劉江濤,盧坤輝,蔡英杰,李永杰,劉雙蓮
(1.中國(guó)石化 石油工程技術(shù)研究院,北京 100101; 2.中國(guó)石化 重慶涪陵頁(yè)巖氣勘探開(kāi)發(fā)有限公司,重慶 408014)
?
涪陵焦石壩地區(qū)五峰組—龍馬溪組頁(yè)巖古氧相研究
劉江濤1,盧坤輝2,蔡英杰1,李永杰1,劉雙蓮1
(1.中國(guó)石化 石油工程技術(shù)研究院,北京 100101; 2.中國(guó)石化 重慶涪陵頁(yè)巖氣勘探開(kāi)發(fā)有限公司,重慶 408014)
摘要:焦石壩五峰組—龍馬溪組頁(yè)巖下段與龍馬溪組頁(yè)巖上段兩類(lèi)頁(yè)巖層開(kāi)發(fā)效果迥異,為了探索其產(chǎn)生差異的根本原因,以地球化學(xué)特征分析為依據(jù),結(jié)合晚奧陶世—早志留世的沉積學(xué)和古生態(tài)學(xué)資料,研究了焦石壩五峰組—龍馬溪組頁(yè)巖古氧相。五峰組—龍馬溪組頁(yè)巖下段地層Fe、Mn含量低,U含量高,w(U)/w(Th)>0.75,Uau(即自生U質(zhì)量分?jǐn)?shù))大于5×10-6,生物化石和沉積紋層保存完好,表現(xiàn)為典型的貧氧-厭氧沉積環(huán)境,有利于生物遺體的富集和保存,有機(jī)質(zhì)含量高;隨深度增加,龍馬溪組頁(yè)巖上段地層Fe、Mn含量逐漸降低,U、S含量增高,沉積水體還原性逐漸增強(qiáng),S含量與TOC含量呈明顯的正相關(guān)關(guān)系,地層上部為典型的富氧沉積環(huán)境,生物遺體難以保存,有機(jī)碳含量低,地層下部為貧氧—富氧過(guò)渡性沉積環(huán)境,TOC含量較高,具有一定的勘探潛力。古氧化-還原環(huán)境的差異是導(dǎo)致兩類(lèi)頁(yè)巖品質(zhì)差異的根本原因。
關(guān)鍵詞:頁(yè)巖;古氧相;沉積環(huán)境;五峰組—龍馬溪組;焦石壩
劉江濤,盧坤輝,蔡英杰,等.涪陵焦石壩地區(qū)五峰組-龍馬溪組頁(yè)巖古氧相研究[J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,31(2):18-24.
LIU Jiangtao,LU Kunhui,CAI Yingjie,et al.Study on Paleo-redox conditions of Wufeng Formation-Longmaxi Formation shale in Fuling Jiaoshiba area [J].Journal of Xi'an Shiyou University (Natural Science Edition),2016,31(2):18-24.
引言
近年來(lái),中國(guó)學(xué)者針對(duì)四川盆地及周緣海相頁(yè)巖地層開(kāi)展了大量研究工作[1-3],尤其是2012年我國(guó)首個(gè)商業(yè)頁(yè)巖氣藏——涪陵焦石壩五峰組—龍馬溪組高產(chǎn)頁(yè)巖氣藏的發(fā)現(xiàn),更引起了學(xué)者們的關(guān)注[4-9],研究主要集中于頁(yè)巖本身的巖石物理、地球化學(xué)特征及頁(yè)巖氣成藏規(guī)律和控制因素等方面??碧綄?shí)踐表明,高產(chǎn)頁(yè)巖氣層主要集中在五峰組—龍馬溪組頁(yè)巖下段約40 m的頁(yè)巖層,而龍馬溪組頁(yè)巖上段壓裂后產(chǎn)量低。上段頁(yè)巖層TOC含量偏低,有機(jī)質(zhì)含量低是頁(yè)巖品質(zhì)差的關(guān)鍵因素,但探討兩類(lèi)頁(yè)巖的差異需始于頁(yè)巖古沉積環(huán)境差異的研究。古沉積環(huán)境是影響沉積物地球化學(xué)特征的重要因素[10],而古氧相是影響有機(jī)質(zhì)發(fā)育和沉積保存的關(guān)鍵,在油氣勘探特別是烴源巖評(píng)價(jià)中具有重要的指導(dǎo)意義[11-13]。文玲[14]、郭英海等[15]對(duì)揚(yáng)子地區(qū)志留系的巖相古地理、沉積環(huán)境進(jìn)行了系統(tǒng)研究,認(rèn)為龍馬溪組處于滯留封閉的沉積環(huán)境;張春明等[10,16]對(duì)川東南龍馬溪組頁(yè)巖的地球化學(xué)特征和古沉積環(huán)境進(jìn)行研究,指出龍馬溪組沉積早期的深水陸棚、缺氧還原沉積環(huán)境是形成優(yōu)質(zhì)烴源巖的關(guān)鍵。前人研究對(duì)認(rèn)識(shí)南方志留系龍馬溪組頁(yè)巖的沉積環(huán)境、尋找優(yōu)質(zhì)頁(yè)巖發(fā)育有利區(qū)具有十分重要的意義,但這些研究主要以露頭樣品測(cè)試數(shù)據(jù)為依據(jù),樣品分布范圍廣,采集密度小,對(duì)于認(rèn)識(shí)焦石壩地區(qū)五峰組—龍馬溪組頁(yè)巖來(lái)說(shuō)尚欠精細(xì)。本文以頁(yè)巖元素地球化學(xué)特征分析為重點(diǎn),結(jié)合奧陶紀(jì)末—志留紀(jì)的沉積學(xué)和古生態(tài)學(xué)資料,研究焦石壩龍馬溪組—五峰組頁(yè)巖古氧相,以期對(duì)豐富研究區(qū)頁(yè)巖氣成藏理論研究、指導(dǎo)下一步的頁(yè)巖氣勘探開(kāi)發(fā)有所裨益。
1地質(zhì)概況
焦石壩構(gòu)造位于四川盆地川東南構(gòu)造區(qū)川東高陡褶皺帶萬(wàn)縣復(fù)向斜包鸞-焦石壩背斜帶(圖1),為萬(wàn)縣復(fù)向斜內(nèi)發(fā)育的菱形斷背斜構(gòu)造,主體呈北東向展布。構(gòu)造受北東向和近南北向2組斷裂控制,主體變形弱,上、下構(gòu)造層形態(tài)基本一致,地層傾角小,頂部寬緩,構(gòu)造內(nèi)部斷裂不發(fā)育,兩翼陡傾,斷裂發(fā)育。研究區(qū)自下而上發(fā)育了奧陶系至三疊系嘉陵江組地層,其中主要的勘探目的層為上奧陶統(tǒng)五峰組—下志留統(tǒng)龍馬溪組頁(yè)巖下段地層。晚奧陶世—早志留世,受多期構(gòu)造運(yùn)動(dòng)影響,焦石壩地區(qū)形成在黔中隆起、川中隆起和雪峰古隆起夾持下的局限海域,在2次全球性海侵的作用下,焦石壩地區(qū)總體處于深水陸棚沉積環(huán)境,形成了穩(wěn)定的黑色頁(yè)巖地層沉積。
圖1 焦石壩工區(qū)位置及五峰組頂斷裂綱要Fig.1 Location of Jiaoshiba area and fault outline map of the top boundary of Wufeng Formation
2樣品采集及測(cè)量
在重慶涪陵焦石鎮(zhèn)采集上奧陶統(tǒng)五峰組頁(yè)巖露頭樣品10塊、焦頁(yè)A井(水平井)龍馬溪組頁(yè)巖鉆井巖屑樣品49份。為了降低露頭樣品地表風(fēng)化和有機(jī)物質(zhì)污染的影響,在采樣時(shí)除去巖石表層松散層,采集新鮮的巖石樣品;對(duì)油基泥漿巖屑樣品采取石油醚溶劑清洗油污,并低溫烘干處理,挑出片狀、棱角明顯的頁(yè)巖巖屑顆粒。將頁(yè)巖露頭和巖屑樣品研磨至150~200目的粉末,并壓制成直徑3.5 cm、厚度約3 mm的餅狀樣品,利用荷蘭帕納科公司生產(chǎn)的X射線熒光元素分析儀測(cè)量樣品的元素質(zhì)量分?jǐn)?shù),重復(fù)試驗(yàn)誤差小于5%。部分頁(yè)巖樣品質(zhì)量分?jǐn)?shù)測(cè)量結(jié)果見(jiàn)表1。
3古氧相分析
古氧相(paleo-oxygenation facies)是指反映地層(或沉積物)形成時(shí)沉積環(huán)境水體(特別是底層水體)中溶氧量特征及其變化的各種巖石、生物和地球化學(xué)特征的綜合,為沉積相研究的重要組成部分[11-12]。Rhoads和Morse[17]提出富氧(aerobic)、貧氧(dysaerobic)和厭氧(anaerobic)的古氧相三分方案,分別對(duì)應(yīng)水體溶氧量>1.0 mL/m3、1.0~0.1 mL/m3和0.1~0 mL/m3的3個(gè)區(qū)間,成為缺氧沉積環(huán)境劃分和識(shí)別的基礎(chǔ)[11]。不同缺氧環(huán)境下的生物面貌、微量元素、沉積構(gòu)造保存情況等都具有比較明顯的差異[11-12],這是由于氧化還原作用能影響到海水中許多元素的地球化學(xué)行為和生物的活動(dòng)、分布及演化,因此,通過(guò)研究巖石中相關(guān)元素指標(biāo)和生物面貌可以定性恢復(fù)古海洋的氧化還原環(huán)境[18]。
3.1元素組成
不同氧化-還原環(huán)境對(duì)元素的遷移、共生和沉淀有重要的影響,可改變變價(jià)元素的遷移和富集狀態(tài),從而導(dǎo)致不同環(huán)境中元素的重新分配。U、V、S元素在氧化條件下呈高價(jià)(如U6+、V5+、S6+),易發(fā)生遷移,還原條件下呈低價(jià)(如U4+、V3+、S2-),易沉淀;而Fe、Mn等元素在氧化環(huán)境下呈高價(jià)(Fe3+、Mn4+),易沉淀,還原條件下呈低價(jià)(Fe2+、Mn2+),易遷移,這些元素一般被稱(chēng)為氧化-還原敏感元素(RSE)[19]。正常海洋環(huán)境中,S和有機(jī)碳質(zhì)量分?jǐn)?shù)成正相關(guān)關(guān)系,w(S)/w(TOC)比值較低;在缺氧環(huán)境中,S不受有機(jī)碳控制,主要受到H2S質(zhì)量分?jǐn)?shù)控制,w(S)/w(TOC)較高[20]。
根據(jù)元素測(cè)量結(jié)果,建立了焦石壩五峰組—龍馬溪組頁(yè)巖樣品氧化-還原環(huán)境敏感元素隨深度變化的剖面特征圖(圖2)??梢钥闯?,隨著深度的增加,龍馬溪組頁(yè)巖上段地層的Fe、Mn質(zhì)量分?jǐn)?shù)逐漸減小,S、U質(zhì)量分?jǐn)?shù)整體上呈逐漸增加的趨勢(shì),w(S)/w(TOC)值逐漸增加,說(shuō)明沉積水體中溶氧量逐漸降低,沉積環(huán)境還原性逐漸增強(qiáng);相比龍馬溪組上段頁(yè)巖,龍馬溪組下段頁(yè)巖樣品的Fe、Mn質(zhì)量分?jǐn)?shù)低,S、U質(zhì)量分?jǐn)?shù)高,w(S)/w(TOC)值較高,表明后者相比前者的沉積環(huán)境還原性強(qiáng),而整個(gè)龍馬溪組下段,環(huán)境敏感元素質(zhì)量分?jǐn)?shù)基本一致,表明該段地層沉積時(shí)期沉積環(huán)境變化不大;五峰組露頭樣品U質(zhì)量分?jǐn)?shù)與龍馬溪組下段頁(yè)巖樣品類(lèi)似,F(xiàn)e、Mn質(zhì)量分?jǐn)?shù)低于后者,S質(zhì)量分?jǐn)?shù)變化特征與其他元素相反,w(S)/w(TOC)值異常低,這可能與露頭樣品遭遇風(fēng)化、氧化環(huán)境下S遷移有關(guān),綜合判斷五峰組沉積環(huán)境與龍馬溪組頁(yè)巖下段類(lèi)似或更偏還原環(huán)境。從不同頁(yè)巖層S與TOC質(zhì)量分?jǐn)?shù)關(guān)系(圖3)可以看出,龍馬溪組頁(yè)巖下段和五峰組頁(yè)巖的S質(zhì)量分?jǐn)?shù)與TOC質(zhì)量分?jǐn)?shù)相關(guān)性差,而龍馬溪組頁(yè)巖上段的S質(zhì)量分?jǐn)?shù)與TOC質(zhì)量分?jǐn)?shù)明顯正相關(guān)。
圖2 焦石壩五峰組—龍馬溪組頁(yè)巖氧化-還原環(huán)境敏感元素及判別指標(biāo)剖面特征Fig.2 Mass fraction profiles of sensitive elements to oxidation-reduction environment and evaluation index profile of oxidation-reduction environment of Wufeng-Longmaxi formation shale in Jiaoshiba area
圖3 焦石壩不同頁(yè)巖樣品S與TOC質(zhì)量分?jǐn)?shù)關(guān)系對(duì)比Fig.3 Relationship between mass fraction of S and mass fraction of TOC in different shale samples in Jiaoshiba area
Jones等[21]研究了西北歐晚侏羅世暗色泥質(zhì)巖的古氧相,提出判別古氧相的標(biāo)準(zhǔn),并認(rèn)為利用元素地球化學(xué)指標(biāo)判別古氧相是最可靠的手段;騰格爾等[22]系統(tǒng)地總結(jié)了缺氧環(huán)境的地球化學(xué)判識(shí)指標(biāo),w(U)/w(Th)>1.25代表厭氧環(huán)境,0.75 正常泥巖中的U來(lái)自碎屑,平均w(Th)/w(U)≈3,利用正常泥巖U質(zhì)量分?jǐn)?shù)之外的自生沉積U質(zhì)量分?jǐn)?shù)Uau可以識(shí)別氧化還原條件,Uau=Utotal(總U質(zhì)量分?jǐn)?shù))-w(Th)/3,Uau<5.0×10-6代表富氧沉積環(huán)境,5.0 3.2生物化石及沉積構(gòu)造 富氧沉積環(huán)境生物豐富,生物擾動(dòng)強(qiáng)烈,沉積紋層構(gòu)造很難保存,由于氧化作用,生物遺體也難以保存,地層中生物化石含量極少或幾乎不含;貧氧帶生物的生命活動(dòng)受到限制,生物遺體(一般來(lái)自上層水體富氧環(huán)境的浮游生物)處于還原環(huán)境,生物化石和沉積紋層均可得到較好的保存;厭氧帶幾乎不含生物,生物遺體和沉積紋層保存良好。因此,地層生物化石發(fā)育特征和沉積物沉積特征是定性識(shí)別缺氧沉積的兩個(gè)重要方面[23]。川東南地區(qū)五峰組—龍馬溪組頁(yè)巖層中發(fā)育大量的筆石化石,故常稱(chēng)之為筆石頁(yè)巖段[7]。從焦石壩五峰組—龍馬溪組頁(yè)巖巖心截面可以觀察到大量以筆石為主的古生物化石和放射蟲(chóng)微體化石(圖4),其中龍馬溪組頁(yè)巖下段生物化石數(shù)量高于頁(yè)巖上段。五峰組和龍馬溪組頁(yè)巖下段紋層、平行層理發(fā)育,并且保存完好,沒(méi)有生物擾動(dòng)痕跡,龍馬溪組頁(yè)巖上段紋層、層理自下而上由較發(fā)育轉(zhuǎn)變?yōu)椴话l(fā)育。中上揚(yáng)子地區(qū)晚奧陶世—早志留世處于三面古陸環(huán)繞的半封閉滯留海沉積環(huán)境,五峰組—龍馬溪組底部為深水陸棚沉積,龍馬溪晚期水體變淺,轉(zhuǎn)變?yōu)闇\水陸棚沉積[16,24-25],相應(yīng)的古氧相也由貧氧-厭氧轉(zhuǎn)變?yōu)檫^(guò)渡性環(huán)境,并最終轉(zhuǎn)變?yōu)楦谎醐h(huán)境。 圖4 焦石壩龍馬溪組頁(yè)巖筆石化石Fig.4 Graptolite fossil in Longmaxi formation shale in Jiaoshiba area 3.3有機(jī)碳含量 有機(jī)質(zhì)主要在缺氧環(huán)境下才能得以很好的保存,因此,有機(jī)碳含量能反映沉積水體的氧化還原條件。如果沉積物中有機(jī)質(zhì)含量豐富,本身就指示了較強(qiáng)的還原環(huán)境[24]。隨著還原條件的增強(qiáng),總有機(jī)碳(TOC)含量一般也會(huì)相應(yīng)增加,因此,TOC含量在地層剖面上的變化常成為古氧相判別的重要特征[26]。研究區(qū)龍馬溪組頁(yè)巖上段樣品的TOC質(zhì)量分?jǐn)?shù)介于0.27%~3.73%,平均1.50%,并隨深度增加而增大,這表明自淺至深,沉積水體的還原性是逐漸增強(qiáng)的,在該段地層下部,TOC質(zhì)量分?jǐn)?shù)介于1.56%~3.73%,表現(xiàn)出偏缺氧環(huán)境的過(guò)渡環(huán)境特點(diǎn);龍馬溪組頁(yè)巖下段TOC質(zhì)量分?jǐn)?shù)為1.97%~5.87%,除1個(gè)樣品外,其他樣品TOC質(zhì)量分?jǐn)?shù)均大于3.00%,平均3.49%,且分布范圍集中,這說(shuō)明該段地層沉積環(huán)境變化不大,為較強(qiáng)的還原環(huán)境;五峰組頁(yè)巖樣品TOC質(zhì)量分?jǐn)?shù)為2.98%~3.52%,平均為3.26%,與龍馬溪組下段頁(yè)巖沉積環(huán)境類(lèi)似。研究區(qū)頁(yè)巖樣品TOC的剖面特征與氧化-還原敏感元素的剖面特征高度一致,并具有較好的正相關(guān)性(圖5),表明利用有機(jī)碳含量進(jìn)行缺氧環(huán)境判別是可行的。 圖5焦石壩五峰組—龍馬溪組頁(yè)巖TOC與U、Th的關(guān)系Fig.5 Relationship between mass fraction of TOC and U/Th in Wufeng-Longmaxi formation shale in Jiaoshiba area 4結(jié)論 (1)龍馬溪組頁(yè)巖上段地層隨深度增加,沉積水體還原性逐漸增強(qiáng),地層上部屬于富氧沉積環(huán)境,地層下部則表現(xiàn)出貧氧—富氧過(guò)渡性特征;五峰組—龍馬溪組頁(yè)巖下段為典型的貧氧-厭氧沉積環(huán)境。 (2)五峰組—龍馬溪組頁(yè)巖下段地層有機(jī)質(zhì)含量高,頁(yè)巖品質(zhì)好;隨著深度的增加,龍馬溪組頁(yè)巖上段地層有機(jī)質(zhì)含量增加,頁(yè)巖品質(zhì)由差變?yōu)橹械?,表明該層段下部具有一定的勘探潛力?/p> (3)古氧化-還原環(huán)境的差異是造成兩類(lèi)頁(yè)巖品質(zhì)差異的根本原因。 參 考 文 獻(xiàn): [1]黃金亮,鄒才能,李建忠,等.川南下寒武統(tǒng)筇竹寺組頁(yè)巖氣形成條件及資源潛力[J].石油勘探與開(kāi)發(fā),2012,39(1):69-75. HUANG Jinliang,ZOU Caineng,LI Jianzhong,et al.Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin,China[J].Petroleum Exploration and Development,2012,39(1):69-75. [2]陳尚斌,朱炎銘,王紅巖,等.四川盆地南緣下志留統(tǒng)龍馬溪組頁(yè)巖氣儲(chǔ)層礦物成分特征及意義[J].石油學(xué)報(bào),2011,32(5):775-782. CHEN Shangbin,ZHU Yanming,WANG Hongyan,et al.Characteristics and significance of mineral compositions of Lower Silurian Longmaxi formation shale gas reservoir in the southern margin of Sichuan Basin[J].Acta Petrolei Sinica,2011,32(5):775-782. [3]王淑芳,鄒才能,董大忠,等.四川盆地富有機(jī)質(zhì)頁(yè)巖硅質(zhì)生物成因及對(duì)頁(yè)巖氣開(kāi)發(fā)的意義[J].北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,50(3):476-485. WANG Shufang,ZOU Caineng,DONG Dazhong,et al.Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(3):476-485. [4]嚴(yán)偉,王建波,劉帥,等.四川盆地焦石壩地區(qū)龍馬溪組泥頁(yè)巖儲(chǔ)層測(cè)井識(shí)別[J].天然氣工業(yè),2014,34(6):30-36. YAN Wei,WANG Jianbo,LIU Shuai,et al.Logging identification for the Longmaxi mud shale reservoir in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):30-36. [5]郭旭升,李宇平,劉若冰,等.四川盆地焦石壩地區(qū)龍馬溪組頁(yè)巖微觀孔隙結(jié)構(gòu)特征及其控制因素[J].天然氣工業(yè),2014,34(6):9-16. GUO Xusheng,LI Yuping,LIU Ruobing,et al.Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):9-16. [6]郭彤樓,張漢榮.四川盆地焦石壩頁(yè)巖氣氣田形成與富集高產(chǎn)模式[J].石油勘探與開(kāi)發(fā),2014,41(1):28-36. GUO Tonglou,ZHANG Hanrong.Formation and enrichment mode of Jiaoshiba shale gas field,Sichuan Basin[J].Petroleum Exploration and Development,2014,41(1):28-36. [7]王玉滿(mǎn),董大忠,李建忠,等.川南下志留統(tǒng)龍馬溪組頁(yè)巖氣儲(chǔ)層特征[J].石油學(xué)報(bào),2012,33(4):551-561. WANG Yuman,DONG Dazhong,LI Jianzhong,et al.Reservoir characteristics of shale gas in Longmaxi formation of the lower Silurian,southern Sichuan[J].Acta Petrolei Sinica,2012,33(4):551-561. [8]魏志紅,魏祥峰.頁(yè)巖不同類(lèi)型孔隙的含氣性差異:以四川盆地焦石壩地區(qū)五峰組-龍馬溪組為例[J].天然氣工業(yè),2014,34(6):37-41. WEI Zhihong,WEI Xiangfeng.Comparison of gas-bearing property between different pore types of shale:a case from the upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):37-41. [9]郭旭升.南方海相頁(yè)巖氣“二元富集”規(guī)律:四川盆地及周緣龍馬溪組頁(yè)巖氣勘探實(shí)踐認(rèn)識(shí)[J].地質(zhì)學(xué)報(bào),2014,88(7):1209-1218. GUO Xusheng.Rules of two-factor enrichiment for marine shale gas in southern China:understanding from the Longmaxi formation shale gas in Sichuan Basin and its surrounding area[J].Acta Geologica Sinica,2014,88(7):1209-1218. [10] 張春明,姜在興,郭英海,等.川東南-黔北地區(qū)龍馬溪組地球化學(xué)特征與古環(huán)境恢復(fù)[J].地質(zhì)科技情報(bào),2013,32(2):124-130. ZHANG Chunming,JIANG Zaixing,GUO Yinghai,et al.Geochemical characteristics and paleoenvironment reconstruction of the Longmaxi formation in Southeast Sichuan and Northern Guizhou[J].Geological Science and Technology Information,2013,32(2):124-130. [11] 顏佳新,張海清.古氧相:一個(gè)新的沉積學(xué)研究領(lǐng)域[J].地質(zhì)科技情報(bào),1996,15(3):7-3. YAN Jiaxin,ZHANG Haiqing.Paleo-oxygenation facies:a new research field in sedimentology[J].Geological Science and Technology Information,1996,15(3):7-3. [12] 顏佳新,陳北岳,李思田,等.鄂湘桂地區(qū)棲霞組古氧相分析與層序地層和海平面變化[J].地質(zhì)論評(píng),1997,43(2):193-199. YAN Jiaxin,CHEN Beiyue,LI sitian,et al.Oxygen-related facies and sequence stratigraphy in the Qixia formation of the Hubei-Hunan-Guangxi region[J].Geological Review,1997,43(2):193-199. [13] 曹婷婷.高演化海相烴源巖元素地球化學(xué)評(píng)價(jià):以四川盆地南江楊壩地區(qū)下寒武統(tǒng)為例[D].武漢:中國(guó)地質(zhì)大學(xué),2011. [14] 文玲,胡書(shū)毅,田海芹.揚(yáng)子地區(qū)志留紀(jì)巖相古地理與石油地質(zhì)條件研究[J].石油勘探與開(kāi)發(fā),2002,29(6):11-14. WEN Ling,HU Shuyi,TIAN Haiqin.Lithofacies palaeogeography and petroleum geology of the Silurian in Yangtze area[J].Petroleum Exploration and Development,2002,29(6):11-14. [15] 郭英海,李壯福,李大華,等.四川地區(qū)早志留世巖相古地理[J].古地理學(xué)報(bào),2004,6(1):20-29. GUO Yinghai,LI Zhuangfu,LI Dahua,et al.Lithofacies palaeogeography of the early Silurian in Sichuan area[J].Journal of Palaeogeography,2004,6(1):20-29. [16] 張春明,張維生,郭英海.川東南—黔北地區(qū)龍馬溪組沉積環(huán)境及對(duì)烴源巖的影響[J].地學(xué)前緣,2012,19(1):136-145. ZHANG Chunming,ZHANG Weisheng,GUO Yinghai.Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi formation in Southeast Sichuan and Northern Guizhou[J].Earth Science Frontiers,2012,19(1):136-145. [17] RHOADS D C,MORSE J W.Evolutionary and ecologic significance of oxygen-deficient marine basins[J].Lethaia,1971(4):413-428. [18] 林治家,陳多福,劉芊.海相沉積氧化還原環(huán)境的地球化學(xué)識(shí)別指標(biāo)[J].礦物巖石地球化學(xué)通報(bào),2008,27(1):72-80. LIN Zhijia,CHEN Duofu,LIU Qian.Geochemical indices for redox conditions of marine sediments[J].Bulletin of Mineralogy,Petrology and Geochemistry,2008,27(1):72-80. [19] 郭偉.東海赤潮區(qū)水體缺氧狀況的沉積記錄分析[D].北京:中國(guó)科學(xué)院大學(xué),2013. [20] BERNER R A.Sedimentary pyrite formation:an update[J].Geochimica et Cosmochimica Acta,1984,48:605-615. [21] JONES B,MANNING A C.Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111(1):111-129. [22] 騰格爾,劉文匯,徐永昌,等.缺氧環(huán)境及地球化學(xué)判識(shí)指標(biāo)的探討:以鄂爾多斯盆地為例[J].沉積學(xué)報(bào),2004,22(2):365-372. TENGER,LIU Wenhui,XU Yongchang,et al.The discussion on anoxic environments and its geochemical identifying indices[J].Acta Sedimentologica Sinica,2004,22(2):365-372. [23] 顏佳新,劉新宇.從地球生物學(xué)角度討論華南中二疊世海相烴源巖缺氧沉積環(huán)境成因模式[J].地球科學(xué):中國(guó)地質(zhì)大學(xué)學(xué)報(bào),2007,32(6):789-796. YAN Jiaxin,LIU Xinyu.Geobiological interpretation of the Oxygen-deficient deposits of the middle Permian marine source rocks in South China:a working hypothesis[J].Earth Science:Journal of China University of Geosciences,2007,32(6):789-796. [24] 李雙建,肖開(kāi)華,沃玉進(jìn),等.中上揚(yáng)子地區(qū)上奧陶統(tǒng)—下志留統(tǒng)烴源巖發(fā)育的古環(huán)境恢復(fù)[J].巖石礦物學(xué)雜志,2009,28(5):450-458. LI Shuangjian,XIAO Kaihua,WO Yujin,et al.Palaeo-environment restoration Upper Ordovician-Lower Silurian hydrocarbon source rock in Middle-Upper Yangtze area[J].Acta Petrologica et Mineralogica,2009,28(5):450-458. [25] 李雙建,肖開(kāi)華,沃玉進(jìn),等.南方海相上奧陶統(tǒng)—下志留統(tǒng)優(yōu)質(zhì)烴源巖發(fā)育的控制因素[J].沉積學(xué)報(bào),2008,26(5):872-880. LI Shuangjian,XIAO Kaihua,WO Yujin,et al.Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence,South China[J].Acta Sedmentologica Sinica,2008,26(5):872-880. [26] TRIBOVILLARD N P,DESPRAIRIES A,LALLIER Verges E,et al.Geochemical study of organic matter rich cycles from the Kimmeridge clay formation of York shire(UK):productivity versus anoxia[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1994,108(1):165-181. Study on Paleo-redox Conditions of Wufeng Formation-Longmaxi Formation Shale in Fuling Jiaoshiba Area LIU Jiangtao1,LU Kunhui2,CAI Yingjie1,LI Yongjie1,LIU Shuanglian1 (1.Research Institute of Petroleum Engineering,SINOPEC,Beijing 100101,China;2.Chongqing Fuling Shale Gas Exploration and Development Co.,Ltd.,SINOPE C,Chongqing 408014,China) Abstract:The development effect of the lower member of the Wufeng Formation-Longmaxi Formation shale is different from that of the upper member of Longmaxi Formation shale.In order to find the cause of the difference,the Paleo-redox conditions of Wufeng Formation-Longmaxi Formation shale are studied based on the analysis of geochemical characteristics and the sedimentary and palaeoecological data from Late Ordovician to Early Silurian.It is shown that in the lower member of Wufeng Formation-Longmaxi Formation,the content of Fe and Mn is low,the content of U is high,the ratio of U to Th is greater than 0.75,the mass fraction of U is greater than 5×10-6,biological fossils and deposited layers are well preserved,there is typical poor oxygen-anaerobic environment,which is favorable to the enrichment and preservation of biological remains,and therefore organic matter content is high.In the upper member of Longmaxi Formation shale,with the increase of depth,the content of Fe and Mn is decreasing,the content of U and S is increasing,the reduction of sedimentary water is increasing;the content of S is positively correlated with the content of TOC.The upper part of the formation is a typical oxygen enriched sedimentary environment,in which biological remains are difficult to preserve and the content of TOC is low;the lower part of the formation is the transitional sedimentary environment from poor oxygen to rich oxygen,the content of TOC is high,so there is a certain exploration potential.The difference of the Paleo-redox environment is the basic reason for the quality difference of the two kinds of shale. Key words:shale;Paleo-oxygenation facies;sedimentary environment;Wufeng Formation-Longmaxi Formation;Jiaoshiba area 文章編號(hào):1673-064X(2016)02-0018-08 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.3969/j.issn.1673-064X.2016.02.003 中圖分類(lèi)號(hào):TE121.3+1;P59 作者簡(jiǎn)介:劉江濤(1981-),男,高級(jí)工程師,博士,主要從事石油地質(zhì)學(xué)、測(cè)錄井綜合解釋研究工作。 基金項(xiàng)目:中國(guó)石化重點(diǎn)科技攻關(guān)項(xiàng)目“頁(yè)巖地層工程特性測(cè)井評(píng)價(jià)技術(shù)研究”(編號(hào):P13012) 收稿日期:2015-10-28 E-mail:ljt0310@163.com