国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

開口型管道內(nèi)瓦斯爆炸沖擊波動壓的數(shù)值模擬*

2016-04-20 10:19洪溢都林柏泉朱傳杰
爆炸與沖擊 2016年2期
關(guān)鍵詞:動壓流速瓦斯

洪溢都,林柏泉,朱傳杰

(中國礦業(yè)大學(xué)安全工程學(xué)院煤炭資源與安全開采國家重點(diǎn)實(shí)驗(yàn)室,江蘇 徐州 221116)

開口型管道內(nèi)瓦斯爆炸沖擊波動壓的數(shù)值模擬*

洪溢都,林柏泉,朱傳杰

(中國礦業(yè)大學(xué)安全工程學(xué)院煤炭資源與安全開采國家重點(diǎn)實(shí)驗(yàn)室,江蘇 徐州 221116)

為了研究瓦斯爆炸沖擊波的動壓演化規(guī)律,利用數(shù)值模擬軟件模擬開口型管道內(nèi)的爆炸。結(jié)果表明:動壓與流速在時(shí)間上存在較好的對應(yīng)關(guān)系,基本同時(shí)出現(xiàn)正向和反向的峰值;動壓在3個(gè)方向上不僅伴隨傳播距離的增大而不斷增大,也伴隨傳播時(shí)間的延長而增大;沿管道方向(火焰?zhèn)鞑シ较?上的最大動壓值是其他2個(gè)方向(管道徑向)上的數(shù)千倍;相比爆炸超壓而言,管道徑向上的動壓對爆炸破壞效應(yīng)的影響較小,而沿管道方向上的動壓造成的破壞效應(yīng)不能忽視;驗(yàn)證了動壓與流速的平方呈正比關(guān)系,同時(shí)通過分析給出了動壓基于管道幾何尺寸和流速的經(jīng)驗(yàn)公式。

爆炸力學(xué);動壓;管道尺寸;瓦斯爆炸;開口型管道;流速

煤炭作為主要能源,在國民經(jīng)濟(jì)的發(fā)展中占據(jù)著至關(guān)重要的地位。在眾多的煤礦安全事故中,瓦斯爆炸事故無論是死亡人數(shù)、經(jīng)濟(jì)損失還是發(fā)生次數(shù),都一直占據(jù)較大比重[1-5]。因此,煤礦瓦斯爆炸事故防治仍將是未來很長一段時(shí)間煤礦安全的重點(diǎn)。當(dāng)前,對瓦斯爆炸的研究主要集中于對沖擊波超壓,波前瞬態(tài)流速和火焰?zhèn)鞑ニ俣鹊难芯?,而對動壓缺乏足夠的研究[6-10]。過去通常只考慮沖擊波超壓造成的爆炸傷害,而忽略了動壓所造成的傷害。在此前的研究中,發(fā)現(xiàn)動壓事實(shí)上和沖擊波超壓具有同等數(shù)量級的危害效果。因此,本文想要就動壓的演化規(guī)律進(jìn)行一些有益的探討。應(yīng)該說明的是,本文中研究的動壓是指流體在流動過程中受阻時(shí),由于動能轉(zhuǎn)變?yōu)閴毫δ芏鸬某^流體靜壓力部分的壓力[11]。S.Glasstone[12],G.F.Kinney等[13],L.D.Landau等[14]和M.J.Zucrow等[15]通過研究得到了動壓的計(jì)算公式以及動壓變化規(guī)律的主要影響因素。這些公式均基于爆炸沖擊波的質(zhì)量、動量和能量守恒假設(shè),并依據(jù)Rankine-Hugoniot條件為基礎(chǔ)而得出。朱傳杰[16]通過數(shù)值模擬的方法研究瓦斯爆炸,得到了動壓在管道系統(tǒng)內(nèi)的一些基本演化特征。這些研究或僅基于理論推導(dǎo),或爆炸環(huán)境只考慮了不受限環(huán)境,或?qū)訅褐贿M(jìn)行了定性的描述,而且在煤礦井下,其巷道系統(tǒng)類似于開口型管道系統(tǒng)。因而,有必要完善動壓的研究,觀察其在受限空間內(nèi)的變化規(guī)律,并給出相應(yīng)的定量描述。

針對瓦斯爆炸的研究中主要是礦井實(shí)驗(yàn)、管道實(shí)驗(yàn)和數(shù)值模擬。礦井實(shí)驗(yàn)由于準(zhǔn)備繁復(fù),耗資巨大,無法反復(fù)進(jìn)行;而利用管道進(jìn)行實(shí)驗(yàn)時(shí),由于目前測量手段的局限性,測點(diǎn)的設(shè)置無形中改變了管壁粗糙度,對氣體的流動狀態(tài)有很大的影響,進(jìn)而改變了瓦斯爆炸參數(shù)的變化規(guī)律;但是用數(shù)值模擬的方法可以避免以上情況的出現(xiàn)。目前應(yīng)用較多的計(jì)算軟件主要是AutoReaGas和FLACS,這2種軟件廣泛應(yīng)用于石油、化工和天然氣的危險(xiǎn)評估當(dāng)中,而且有些學(xué)者也將其應(yīng)用于煤礦瓦斯爆炸研究中,并取得一些很好的成果[17-21]。AutoReaGas和FLACS相比較而言,AutoReaGas的預(yù)測值稍微偏高,但是設(shè)計(jì)煤礦瓦斯爆炸的保護(hù)措施應(yīng)該保留一定的安全余量,因此選用AutoReaGas進(jìn)行數(shù)值模擬。

本文中擬通過AutoReaGas軟件模擬開口型巷道系統(tǒng)內(nèi)爆燃波的傳播過程,得到動壓的傳播演化規(guī)律,以期為全面了解瓦斯爆炸參數(shù)的演化規(guī)律提供參考。

1 數(shù)值模型及其驗(yàn)證

1.1 數(shù)值模型

AutoReaGas是三維計(jì)算流體分析軟件,主要用來模擬氣體爆炸與由此引發(fā)的沖擊波效應(yīng)。 專門設(shè)計(jì)用在那些非常擁塞(如管道工程管和設(shè)備)和限制(由于建筑物/結(jié)構(gòu),包括通風(fēng)口等)的場所,這些場所對燃燒加速有很重要的影響,從而引起超壓。AutoReaGas軟件在模擬氣體爆炸方面,其可靠性得到了多方的驗(yàn)證和認(rèn)可[22-24]。數(shù)值模型中的氣體動力學(xué)過程用質(zhì)量、動量和能量守恒方程來表示。湍流作為氣體燃燒爆炸的重要因素,采用k-ε模型。燃燒反應(yīng)過程簡化成基元反應(yīng),即甲烷與氧氣直接生成二氧化碳和水。燃燒速率Rc表示為[25]:

(1)

式中:Ct為量綱一因數(shù),ρ為可燃混合氣體的密度,kg/m3;Γ是湍流擴(kuò)散系數(shù),Rmin可燃物、氧氣和燃燒產(chǎn)物各自所占的質(zhì)量分?jǐn)?shù)中的最小值。

湍流燃燒速度St表示為[26]:

St=1.8ut0.412Lt0.196Sl0.784ν-0.196

(2)

式中:ut為湍流強(qiáng)度,Lt為湍流的特征長度,m;Sl為層流火焰燃燒速度,m/s;ν是運(yùn)動黏度,N·s/m2。數(shù)值模擬中的其余設(shè)置參數(shù)參考A.C.Van den Berg等[27]的研究。

初始階段的層流燃燒速率按照準(zhǔn)層流模型處理。Fs是另外一個(gè)重要的修正系數(shù),主要是為了修正壓力、溫度和火焰前沿褶皺對層流燃燒速度的影響。St是湍流火焰速度,其和Fs、火焰半徑r和理論層流火焰速度Sl的關(guān)系表示為[28]:

St=Sl(1+Fsr)

(3)

數(shù)值計(jì)算相關(guān)的初始參數(shù)可詳見文獻(xiàn)[29]。

1.2 實(shí)驗(yàn)驗(yàn)證

有學(xué)者曾利用實(shí)驗(yàn)礦井進(jìn)行了大量實(shí)驗(yàn),以提高數(shù)值模擬的可靠程度,研究中發(fā)現(xiàn)只要數(shù)值模擬結(jié)果與實(shí)際實(shí)驗(yàn)誤差值在±47%以內(nèi)時(shí),數(shù)值模擬的結(jié)果就能夠滿足工程現(xiàn)場的需要[30-31]。C.J.Lea等[32]也通過實(shí)驗(yàn)證實(shí)了AutoReaGas軟件的模擬可靠性。因此,為了保證數(shù)值計(jì)算結(jié)果的準(zhǔn)確性,通過相關(guān)實(shí)驗(yàn)進(jìn)行驗(yàn)證,利用實(shí)驗(yàn)數(shù)據(jù)與數(shù)值計(jì)算結(jié)果的對比來驗(yàn)證網(wǎng)格劃分的合理性以及模型的選取合理性。模型驗(yàn)證實(shí)驗(yàn)選取的實(shí)驗(yàn)管道長為5 m,橫截面為8 cm×8 cm。在對比參數(shù)的選取上,采用實(shí)驗(yàn)方法易于獲得的爆炸超壓值[33]。

1.2.1 實(shí)驗(yàn)設(shè)備

實(shí)驗(yàn)管道示意圖如圖1所示。管道左端為封閉端,也是點(diǎn)火端,管道右端開放;壓力測點(diǎn)自管道左端0.5 m開始布置,每隔0.5 m安置1個(gè),總共9個(gè),火焰測點(diǎn)安裝在管道左端0.25 m處,起觸發(fā)開關(guān)用,采用電點(diǎn)火方式,點(diǎn)火能量是2 J 。實(shí)驗(yàn)氣體體積分?jǐn)?shù)為9.5%,環(huán)境溫度約25 ℃,管道內(nèi)壁光滑,粗糙度可視為零。這些參數(shù)在數(shù)值模擬當(dāng)中也以相同數(shù)值設(shè)定,包括點(diǎn)火方式的選擇。

圖1 實(shí)驗(yàn)管道示意圖Fig.1 Schematic of the experimental pipe

圖2 爆炸超壓數(shù)值模擬與實(shí)驗(yàn)結(jié)果對比 Fig.2 Comparison of explosion overpressure between simulation and experiment

1.2.2 實(shí)驗(yàn)結(jié)果和數(shù)值模擬的結(jié)果的對比

數(shù)值模擬中選取2種網(wǎng)格進(jìn)行對比。一種是每個(gè)網(wǎng)格尺寸為2 cm×2 cm×2 cm,另一種每個(gè)網(wǎng)格的尺寸為4 cm×4 cm×4 cm,2種不同網(wǎng)格所得的模擬結(jié)果與實(shí)驗(yàn)結(jié)果對比如表1所示。從表1中可以清晰地發(fā)現(xiàn),尺寸為2 cm×2 cm×2 cm的網(wǎng)格劃分所得的數(shù)值模擬結(jié)果與實(shí)際吻合更好。進(jìn)而,利用2 cm×2 cm×2 cm的網(wǎng)格劃分法進(jìn)行了更深入的研究。圖2所示的是爆炸超壓的數(shù)值模擬結(jié)果與實(shí)驗(yàn)數(shù)據(jù)的對比,從中可以看出數(shù)值模擬結(jié)果能與實(shí)驗(yàn)數(shù)據(jù)吻合較好,數(shù)值模擬與實(shí)驗(yàn)數(shù)據(jù)之間的最大偏差絕對值是8.35%,明顯小于47%。因此,認(rèn)為數(shù)值模型和網(wǎng)格劃分具有較大的可靠性。

表1 不同網(wǎng)格劃分方法下的數(shù)值模擬結(jié)果與實(shí)驗(yàn)結(jié)果對比Table 1 Comparison between experimental data and simulation results by different methods of grid partitioning

2 結(jié)果與分析

2.1 動壓隨時(shí)間的演化規(guī)律

動壓作為氣體流動的直觀體現(xiàn),其產(chǎn)生和變化被氣體運(yùn)動情況所控制。由于動壓隨時(shí)間的演化規(guī)律在不同管道中具有一致的變化特征,此處只選取橫截面為8 cm×8 cm、管長為20 m內(nèi)的部分測點(diǎn)情況進(jìn)行比較,如圖3所示。由圖3可以看出,動壓隨時(shí)間的變化規(guī)律與流速的變化規(guī)律在不同測點(diǎn)都基本一致。應(yīng)該說明的是,本文中所指的流速是沖擊波速度,不是火焰?zhèn)鞑ニ俣?。?0.5 m處的情況為例,前驅(qū)沖擊波的到來使得流速出現(xiàn)首個(gè)正向峰值,與此同時(shí),動壓也對應(yīng)出現(xiàn)首個(gè)正向峰值。而后,前驅(qū)沖擊波過后,流速出現(xiàn)回落,動壓也相應(yīng)回落。接著,火焰鋒面的到來使得流速再次出現(xiàn)正向峰值,而動壓也同時(shí)出現(xiàn)第2個(gè)正向峰值。火焰鋒面過后,測點(diǎn)附近的氣流呈現(xiàn)反向流動,因而流速出現(xiàn)反向峰值,而動壓也相應(yīng)地出現(xiàn)反向峰值,但是其值較小。最后,波陣面以對外做功和熱傳遞的方式不斷損耗能量,最終氣體不再運(yùn)動,動壓和流速也趨于零。

圖3(a) 0.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(a) Relationship between dynamic pressure and gas velocity at the point of 0.5 m

圖3(b) 2.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(b) Relationship between dynamic pressure and gas velocity at the point of 2.5 m

圖3(c) 4.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(c) Relationship between dynamic pressure and gas velocity at the point of 4.5 m

圖3(d) 6.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(d) Relationship between dynamic pressure and gas velocity at the point of 6.5 m

圖3(e) 8.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(e) Relationship between dynamic pressure and gas velocity at the point of 8.5 m

圖3(f) 10.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(f) Relationship between dynamic pressure and gas velocity at the point of 10.5 m

圖3(g) 12.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(g) Relationship between dynamic pressure and gas velocity at the point of 12.5 m

圖3(h) 14.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(h) Relationship between dynamic pressure and gas velocity at the point of 14.5 m

圖3(i) 16.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(i) Relationship between dynamic pressure and gas velocity at the point of 16.5 m

圖3(j) 18.5 m處動壓與流速的時(shí)間對應(yīng)關(guān)系Fig.3(j) Relationship between dynamic pressure and gas velocity at the point of 18.5 m

圖4 動壓的正向峰值與傳播距離的關(guān)系Fig.4 Relationship between dynamic pressure peak and propagation distance

從圖3中也可看出,動壓的首個(gè)正向峰值總是比第2個(gè)正向峰值大。0.5 m處,首個(gè)正向峰值是4.00 kPa,第2個(gè)正向峰值是0.16 kPa;2.5 m處,首個(gè)正向峰值是25.28 kPa,第2個(gè)正向峰值是5.68 kPa;4.5 m處,首個(gè)正向峰值是55.67 kPa,第2個(gè)正向峰值是15.72 kPa;6.5m處,首個(gè)正向峰值是90.10 kPa,第2個(gè)正向峰值是26.90 kPa;8.5 m處,首個(gè)正向峰值是122.77 kPa,第2個(gè)正向峰值是37.67 kPa;10.5 m處,首個(gè)正向峰值是158.34 kPa,第2個(gè)正向峰值是47.67 kPa;12.5 m處,首個(gè)正向峰值是197.25 kPa,第2個(gè)正向峰值是56.56 kPa;14.5 m處,首個(gè)正向峰值是239.46 kPa,第2個(gè)正向峰值是64.24 kPa;16.5 m處,首個(gè)正向峰值是286.69 kPa,第2個(gè)正向峰值是70.46 kPa;18.5 m處,首個(gè)正向峰值是343.04 kPa,第2個(gè)正向峰值是74.9 kPa。除了0.5 m處,動壓的首個(gè)峰值是第2個(gè)峰值的25倍,其余測點(diǎn)位置的動壓的首個(gè)正向峰值基本上是第2個(gè)正向峰值的3~4倍。這或許可說明前驅(qū)沖擊波對動壓的影響要大于火焰鋒面對動壓的影響。而且首個(gè)正向峰值和第2個(gè)正向峰值伴隨傳播距離的增大而不斷增大,原因在于動壓與流速的二次方呈正比關(guān)系,而流速伴隨傳播距離的增大不斷增大的,如圖4所示。通過擬合得到動壓首個(gè)正向峰值和第2個(gè)正向峰值與傳播距離x的關(guān)系方程:

(4)

(5)

圖5(a) 動壓在x方向隨時(shí)間的變化規(guī)律 Fig.5(a) Dynamic pressure in x direction varying with time

2.2 動壓在的3個(gè)方向的演化規(guī)律

圖5(b) 動壓在y方向隨時(shí)間的變化規(guī)律Fig.5(b) Dynamic pressure in y direction varying with time

圖5(c) 動壓在z方向隨時(shí)間的變化規(guī)律Fig.5(c) Dynamic pressure in z direction varying with time

通過數(shù)值模擬可以直接獲得動壓的變化規(guī)律。在管道橫截面為8 cm×8 cm,管長為20 m的情況下模擬得到的3個(gè)方向(x、y、z)的爆炸動壓如圖5所示。應(yīng)該說明的是,x方向指的是管道的縱向方向,即爆燃波的傳播方向;而y和z方向是管道的徑向上的2個(gè)方向。由于我們關(guān)心壓力大小,因而在研究動壓在3個(gè)向的變化時(shí)并不考慮正負(fù)。從圖中可清晰看出,動壓的變化規(guī)律分為前后2個(gè)部分,結(jié)合圖3可知,后一部分的動壓產(chǎn)生源于火焰鋒面的影響。相較而言,前一部分的動壓值要大得多,因而只關(guān)注前一部分的動壓在3個(gè)方向演化規(guī)律。由圖5可知,動壓的最大值在3個(gè)方向上都隨爆炸傳播距離的增大而逐漸變大。此外,動壓最大值也是伴隨傳播時(shí)間的增大而不斷增大。換而言之,前一部分動壓直觀體現(xiàn)了前驅(qū)沖擊波在管道內(nèi)傳播過程中伴隨時(shí)間的變化規(guī)律。在通過擬合最大動壓值和傳播時(shí)間關(guān)系中可清晰看出兩者呈明顯的正相關(guān),各個(gè)方向上的最大動壓值隨時(shí)間的擬合方程:

pd,x=35.78-3 496.18t+117 289.30t2R2=0.997 3

(6)

pd,y=74.52-4 541.67t+79 672.25t2R2=0.940 3

(7)

pd,z=72.27-4 389.59t+77 441.29t2R2=0.940 3

(8)

式中:pd,x(kPa)、pd,y(Pa)和pd,z(Pa)為x、y和z方向上的最大動壓值。

在爆炸傳播方向(x方向)上的最大動壓值要遠(yuǎn)大于其他方向(y、z)上的最大動壓值,以19.5 m處測點(diǎn)為例,x方向上為381.13 kPa,y方向上為190.29 Pa,z方向上為190.19 Pa,這說明x方向上的最大動壓值是其他2個(gè)方向上的最大動壓值的數(shù)千倍。與爆炸超壓(靜壓)相較而言,y和z方向上的動壓顯然小幾個(gè)數(shù)量級。因此,在探究開口型系統(tǒng)內(nèi)的爆炸破壞效應(yīng)時(shí),y和z方向的動壓影響基本可以不考慮。但是x方向上的動壓則較大,所以探究爆炸破壞效應(yīng)時(shí)需將它的影響考慮在內(nèi)。

2.3 動壓和流速的定量關(guān)系

圖6(a) 在管道尺寸L/a=16.7時(shí)動壓與流速的定量關(guān)系Fig.6(a) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=16.7

圖6(b) 在管道尺寸L/a=25時(shí)動壓與流速的定量關(guān)系Fig.6(b) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=25

圖6(c) 在管道尺寸L/a=33.3時(shí)動壓與流速的定量關(guān)系Fig.6(c) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=33.3

圖6(d) 在管道尺寸L/a=50時(shí)動壓與流速的定量關(guān)系Fig.6(d) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=50

圖6(e) 在管道尺寸L/a=50時(shí)動壓與流速的定量關(guān)系Fig.6(e) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=50

圖6(f) 在管道尺寸L/a=62.5時(shí)動壓與流速的定量關(guān)系Fig.6(f) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=62.5

圖6(g) 在管道尺寸L/a=66.7時(shí)動壓與流速的定量關(guān)系Fig.6(g) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=66.7

圖6(h) 在管道尺寸L/a=75時(shí)動壓與流速的定量關(guān)系Fig.6(h) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=75

圖6(i) 在管道尺寸L/a=100時(shí)動壓與流速的定量關(guān)系Fig.6(i) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=100

圖6(j) 在管道尺寸L/a=125時(shí)動壓與流速的定量關(guān)系Fig.6(j) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=125

圖6(k) 在管道尺寸L/a=187.5時(shí)動壓與流速的定量關(guān)系Fig.6(k) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=187.5

圖6(l) 在管道尺寸L/a=250時(shí)動壓與流速的定量關(guān)系Fig.6(l) Relationship between dynamic pressure and gas velocity behind the shock wave in the pipe with a geometrical size L/a=250

圖6中管道尺寸相關(guān)參量L/a下各條偏差曲線均為二次函數(shù),設(shè)二次函數(shù)為:y=Ax2+Bx+C,則當(dāng)L/a=16.7時(shí),偏差曲線方程為y=1 143.33-25.3x+0.408x2;當(dāng)L/a=25時(shí),偏差曲線方程為y=2 177.87-46.58x+0.433x2;當(dāng)L/a=33.3時(shí),偏差曲線方程為y=2 694.04-50.63x+0.36x2;當(dāng)L=10 m、a=20 cm,L/a=50時(shí),偏差曲線方程為y=2 890.10-22.49x+0.2x2,改變L和a的值,當(dāng)L=15 m、a=30 cm時(shí),L/a仍為50, 偏差曲線方程為y=5 822.06-65.5x+0.31x2;當(dāng)L/a=62.5時(shí),偏差曲線方程為y=-18 075.87-207.66x-0.083x2;當(dāng)L/a=66.7時(shí),偏差曲線方程為y=229.22-58.11x-0.037x2;當(dāng)L/a=75時(shí),偏差曲線方程為y=-3 853.72+113.67x-0.133x2;當(dāng)L/a=100時(shí),偏差曲線方程為y=-16 261.77+251.21x-0.322x2;當(dāng)L/a=125時(shí),偏差曲線方程為y=-13 434.32+57.42x+0.23x2;當(dāng)L/a=187.5時(shí),偏差曲線方程為y=-3 959.33-38.65x+0.287x2;當(dāng)L/a=250時(shí),偏差曲線方程為y=-12 902.61+25.43x+0.106x2。

將所有偏差曲線的二次項(xiàng)系數(shù)A提取出來,與相對應(yīng)的L/a值結(jié)合,分別得到12個(gè)離散點(diǎn):(16.7,0.408)、(25,0.433)、(33.3,0.360)、(50,0.200)、(50,0.310)、(62.5,-0.083)、(66.7,-0.037)、(75,-0.133)、(100,-0.322)、(125,0.230)、(187,0.287)、(250,0.106);將一次項(xiàng)系數(shù)B提取出來,與相對應(yīng)的L/a值結(jié)合,分別得到12個(gè)離散點(diǎn):(16.7,-25.30)、(25,-46.58)、(33.3,-50.63)、(50,-22.49)、(50,-65.50)、(62.5,207.66)、(66.7,58.11)、(75,113.67)、(100,251.21)、(125,57.42)、(187.5,-38.65)、(250,25.43);最后再將常數(shù)項(xiàng)C提取出來,又得到12個(gè)離散點(diǎn):(16.7,1143.33)、(25,2 177.87)、(33.3,2 694.04)、(50,2 890.10)、(50,5 822.06)、(62.5,-18 075.87)、(66.7,229.22)、(75,-3 853.72)、(100,-16 261.77)、(125,-13 434.32)、(187,-3 959.33)、(250,-12 902.61)。

將這些點(diǎn)擬合可以得到3條曲線,如圖7所示,得到關(guān)于二次項(xiàng)系數(shù)A的方程為:

R2=0.827

(9)

關(guān)于一次項(xiàng)系數(shù)B的方程為:

R2=0.692

(10)

關(guān)于常數(shù)項(xiàng)C的方程為:

R2=0.885

(11)

(12)

圖7(a) 偏差曲線方程中二次項(xiàng)系數(shù)與管道尺寸擬合關(guān)系Fig.7(a) Relationship between quadratic coefficient and pipe size

圖7(b) 偏差曲線方程中一次項(xiàng)系數(shù)與管道尺寸擬合關(guān)系 Fig.7(b) Relationship between monomial coefficient and pipe size

圖7(c) 偏差曲線方程中常數(shù)項(xiàng)與管道尺寸擬合關(guān)系Fig.7(c) Relationship between constant and pipe size

3 結(jié) 論

(1)動壓與流速在時(shí)間上存在較好的對應(yīng)關(guān)系,基本同時(shí)出現(xiàn)正向和反向的峰值。而且動壓的首個(gè)正向峰值總是比第2個(gè)正向峰值大數(shù)倍,這說明前驅(qū)沖擊波對動壓的影響要大于火焰鋒面對動壓的影響。此外,還給出了動壓的首個(gè)正向峰值和第2個(gè)正向峰值基于傳播距離的預(yù)測方程。

(2)動壓在管道的縱向和管道徑向上的變化規(guī)律較為簡單,都伴隨這傳播距離的增大而不斷增大,同時(shí)也伴隨傳播時(shí)間的增大而增大?;鹧?zhèn)鞑シ较?管道縱向)上的最大動壓值要比其他2個(gè)方向上的最大動壓值大數(shù)千倍。相較爆炸超壓而言,管道徑向上動壓對爆炸破壞效應(yīng)的影響極其有限,但是火焰?zhèn)鞑シ较蛏系膭訅簩Ρㄆ茐男?yīng)的影響不可忽略。此外,還給出了各個(gè)方向上最大動壓值基于傳播時(shí)間的預(yù)測方程。

(3)在對動壓與流速的關(guān)系的研究中,驗(yàn)證了動壓與流速的平方呈正比關(guān)系。此外,由于實(shí)際密度小于理論密度,是故所得實(shí)驗(yàn)曲線會低于理論曲線。同時(shí)通過分析給出了動壓基于長徑比和流速的經(jīng)驗(yàn)公式,可為下一步管道實(shí)驗(yàn)內(nèi)的動壓研究提供參考。

[1] 李波,王凱,魏建平,等.2001-2012年我國煤與瓦斯突出事故基本特征及發(fā)生規(guī)律研究[J].安全與環(huán)境學(xué)報(bào),2013,13(3):274-278. Li Bo, Wang Kai, Wei Jianping, et al. On the basic characteristic features and incidental regularity of coal and gas outbursts in China since from 2001 to 2012[J]. Journal of Safety and Environment, 2013,13(3):274-278.

[2] 殷文韜,傅貴,袁沙沙,等.2001-2012年我國重特大瓦斯爆炸事故特征及發(fā)生規(guī)律研究[J].中國安全科學(xué)學(xué)報(bào),2013(2):141-147. Yin Wentao, Fu Gui, Yuan Shasha, et al. Study on basic characteristics and occurrence regularity of major gas explosion accidents in Chinese coal mines during 2001-2012[J]. China Safety Science Journal, 2013(2):141-147.

[3] 黃平,李晉杰,楊珊.中國煤礦安全生產(chǎn)事故統(tǒng)計(jì)分析[C]∥國際安全科學(xué)與技術(shù)學(xué)術(shù)研討會.沈陽,2012.

[4] 朱月敏.煤礦安全事故統(tǒng)計(jì)分析[D].阜新:遼寧工程技術(shù)大學(xué),2011.

[5] 王佑安,王震宇,梁運(yùn)濤.中國煤炭工業(yè)發(fā)展和安全事故總貌的統(tǒng)計(jì)分析和建議[C]∥全國煤礦安全學(xué)術(shù)年會.廣州,2012.

[6] 林柏泉,周世寧,張仁貴.障礙物對瓦斯爆炸過程中火焰和爆炸波的影響[J].中國礦業(yè)大學(xué)學(xué)報(bào),1999(2):6-9. Lin Baiquan, Zhou Shining, Zhang Rengui. Influence of barriers on flame transmission and explosion wave in gas explosion[J]. Journal of China University of Mining and Technology, 1999(2):6-9.

[7] Klemens R, Zydak P, Kaluzny M, et al. Dynamics of dust dispersion from the layer behind the propagating shock wave[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3):200-209.

[8] Ciccarelli G, Johansen C T, Parravani M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion and Flame, 2010,157(11):2125-2136.

[9] Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009,156(2):405-416.

[10] Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008,34(4):499-550.

[11] 吳望一.流體力學(xué)[M].北京:北京大學(xué)出版社,2010.

[12] Glasstone S. The effects of nuclear weapons[R]. US Department of Defense, 1964.

[13] Kinney G F, Graham K J. Explosive shocks in air[M]. Berlin and New York: Springer-Verlag, 1985:282.

[14] Landau L D, Lifshitz E M. Fluid mechanics[J]. Course of Theoretical Physics, 1987,46(10):346-369.

[15] Zucrow M J, Hoffman J D. Gas dynamics[M]. New York: John Wiley and Sons, Inc, 1976.

[16] 朱傳杰.爆炸沖擊波前流場揚(yáng)塵特征及其多相破壞效應(yīng)[D].徐州:中國礦業(yè)大學(xué),2011.

[17] Jiang Bingyou, Lin Baiquan, Shi Shulei, et al. A numerical simulation of the influence initial temperature has on the propagation characteristics of, and safe distance from, a gas explosion[J]. International Journal of Mining Science and Technology, 2012,22(3):307-310.

[18] Maremonti M, Russo G, Salzano E, et al. Numerical simulation of gas explosions in linked vessels[J]. Journal of Loss Prevention in the Process Industries, 1999,12(3):189-194.

[19] Pang L, Zhang Q, Wang T, et al. Influence of laneway support spacing on methane/air explosion shock wave[J]. Safety Science, 2012,50(1):83-89.

[20] Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in stramberk experimental mine and AutoReaGas simulation[J]. Journal of Loss Prevention in the Process Industries, 2006,19(2):280-287.

[21] Popat N R, Catlin C A, Arntzen B J, et al. Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models[J]. Journal of Hazardous Materials, 1996,45(1):1-25.

[22] Zhu C J, Lin B Q, Jiang B Y. Flame acceleration of premixed methane/air explosion in parallel pipes[J]. Journal of Loss Prevention in the Process Industries, 2012,25(2):383-390.

[23] 朱傳杰,林柏泉,江丙友,等.受限空間內(nèi)爆燃波瞬態(tài)流速與超壓的耦合關(guān)系[J].燃燒科學(xué)與技術(shù),2012,18(4):326-330. Zhu Chuanjie, Lin Baiquan, Jiang Bingyou, et al. Coupled relationship between gas velocity and peak overpressure of deflagration wave in confined space[J]. Journal of Combustion Science and Technology, 2012,18(4):326-330.

[24] 朱傳杰,林柏泉,江丙友,等.瓦斯爆炸在封閉管道內(nèi)沖擊波振蕩特征的數(shù)值模擬[J].振動與沖擊, 2012,31(16):8-12. Zhu Chuanjie, Lin Baiquan, Jiang Bingyou, et al. Numerical simulation on oscillation and shock of gas explosion in a closed end pipe[J]. Journal of Vibration and Shock, 2012,31(16):8-12.

[25] Zipf R K, , Sapko M J, Brune J F. Explosion pressure design criteria for new seals in U S coal mines[S]. Pittsburgh, Pennsylvania: The National Institute for Occupational Safety and Health (NIOSH), 2007.

[26] Bray K N C. Studies of the turbulent burning velocity[C]∥Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1990(431):315-335.

[27] Van Den Berg A C, Mercx W P M, Mouilleau Y V, et al. AutoReaGas: A CFD tool for gas explosion hazard analysis[C]∥International Conference and Exhibition Offshore Structure Design, Hazards, Safety & Engineering. London, UK, 1994.

[28] Bakke J R. Numerical simulation of gas explosions in two-dimensional geometries[R]. Christian Michelsen Institute, 1986.

[29] AutoReaGas user manual version 3.1[M]. Century Dynamic Inc, 2002.

[30] Oran E S, Boris J P, Young T, et al. Numerical simulations of detonations in hydrogen-air and methane-air mixtures[J]. Symposium on Combustion, 1981,18(1):1641-1649.

[31] Zipf R K, Gamezob V N, Sapkoa M J, et al. Methane-air detonation experiments at NIOSH Lake Lynn Laboratory[J]. Journal of Loss Prevention in the Process Industries, 2013,26(2):295-301.

[32] Lea C J, Ledin H S. A review of the state of the art in gas explosion modelling: HSL-CM-00/04[R]. Health & Safety Laboratory, Buxton, UK, 2002.

[33] Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials, 2002,95(3):233-247.

[34] Zhu C J, Lin B Q, Hong Y D, et al. Numerical simulations on relationships between gas velocity and overpressure of gas explosions in ducts[J]. Disaster Advances, 2013,6(S1):217-227.

[35] Lin B Q, Hong Y D, Zhu C J, et al. Effect of length on the relationships between the gas velocity and peak overpressure of gas explosion disasters in closed-end pipes[J]. Disaster Advances, 2013,6(S2):176-184.

(責(zé)任編輯 王易難)

Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes

Hong Yidu, Lin Baiquan, Zhu Chuanjie

(StateKeyLaboratoryofCoalResourcesandSafeMining,FacultyofSafetyEngineering,ChinaUniversityofMiningandTechnology,Xuzhou221116,Jiangsu,China)

In order to study the evolution of dynamic overpressure of deflagration, a simulation was carried out in an open end pipe. It was found that the dynamic pressure was closely correlated with the gas velocity so that they always arrive at the peak value at the same time. In addition, the first positive peak of the dynamic pressure was almost several times greater than that of the second. This may indicate that the blast wave has a greater influence on the dynamic pressure than the flame does. An empirical prediction equation was given to calculate the first and second positive peaks based on the propagation time. Maximum dynamic pressures were increased with the propagation distance in all the three directions (x,yandz), and so was with time. The maximum dynamic pressure value in thexdirection was almost several thousand times greater than those in the other two directions. Compared with the explosive overpressure, the influence on the explosive damage by the dynamic pressure in theyandzdirection was quite small. Three empirical formulas were given to calculate the maximum dynamic pressures in different directions. The relationship between the dynamic pressure and the square of the gas velocity was verified. An empirical formula of the dynamic overpressure was also given based on the length-diameter ratio and the gas velocity. The results may provide a reference for the study on the gas explosion in the limited spaces.

mechanics of explosion; dynamic pressure; pipe size; methane/air explosion; open-end pipes; gas velocity

10.11883/1001-1455(2016)02-0198-12

2014-08-18;

國家自然科學(xué)基金項(xiàng)目(51204174);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)項(xiàng)目(2012QNB01)

洪溢都(1989— ),男,博士研究生,hongyidu@163.com。

O383 國標(biāo)學(xué)科代碼: 13035

A

修回日期: 2014-10-24

猜你喜歡
動壓流速瓦斯
液體壓強(qiáng)與流速的關(guān)系
『流體壓強(qiáng)與流速的關(guān)系』知識鞏固
山雨欲來風(fēng)滿樓之流體壓強(qiáng)與流速
礦井瓦斯涌出量預(yù)測
機(jī)械密封表面形貌對流體動壓潤滑效應(yīng)的影響研究
11采區(qū)永久避難硐室控制瓦斯涌出、防止瓦斯積聚和煤層自燃措施
愛虛張聲勢的水
基于單片機(jī)的無人機(jī)真空速測量系統(tǒng)設(shè)計(jì)
高瓦斯礦井防治瓦斯異常涌出措施的應(yīng)用
動壓下掘進(jìn)巷道支護(hù)技術(shù)與工程實(shí)踐研究