国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

碳酸氧鉍光催化劑的研究進(jìn)展

2016-04-25 05:20:35徐麗亞敖燕輝王沛芳
工業(yè)催化 2016年1期
關(guān)鍵詞:改性

徐麗亞,敖燕輝,王沛芳,王 超

(淺水湖泊綜合治理與資源開發(fā)教育部重點(diǎn)實(shí)驗(yàn)室, 河海大學(xué), 江蘇 南京 210098)

?

綜述與展望

碳酸氧鉍光催化劑的研究進(jìn)展

徐麗亞,敖燕輝*,王沛芳,王超

(淺水湖泊綜合治理與資源開發(fā)教育部重點(diǎn)實(shí)驗(yàn)室, 河海大學(xué), 江蘇 南京 210098)

摘要:光催化技術(shù)是一種將太陽能轉(zhuǎn)化為化學(xué)能的綠色技術(shù),在污染治理和能源生產(chǎn)方面有廣闊的應(yīng)用前景。近幾年,碳酸氧鉍光催化劑因其優(yōu)異的光催化性能受到廣泛關(guān)注,但因其只對(duì)紫外光具有響應(yīng)和回收利用困難等問題限制了在實(shí)際生產(chǎn)中的應(yīng)用。對(duì)碳酸氧鉍進(jìn)行形貌控制和改性能有效改善其光催化性能,介紹零維、一維、二維和三維結(jié)構(gòu)的碳酸氧鉍光催化劑的研究現(xiàn)狀,指出三維結(jié)構(gòu)的碳酸氧鉍展現(xiàn)更佳的光催化性能。綜述了采用摻雜、金屬沉積和構(gòu)建異質(zhì)結(jié)方式對(duì)碳酸氧鉍進(jìn)行改性所取得的進(jìn)展,提出碳酸氧鉍光催化劑在降解機(jī)理、降解對(duì)象和降解環(huán)境等方面需不斷努力深入研究。

關(guān)鍵詞:催化化學(xué);碳酸氧鉍光催化劑;形貌控制;改性

CLC number:O643.36;TQ034Document code: AArticle ID: 1008-1143(2016)01-0001-06

光催化技術(shù)是一種將太陽能轉(zhuǎn)化為化學(xué)能的綠色技術(shù),在污染治理和能源生產(chǎn)方面應(yīng)用前景廣闊。光催化劑種類繁多,TiO2是最常見的光催化劑,但只對(duì)紫外光有響應(yīng),而紫外光占太陽光的5%,因此,可見光光催化劑成為研究熱點(diǎn)。

不同形貌展現(xiàn)出的光催化劑性能差異較大。研究者報(bào)道過多種Bi2O2CO3光催化劑的形貌,如納米片[17]、納米管[18]、納米棒[19]以及花狀[20]等。光催化性能的提高不僅可通過形貌結(jié)構(gòu)的控制實(shí)現(xiàn),更多是對(duì)光催化劑進(jìn)行改性[21-24]。本文對(duì)近年來Bi2O2CO3在形貌控制和改性兩大方面的研究進(jìn)展進(jìn)行綜述,提出Bi2O2CO3光催化劑的進(jìn)一步研究發(fā)展方向。

1Bi2O2CO3光催化劑的形貌控制

1.1零維及一維結(jié)構(gòu)

Bi2O2CO3光催化劑的低維結(jié)構(gòu)(零維及一維結(jié)構(gòu))主要有納米粒、納米管和納米棒。

1.2二維結(jié)構(gòu)

Bi2O2CO3的二維結(jié)構(gòu)對(duì)納米片的研究最多。Liu Y等[17]以尿素為碳源,用簡單的水熱法合成Bi2O2CO3納米片,在降解RhB和異丙醇方面表現(xiàn)出較好的光催化活性。Liang H Y等[30]以十二烷基硫酸鈉表面活性劑作為軟模板劑合成Bi2O2CO3納米片,并與不加十二烷基硫酸鈉水熱法制備的Bi2O2CO3相比,發(fā)現(xiàn)其在太陽光下展現(xiàn)出更好的光催化性能。Hu S等[31]改用十二烷基苯磺酸作為軟模劑板,用水熱法合成單分散性的Bi2O2CO3納米片,指出十二烷基苯磺酸含量對(duì)Bi2O2CO3納米片的合成具有重要影響,在形成Bi2O2CO3納米片過程中,十二烷基苯磺酸會(huì)被吸附于Bi2O2CO3納米粒表面,從而改變晶面的生長速率和裁縫晶體的形狀,最終形成Bi2O2CO3納米片。

1.3三維結(jié)構(gòu)

三維結(jié)構(gòu)具有較大的比表面積,有利于催化劑和反應(yīng)物更加充分地接觸,增加表面活性位,同時(shí)某些三維結(jié)構(gòu)對(duì)光具有更好的吸收,展現(xiàn)出良好的光催化性能。Bi2O2CO3的三維結(jié)構(gòu)包括花狀、球狀和雞蛋狀等結(jié)構(gòu)。

Zhao T等[32]以檸檬酸鈉作為協(xié)調(diào)劑和碳源制備出多級(jí)Bi2O2CO3微球,表現(xiàn)出較好的可見光光催化活性。Chen L等[15]以十六烷基三甲基溴化銨為模板劑,利用液相法合成花狀Bi2O2CO3,在治理含染料污水方面效果較好。Cheng H等[33]在無模板劑和低溫條件下,通過成核、生長以及自由組裝三步法合成了多級(jí)花狀Bi2O2CO3。

相較于歐美發(fā)達(dá)國家,我國無償獻(xiàn)血的參與程度仍有待提升,且未來無償獻(xiàn)血的工作重點(diǎn)應(yīng)著眼于“固定獻(xiàn)血人群”的建立[10]。無償獻(xiàn)血和保障醫(yī)療機(jī)構(gòu)臨床用血是一項(xiàng)社會(huì)系統(tǒng)工程。無償獻(xiàn)血事業(yè)的可持續(xù)發(fā)展是臨床安全、足量用血的根本保證[2]。對(duì)于團(tuán)體組織,政府相關(guān)部門可適當(dāng)干預(yù),如將無償獻(xiàn)血率作為文明單位建設(shè)的重要考核指標(biāo)、作為評(píng)選先進(jìn)單位的輔助條件等,使更多人群轉(zhuǎn)化為固定無償獻(xiàn)血者,這樣就可通過預(yù)約采血,緩解因高校學(xué)生寒暑假出現(xiàn)的臨床用血措手不及的窘?jīng)r,還可糾正血型偏型,提高應(yīng)對(duì)突發(fā)公共事件緊急血液需求時(shí)的調(diào)配能力。

所用溶劑不同,合成的Bi2O2CO3形貌也不同。Yang L等[34]在氨水存在條件下,采用檸檬酸鉍作為單一前驅(qū)體,分別選用乙二醇和水作為溶劑,以乙二醇作為溶劑合成的Bi2O2CO3為海綿狀,以水作為溶劑合成的Bi2O2CO3為雞蛋狀,雞蛋狀Bi2O2CO3較海綿狀Bi2O2CO3在RhB降解上表現(xiàn)出更佳的光催化活性。Zheng Y等[35]通過改變pH和溫度,制備出不同形貌的Bi2O2CO3,并發(fā)現(xiàn)(001)晶面暴露的花狀多級(jí)Bi2O2CO3在降解有機(jī)污染物方面優(yōu)于其他形貌。

2Bi2O2CO3光催化劑的改性

對(duì)Bi2O2CO3在光催化領(lǐng)域的研究除了通過形貌結(jié)構(gòu)的可控提高光催化性能外,主要研究焦點(diǎn)還有以Bi2O2CO3基制備高光催化活性和具有選擇性的改性Bi2O2CO3光催化劑。對(duì)于這一目的的各種改性技術(shù),包括金屬和非金屬摻雜、金屬沉積及構(gòu)建異質(zhì)結(jié)。

2.1摻雜

摻雜改性光催化劑是通過在晶格中引入缺陷或改變結(jié)晶度的方式實(shí)現(xiàn)促進(jìn)光生電子和空穴的有效分離,進(jìn)而提高光催化活性。常用于摻雜的有金屬離子(Fe3+、Co2+、Cu2+)以及非金屬(N、Si)。

Li Q等[36]以雙氰胺作為前驅(qū)體合成N摻雜的蜂窩狀Bi2O2CO3,N摻雜Bi2O2CO3具有高效的可見光去除NO催化效果,其主要是由于N摻雜能有效縮短禁帶寬度和加強(qiáng)可見光的吸收。Dong F等[37]以相同時(shí)間NO的可見光降解程度作比較判斷N摻雜前后Bi2O2CO3光催化效果的變化,結(jié)果表明,N摻雜后,光催化效果得到明顯提高。Zhao H等[38]采用水熱法合成Sb摻雜的Bi2O2CO3納米片,并通過BET和電化學(xué)阻抗譜研究指出,Sb摻雜的Bi2O2CO3納米片光催化性能的改善是由于增大的比表面積有利于對(duì)染料的吸附以及載流子在界面的快速轉(zhuǎn)移而成。Sun P等[39]制備了硅摻雜的Bi2O2CO3納米棒,研究發(fā)現(xiàn),Si—O—Bi結(jié)構(gòu)使該催化劑對(duì)不同類型的染料均表現(xiàn)出優(yōu)異的催化活性。

2.2金屬沉積

金屬沉積是一種提高半導(dǎo)體光催化劑光催化性能的有效方法,通過改變Bi2O2CO3的電子性能和光譜響應(yīng)實(shí)現(xiàn)提高Bi2O2CO3的光催化性能。沉積在Bi2O2CO3表面的金屬離子通常為光誘導(dǎo)電荷沉載體,有利于界面電荷轉(zhuǎn)移。金屬材料的性能,如金屬類型、大小、濃度與制備方法對(duì)光催化的性能有巨大影響,已用在Bi2O2CO3沉積的材料有Ag、Au貴金屬以及Bi金屬。

Dong F等[40]通過水熱法將貴金屬Ag沉積到Bi2O2CO3微球上,制得的新型光催化劑對(duì)NO降解表現(xiàn)出比純Bi2O2CO3微球更優(yōu)異的光催化效果,指出沉積Ag后的Ag/Bi2O2CO3能吸收更多可見光,同時(shí)由于SPR效應(yīng),Ag納米粒子可被激發(fā),從而提高表面電子激發(fā)和界面間電子的轉(zhuǎn)移。由于金屬Ag的費(fèi)米能級(jí)(0.4 eV)低于Bi2O2CO3的導(dǎo)帶(0.20 eV),光生電子可能會(huì)轉(zhuǎn)移到沉積的Ag顆粒上,從而創(chuàng)建界面處的肖特基勢(shì)壘,減少電子空穴對(duì)的復(fù)合,延長光生載流子壽命。因此,在SPR效應(yīng)光生電子和空穴的有效分離以及延長光生載流子壽命等協(xié)同作用下,復(fù)合光催化劑表現(xiàn)出更加優(yōu)異的光催化效果。Peng S等[41]在PVP輔助下合成Bi2O2CO3微球,并將單分散的納米Ag單質(zhì)負(fù)載在Bi2O2CO3微球上,合成的Ag/Bi2O2CO3具有增強(qiáng)的光催化活性和超電容性能。Li Q等[42]將貴金屬Au負(fù)載在Bi2O2CO3上制備出三維Au-Bi2O2CO3,發(fā)現(xiàn)其對(duì)空氣中的NO具有很好的去除效果。Sun Y等[43]將Bi沉積在Bi2O2CO3微球上,制得的光催化劑在可見光下去除NO的效果與改性的對(duì)比劑Bi2O2CO3(C/TiO2、BiOI與C3N4等修飾)相比有明顯優(yōu)勢(shì)。

2.3構(gòu)建異質(zhì)結(jié)

與價(jià)帶匹配的半導(dǎo)體物質(zhì)構(gòu)建異質(zhì)結(jié)是對(duì)Bi2O2CO3改性最廣泛的方法,構(gòu)建異質(zhì)結(jié)可實(shí)現(xiàn)光生電子與空穴的有效分離,減少光生電子與空穴的結(jié)合率,實(shí)現(xiàn)光催化活性的加強(qiáng)。與具有磁性的Fe2O3和Fe3O4構(gòu)建異質(zhì)結(jié)還可以實(shí)現(xiàn)對(duì)復(fù)合光催化的回收利用。

Bi2O2CO3可與Bi2O3、Bi2S3和BiOX (X=Cl,Br,I)等鉍系半導(dǎo)體物質(zhì)形成異質(zhì)結(jié)。Cai G等[44]采用熱處理法將對(duì)可見光有很好響應(yīng)的β-Bi2O3(禁帶寬度為2.47 eV)與只對(duì)紫外光有響應(yīng)的Bi2O2CO3(禁帶寬度約為3.5 eV)相結(jié)合制備了異質(zhì)結(jié)光催化劑β-Bi2O3/Bi2O2CO3,可見光響應(yīng)范圍(400~500) nm,禁帶寬度最低可達(dá)2.79 eV,對(duì)可見光有很好的利用。同時(shí),光生電子和空穴能在β-Bi2O3和Bi2O2CO3界面轉(zhuǎn)移,促進(jìn)光生載流子的分離,從而提高光催化活性。Liang N等[45]將窄禁帶寬度的Bi2S3(1.38 eV)負(fù)載在Bi2O2CO3上形成具有可見光催化活性的n-n型Bi2S3/Bi2O2CO3異質(zhì)結(jié)。Cao J等[46]制備出(BiO)2CO3/BiOX(X=Cl,Br,I)p-n型異質(zhì)結(jié)光催化劑,該光催化劑與純(BiO)2CO3和BiOX相比,在可見光下對(duì)甲基橙具有很好的降解效果。將3種p-n型異質(zhì)結(jié)光催化劑進(jìn)行比較,其光催化活性為(BiO)2CO3/BiOCl<(BiO)2CO3/BiOBr<(BiO)2CO3/BiOI。

研究者還將Bi2O2CO3與磁性材料相結(jié)合,制備出形成利于回收的磁性Bi2O2CO3基異質(zhì)結(jié)。Zhu G等[47]將Fe3O4負(fù)載在球狀和花狀Bi2O2CO3上,制備出兩種形貌的Fe3O4/Bi2O2CO3,通過對(duì)甲基橙和亞甲基藍(lán)的降解實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),花狀的Fe3O4/Bi2O2CO3光催化活性更好,同時(shí)花狀的Fe3O4/Bi2O2CO3在磁場(chǎng)作用下能夠被快速回收利用,而且Fe3O4/Bi2O2CO3再次利用時(shí)仍保持很好的光催化活性。Hu D等[48]選用Fe2O3負(fù)載到(001)晶面暴露的Bi2O2CO3上,制備出Bi2O2CO3@Fe2O3磁性異質(zhì)結(jié)光催化劑,當(dāng)Fe2O3負(fù)載質(zhì)量分?jǐn)?shù)為5%時(shí)達(dá)到最佳比例,該最佳Bi2O2CO3@Fe2O3磁性光催化劑在可見光降解RhB和混合染料以及對(duì)其回收利用方面表現(xiàn)出良好的性能。

3結(jié)語與展望

形貌結(jié)構(gòu)的不同,使Bi2O2CO3光催化劑的光催化效果差異明顯,可以通過形貌的控制,實(shí)現(xiàn)對(duì)Bi2O2CO3光催化活性的調(diào)控。與零維、一維和二維結(jié)構(gòu)的Bi2O2CO3相比,三維結(jié)構(gòu)的Bi2O2CO3具有更好的光催化活性,這主要是由于三維的Bi2O2CO3有更大的比表面積,對(duì)被降解的物質(zhì)具有更好的吸附,反應(yīng)活性位也增加,從而表現(xiàn)出良好的光催化活性。此外,還發(fā)現(xiàn)(001)晶面暴露的Bi2O2CO3具有更好的光催化活性。因此,理想的Bi2O2CO3光催化劑的結(jié)構(gòu)是(001)晶面暴露的具有高比表面積的三維結(jié)構(gòu)。

雖然Bi2O2CO3具有優(yōu)異的光催化活性、良好的光穩(wěn)定性以及無毒等優(yōu)點(diǎn),但因只對(duì)紫外光有響應(yīng),粉末狀難以再利用,限制了其實(shí)際應(yīng)用。通過金屬和非金屬摻雜,金屬沉積和構(gòu)建異質(zhì)結(jié)等改性技術(shù)可制備出具有高催化活性、能回收利用和可見光響應(yīng)型Bi2O2CO3光催化劑,加快Bi2O2CO3光催化劑的實(shí)際使用。

對(duì)Bi2O2CO3光催化劑的研究仍需要不斷努力深入:(1) 對(duì)Bi2O2CO3光催化作用的機(jī)理、影響因素沒有深入研究了解,如光催化劑的形貌、晶態(tài)如何具體作用光催化性能;(2) 如今的Bi2O2CO3光催化劑主要用于對(duì)水中甲基橙、亞甲基藍(lán)和羅丹明B等染料的降解,對(duì)水中持久性有機(jī)污染物的研究需要進(jìn)一步深入;(3) 降解對(duì)象以水溶液中的污染物為主,對(duì)甲醛和苯等大氣污染的研究較少;(4) Bi2O2CO3光催化劑降解以單一污染物為主,對(duì)復(fù)雜水環(huán)境的多種污染物降解研究非常少。

參考文獻(xiàn):

[1]Sood S,Umar A,Kumar Mehta S,et al.α-Bi2O3nanorods:an efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol[J].Ceramics International,2015,41(3):3355-3364.

[2]Cuéllar E L,Martínez-De La Cruz A,Rodríguez K H L,et al.Preparation of γ-Bi2MoO6thin films by thermal evaporation deposition and characterization for photocatalytic applications[J].Catalysis Today,2011,166(1):140-145.

[3]Cheng J,Wang C,Cui Y,et al.Visible light photocatalytic properties and thermochromic phenomena of nanostructured BiOCl microspheres[J].Journal of Materials Science & Technology,2014,30(11):1130-1133.

[4]Zhou Y,Shuai L,Jiang X,et al.Visible-light-driven photocatalytic properties of layered double hydroxide supported-Bi2O3modified by Pd(Ⅱ) for methylene blue[J].Advanced Powder Technology,2015,26(2):439-447.

[5]Albuquerque R,Neves M C,Mendon?a M H,et al.Adsorption and catalytic properties of SiO2/Bi2S3nanocomposites on the methylene blue photodecolorization process[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,328(1/3):107-113.

[6]Xue Y,Wang X.The effects of Ag doping on crystalline structure and photocatalytic properties of BiVO4[J].International Journal of Hydrogen Energy,2015,40(17):5878-5888.

[7]Ying C,Chen X,Ji S,et al.Preparation of HPA/Bi2WO6and its photocatalytic properties for denitrification[J].Journal of Fuel Chemistry and Technology,2014,42(8):978-985.

[8]Li J,Liu X,Sun Z,et al.Mesoporous yolk-shell structure Bi2MoO6microspheres with enhanced visible light photocataly-tic activity[J].Ceramics International,2015,41(7):8592-8598.

[9]Hao H,Xu Y,Liu P,et al.BiOCl nanostructures with different morphologies:tunable synthesis and visible-light-driven photocatalytic properties[J].Chinese Chemical Letters,2015,26(1):133-136.

[10]Zhang W,Dong F,Xiong T,et al.Synthesis of BiOBr-graphene and BiOBr-graphene oxide nanocomposites with enhanced visible light photocatalytic performance[J].Ceramics International,2014,40(7):9003-9008.

[11]Xia J,Yin S,Li H,et al.Enhanced photocatalytic activity of bismuth oxyiodine (BiOI) porous microspheres synthesized via reactable ionic liquid-assisted solvothermal method[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,387(1/3):23-28.

[12]Gan H,Zhang G,Huang H.Enhanced visible-light-driven photocatalytic inactivation of escherichia coli by Bi2O2CO3/Bi3NbO7composites[J].Journal of Hazardous Materials,2013,250-251:131-137.

[13]Wang Q,Zheng L,Chen Y,et al.Synthesis and characterization of novel PPy/Bi2O2CO3composite with improved photocatalytic activity for degradation of Rhodamine-B[J].Journal of Alloys and Compounds,2015,637:127-132.

[14]Zhao Z,Zhou Y,Wang F,et al.Polyaniline-decorated {001} facets of Bi2O2CO3nanosheets:in situ oxygen vacancy formation and enhanced visible light photocatalytic activity[J].ACS Applied Materials & Interfaces,2015,7(1):730-737.

[15]Chen L,Huang R,Yin S,et al.Flower-like Bi2O2CO3:facile synthesis and their photocatalytic application in treatment of dye-containing wastewater[J].Chemical Engineering Journal,2012,193-194:123-130.

[16]Cao X,Zhang L, Chen X,et al.Persimmon-like (BiO)2CO3microstructures:hydrothermal preparation,photocatalytic properties and their conversion into Bi2S3[J].CrystEngComm,2011,13:1939-1945.

[17]Liu Y,Wang Z,Huang B,et al.Preparation,electronic structure,and photocatalytic properties of Bi2O2CO3nanosheet[J].Applied Surface Science,2010,257(1):172-175.

[18]Chen R,So M,Yang J,et al.Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate[J].Chemical Communications,2006,21:2265-2266.

[19]Cheng G,Yang H,Rong K,et al.Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials[J].Journal of Solid State Chemistry,2010,183(8):1878-1883.

[20]Ma J,Zhu S,Shan Q,et al.Facile Synthesis of flower-like (BiO)2CO3@MnO2and Bi2O3@MnO2nanocomposites for supercapacitors[J].Electrochimica Acta,2015,168:97-103.

[21]Tian N,Huang H,Guo Y,et al.A g-C3N4/Bi2O2CO3composite with high visible-light-driven photocatalytic activity for rhodamine B degradation[J].Applied Surface Science,2014,322:249-254.

[22]Wang Q,Yun G,Bai Y,et al.Photodegradation of rhodamine B with MoS2/Bi2O2CO3composites under UV light irradiation[J].Applied Surface Science,2014,313:537-544.

[23]Song P,Xu M,Zhang W.Sodium citrate-assisted anion exchange strategy for construction of Bi2O2CO3/BiOI photocatalysts[J].Materials Research Bulletin,2015,62:88-95.

[24]Hu Y,Dong C,Wu K,et al.Synthesis of Ag3PO4-Bi2O2CO3composites with high visible-light photocatalytic activity[J].Materials Letters,2015,147:69-71.

[25]Alivisatos A.Semiconductor Clusters,Nanocrystals,and quantum dots[J].Science,1996,271:933-937.

[26]Shi W,Yu J,Wang H,et al.Hydrothermal synthesis of single-crystalline antimony telluride nanobelts[J].Journal of the American Chemical Society,2006,128(51):16490-16491.

[27]Dong F,Li Q,Zhang W,et al.Synthesis of flower-like,pinon-like and faceted nanoplates (BiO)2CO3micro/nanostructures with morphology-dependent photocatalytic activity[J].Materials Chemistry and Physics,2013,142(1):381-386.

[28]Qin F,Li G,Wang R,et al.Template-free fabrication of Bi2O3and (BiO)2CO3nanotubes and their application in water treatment[J].Chemistry-A European Journal,2012,18(51):16491-16497.

[29]Xu Y,Zhang Z,Zhang W.Inlay of Bi2O2CO3nanoparticles onto Bi2WO6nanosheets to build heterostructured photocatalysts[J].Dalton Transactions,2014,43(9):3660-3668.

[30]Liang H Y,Yang Y X,Tang J C,et al.Photocatalytic properties of Bi2O2CO3nanosheets synthesized via a surfactant-assisted hydrothermal method[J].Materials Science in Semiconductor Processing,2013,16(6):1650-1654.

[31]Hu S,Xu C,Zhang B,et al.Solvothermal synthesis of Bi2O2CO3nanoplates for efficient photodegradation of RhB and phenol under simulated solar light irradiation[J].Bulletin of Korean Chemical Society,2014,35(10):2935-2940.

[32]Zhao T,Zai J,Xu M,et al.Hierarchical Bi2O2CO3microspheres with improved visible-light-driven photocatalytic activity[J].CrystEngComm,2011,13(12):4010-4017.

[33]Cheng H,Huang B,Yang K,et al.Facile template-free synthesis of Bi2O2CO3hierarchical microflowers and their associated photocatalytic activity[J].ChemPhysChem,2010,11(10):2167-2173.

[34]Yang L,Han Q,Zhu J,et al.Synthesis of egg-tart shaped Bi2O2CO3hierarchical nanostructures from single precursor and its photocatalytic performance[J].Materials Letters,2015,138:235-237.

[35]Zheng Y,Duan F,Chen M,et al.Synthetic Bi2O2CO3nanostructures:novel photocatalyst with controlled special surface exposed[J].Journal of Molecular Catalysis A:Chemical,2010,317(1/2):34-40.

[36]Li Q,Liu H,Dong F,et al.Hydrothermal formation of N-doped (BiO)2CO3honeycomb-like microspheres photocatalysts with bismuth citrate and dicyandiamide as precursors[J].Journal of Colloid and Interface Science,2013,408:33-42.

[37]Dong F,Wang R,Li X,et al.Hydrothermal fabrication of N-doped (BiO)2CO3:structural and morphological influence on the visible light photocatalytic activity[J].Applied Surface Science,2014,319:256-264.

[38]Zhao H,Tang J,Lai Q,et al.Enhanced visible light photocatalytic performance of Sb-doped (BiO)2CO3nanoplates[J].Catalysis Communications,2015,58:190-194.

[39]Sun P,Jin Y,Zhao Y,et al.Novel hierarchical nanorods of silicon-doped Bi2O2CO3and its photocatalytic activity[J].Nano,2014,9(8):68-78.

[40]Dong F,Li Q,Zhou Y,et al.In situ decoration of plasmonic Ag nanocrystals on the surface of (BiO)2CO3hierarchical microspheres for enhanced visible light photocatalysis[J].Dalton Transactions,2014,43(25):9468-9480.

[41]Peng S,Li L,Tan H,et al.Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3microspheres with enhanced photocatalytic and supercapacitive performances[J].Journal of Materials Chemistry,2013,1(26):7630-7638.

[42]Li Q,Hao X,Guo X,et al.Controlled deposition of Au on (BiO)2CO3microspheres:the size and content of Au nanoparticles matter[J].Dalton Transactions,2015,44(19):8805-8811.

[43]Sun Y,Zhao Z,Dong F,et al.Mechanism of visible light photocatalytic NOx oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3hierarchical microspheres[J].Physical Chemistry Chemical Physics,2015,17(16):10383-10390.

[44]Cai G,Xu L,Wei B,et al.Facile synthesis of β-Bi2O3/Bi2O2CO3nanocomposite with high visible-light photocatalytic activity[J].Materials Letters,2014,120:1-4.

[45]Liang N,Zai J,Xu M,et al.Novel Bi2S3/Bi2O2CO3heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment[J].Journal of Materials Chemistry A,2014,2(12):4208.

[46]Cao J,Li X,Lin H,et al.Surface acid etching of (BiO)2CO3to construct (BiO)2CO3/BiOX(X=Cl,Br,I) heterostructure for methyl orange removal under visible light[J].Applied Surface Science,2013,266:294-299.

[47]Zhu G,Hojamberdiev M,Katsumata K,et al.Heterostructured Fe3O4/Bi2O2CO3photocatalyst:synthesis,characterization and application in recyclable photodegradation of organic dyes under visible light irradiation[J].Materials Chemistry and Physics,2013,142(1):95-105.

[48]Hu D,Zhang K,Yang Q,et al.Super-high photocatalytic activity of Fe2O3nanoparticles anchored on Bi2O2CO3nanosheets with exposed {001} active facets[J].Applied Surface Science,2014,316:93-101.

Recent advances in bismuthyl carbonate photocatalysts

XuLiya,AoYanhui*,WangPeifang,WangChao

(Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, Jiangsu, China)

Abstract:Photocatalytic technology is a kind of green technology,which can convert solar energy into chemical energy.Photocatalytic technology is the most promising ways for solving pollution control and energy production.Bi2O2CO3 photocatalyst has attracted increasing attention due to its excellent photocatalytic activity.However,Bi2O2CO3 only absorbs UV light and has difficulty recycling,which restricts its practical application under solar light.The photocatalytic activity of Bi2O2CO3 can be effectively improved by morphology control and modification of Bi2O2CO3.The research status of zero-dimensional,one-dimensional,two-dimensional and three-dimensional structures of Bi2O2CO3 photocatalyst was introduced,and it was pointed out that Bi2O2CO3 with three-dimensional structure exhibited the best photocatalytic activity.The progress in the modification methods of Bi2O2CO3 by doping,metal deposition and the construction of the heterojunction was reviewed.Finally,the further development of Bi2O2CO3 photocatalyst in the degradation mechanism,degradation objects and degradation environment and so on should be made.

Key words:catalytic chemistry; Bi2O2CO3 photocatalyst; morphology control; modification

中圖分類號(hào):O643.36;TQ034

文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):1008-1143(2016)01-0001-06

doi:10.3969/j.issn.1008-1143.2016.01.001 10.3969/j.issn.1008-1143.2016.01.001

作者簡介:徐麗亞,1991年生,女,浙江省金華市人,在讀碩士研究生, 研究方向?yàn)楣獯呋?/p>

基金項(xiàng)目:國家自然科學(xué)基金委創(chuàng)新群體(51421006);優(yōu)秀青年基金(51422902);重點(diǎn)基金(41430751);面上基金(51479065);江蘇省自然科學(xué)基金面上項(xiàng)目(BK20141417);教育部創(chuàng)新團(tuán)隊(duì)(IRT13061);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目

收稿日期:2015-07-18

通訊聯(lián)系人:敖燕輝,1980年生,男,副教授,研究方向?yàn)榛诠獯呋夹g(shù)的水污染控制技術(shù)、環(huán)境友好材料的開發(fā)與應(yīng)用、清潔能源的開發(fā)與利用以及水資源保護(hù)與水環(huán)境修復(fù)相關(guān)技術(shù)。

猜你喜歡
改性
尼龍6的改性研究進(jìn)展
P(3,4HB)/PHBV共混改性及微生物降解研究
中國塑料(2016年12期)2016-06-15 20:30:07
汽車用ABS/PC共混物改性研究進(jìn)展
中國塑料(2016年2期)2016-06-15 20:30:00
有機(jī)磷改性納米SiO2及其在PP中的應(yīng)用
中國塑料(2016年2期)2016-06-15 20:29:59
我國改性塑料行業(yè)“十二·五”回顧與“十三·五”展望
中國塑料(2016年5期)2016-04-16 05:25:36
三聚氰胺甲醛樹脂的改性研究進(jìn)展
聚乳酸的阻燃改性研究進(jìn)展
中國塑料(2015年3期)2015-11-27 03:41:38
ABS/改性高嶺土復(fù)合材料的制備與表征
中國塑料(2015年11期)2015-10-14 01:14:14
聚甲醛增強(qiáng)改性研究進(jìn)展
中國塑料(2015年9期)2015-10-14 01:12:17
聚乳酸擴(kuò)鏈改性及其擠出發(fā)泡的研究
中國塑料(2015年4期)2015-10-14 01:09:19
肃宁县| 二连浩特市| 安龙县| 巴马| 台东市| 库车县| 京山县| 武邑县| 佛坪县| 金溪县| 深州市| 惠东县| 油尖旺区| 沈丘县| 博湖县| 桦南县| 夏津县| 万盛区| 邯郸市| 金湖县| 鹰潭市| 太康县| 南澳县| 营山县| 黎川县| 山东| 资阳市| 安阳市| 银川市| 新宁县| 乐平市| 镶黄旗| 宜川县| 莆田市| 城固县| 抚州市| 荥经县| 仁布县| 华亭县| 甘泉县| 蒲城县|