO Wei-dong. Lower-tower Cable-Stayed Bridge Seismic Vulnerability Analysis[J]. China Civil Engineering Journal, 2012,45(S1):218-222.
[14]胡傳超. 矮塔斜拉橋斜拉索施工工藝及應用[J]. 西部探礦工程, 2008,24(4):204-209.
HU Chuan-chao. Stayed Cable Construction Technology and Application of Low Pylon Cable-stayed Bridge [J]. West Mining Engineering, 2008,24(4):204-209.
[15]RAHEEM S E A, HAYASHIKAWA T. Energy Dissipation System for Earthquake Protection of Cable-stayed Bridge Towers[J]. Earthquakes and Structures, 2013,5(6):657-678.
[16]RAHEEM S E A, HAYASHIKAWA T. Energy Dissipation System for Earthquake Protection of Cable-Stayed Bridge Towers[J]. Earthquakes and Structures, 2013,5(6):657-678.
[17]郭致星, 魯束, 陳清美. 懸鏈線與拋物線的區(qū)別[C]//全國第十一次光纖通信暨第十二屆集成光學學術會議.南京: 南京郵電學院, 2003.
GUO Zhi-xing, LU Shu, CHEN Qing-mei. Difference of Catenary Curve and Parabola Curve[C]// Eleventh National Optical Fiber Communication and Twelfth Integrated Optical Academic Conference. Nanjing: Nangjing University of Posts and Telecommunica-tions, 2003.
Analysis of Deadweight Induced Sag of Long-span Stay Cable
LIU Ping1, XU Hui2, QIU Wei1
(1. School of Civil Engineering and Architecture,Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212003,China;2. School of Civil Engineering, Anhui University Of Science & Technology, Huainan Anhui, 232000,China)
Abstract:In order to study the influence of sag of stay cable on cable length and force of long-span ultra-high cable stayed bridge, by using analytical method, the relationship of elongation and cable force with load, length and height of stay cable is researched, and the theoretical formula is presented. The coupling of both the gravity and the tensional pre-stress are considered without the assumption that the stay cable is in catenary shape in vertical direction. The result shows that (1) the key factor of the sag of stay cable is the ratio β which is the ratio of product of unit weight and height to stress of cable; (2) the max vertical displacement of cable is not at the midpoint of the cable, but at the point moving a little to the gravity direction, the offset is proportional to β ; (3) the maximum sag of cable is proportional to the square of cable length and is inversely proportional to β; (4) when β is little, the result can be simplified as the Ernst formula.
Key words:bridge engineering; long-span cable-stayed bridge; Ernst formula; sag analysis; non-linearity
文獻標識碼:A
文章編號:1002-0268(2016)03-0060-04
中圖分類號:U443.38
doi:10.3969/j.issn.1002-0268.2016.03.010
作者簡介:劉平(1983- ),男,湖南攸縣人,博士.(liupinghaiyan@163.com)
基金項目:江蘇省交通運輸廳科技項目(2014T06)
收稿日期:2014-11-27