張曉艷,王明華,陳忠翼,翟玉春
(東北大學(xué)冶金學(xué)院,沈陽(yáng)110819 )
?
轉(zhuǎn)移反應(yīng)熱和去除鋁基底實(shí)驗(yàn)研究
張曉艷,王明華,陳忠翼,翟玉春
(東北大學(xué)冶金學(xué)院,沈陽(yáng)110819 )
鋁在陽(yáng)極氧化過(guò)程中放出來(lái)的熱量對(duì)陽(yáng)極氧化鋁(AAO)模板的制備易產(chǎn)生不利影響,與鋁基底緊連的阻擋層產(chǎn)生的焦耳熱是主要熱源.通過(guò)將鋁基底置于草酸電解液外,考察了陽(yáng)極氧化電壓、冷卻方式等因素對(duì)AAO模板制備的影響.結(jié)果表明,陽(yáng)極氧化電壓和冷卻方式均影響電解液溫度和AAO模板孔道直徑尺寸.空氣冷卻時(shí),30 V電壓氧化8 h,制備的模板孔道直徑約為40 nm,電解液溫度為31 ℃;水浴冷卻時(shí),40 V電壓氧化8 h,制備的模板孔道直徑約為80 nm,電解液溫度為25 ℃,且制備的AAO模板表面沒(méi)有納米氧化鋁纖維.采用乙醇/濃鹽酸混合溶液溶解鋁基底,乙醇/濃鹽酸的體積比為2~3時(shí),溶解鋁基底的時(shí)間約為 30 min,AAO模板不受損害.
AAO模板;陽(yáng)極氧化;反應(yīng)熱;鋁基底
陽(yáng)極氧化鋁(AAO)模板具有孔道規(guī)則、孔徑可調(diào)等優(yōu)點(diǎn)[1-2],在各種納米線[3-4]、納米管[5]等納米材料的合成研究中被廣泛采用.AAO模板的孔徑尺寸易受電壓、溫度等因素影響,一般施加的電壓越大、電解液溫度越高制備的模板孔徑尺寸越大[6-8].電壓較高時(shí),通常電流密度較大[6-7],放熱較多[9-11],模板易被擊穿、甚至燃燒[12-13].電流流過(guò)模板孔底部的阻擋層(鋁基底與模板多孔層間的銜接部分,見(jiàn)圖1)時(shí)產(chǎn)生的焦耳熱被認(rèn)為是熱量的主要來(lái)源[9-11].
焦耳熱的計(jì)算公式如下:
其中:Q為焦耳熱;I為電流;R為阻擋層電阻;t為反應(yīng)時(shí)間.
陽(yáng)極氧化后如欲得到AAO模板,一般需要將鋁基底去除.通常采用CuCl2[4,14-16]、HgCl2[17-19]或SnCl4[20-22]等溶液置換去除鋁基底[1-2],但因其存在反應(yīng)時(shí)間長(zhǎng)、鋁基底易殘留[23]以及需要使用重金屬離子等缺點(diǎn),嚴(yán)重制約了AAO模板的工業(yè)化生產(chǎn).本研究采用乙醇/濃鹽酸混合溶液溶解鋁基底,可避免重金屬離子污染.
在常規(guī)的陽(yáng)極氧化裝置中鋁基底通常被浸入在電解液中[9,24-25].考慮到阻擋層是主要的發(fā)熱部位[9-11],且鋁基底與發(fā)熱源阻檔層緊密接觸,而鋁基底具有良好的導(dǎo)熱性能,直接對(duì)鋁基底降溫,有利于熱量的轉(zhuǎn)移.因此,本文將緊連阻擋層的鋁基底置于電解液外,實(shí)驗(yàn)裝置結(jié)構(gòu)與文獻(xiàn)[13]報(bào)道的相似,區(qū)別在于采用對(duì)流傳熱方式轉(zhuǎn)移反應(yīng)熱,考察電壓、冷卻方式等條件對(duì)電解液溫度和模板孔道直徑尺寸的影響.陽(yáng)極氧化后,將含鋁基底的AAO模板置于兩片銅網(wǎng)之間,運(yùn)用電化學(xué)腐蝕原理在乙醇/濃鹽酸混合溶液中溶解鋁基底.
將純度為99.5%、規(guī)格為40 mm×40 mm×200 μm的鋁片在400 ℃馬弗爐中退火4 h,隨爐冷卻至室溫后浸入到60 ℃、5%(質(zhì)量比)的NaOH溶液中,持續(xù)時(shí)間30 s,以去除表面的氧化層,再用5%(質(zhì)量比)的HNO3溶液中和60 s.在90 mA/cm2的電流密度下,用HClO4/C2H5OH體積比為1/4的混合溶液電化學(xué)拋光鋁片180 s.將拋光后的鋁片在150 mL濃度為0.3 mo1/L的草酸溶液中進(jìn)行陽(yáng)極氧化.陰極為相同材質(zhì)的鋁片.電解槽為有機(jī)玻璃材質(zhì),厚度約為5 mm.陽(yáng)極氧化后,去除含鋁基底AAO模板的邊緣部分,置于兩片銅網(wǎng)(網(wǎng)孔尺寸為0.9 mm×0.9 mm)之間,再浸入到約30 mL的乙醇/濃鹽酸混合溶液中,使銅網(wǎng)與鋁基底接觸形成原電池結(jié)構(gòu).鋁基底被完全溶解后得到單通AAO模板.
2.1 空氣冷卻
圖2為空氣冷卻條件下陽(yáng)極氧化反應(yīng)裝置示意圖.鑒于金屬鋁的導(dǎo)電、導(dǎo)熱性能良好,采用與陽(yáng)極鋁片相同材質(zhì)的金屬鋁板作為陽(yáng)極支撐物.陽(yáng)極氧化過(guò)程中,金屬鋁板的溫度比電解液的溫度稍高,這是由于金屬鋁的導(dǎo)熱性能較好,陽(yáng)極氧化過(guò)程中阻擋層處產(chǎn)生的熱量[9-11]可以迅速地經(jīng)過(guò)鋁基底傳遞給金屬鋁板,而熱量傳遞給電解液則需要經(jīng)過(guò)狹窄的模板孔道,液體的對(duì)流傳熱受到限制[11],另外,電解液的導(dǎo)熱性能較差,量又較多,因此,金屬鋁板的溫度比電解液的溫度稍高.
圖2 空氣冷卻條件下陽(yáng)極氧化裝置示意圖
空氣冷卻、不同陽(yáng)極氧化電壓下,電解液溫度-時(shí)間變化曲線如圖3所示.由圖3可知,電壓為50 V時(shí),電解液的溫度在短時(shí)間內(nèi)迅速上升;而電壓為20、30、40 V時(shí),電解液的溫度隨著陽(yáng)極氧化反應(yīng)時(shí)間的延長(zhǎng)緩慢升高.在相同的反應(yīng)時(shí)間,施加的電壓越高,電解液的溫度升高得越快,這是由于空氣的散熱性能較差,陽(yáng)極氧化過(guò)程中產(chǎn)生的熱量不易通過(guò)金屬鋁板發(fā)散出去,使電解液溫度升高,施加的電壓越高,電流密度越大[6,7],反應(yīng)越快,放熱越明顯[9-11],電解液的溫度就升高得越快.
圖3 空氣冷卻條件下,電解液溫度-時(shí)間曲線
圖4為空氣冷卻、不同陽(yáng)極氧化電壓下制備的AAO模板孔道SEM形貌.由圖4可知,模板的孔道形狀較為規(guī)則.20 V電壓氧化8 h時(shí),制備的模板孔道直徑約為20 nm,電解液溫度約為30 ℃;30 V電壓氧化8 h時(shí),制備的模板孔道直徑約為40 nm,電解液溫度約為31 ℃;40 V電壓氧化8 h時(shí),制備的模板孔道直徑約為120 nm,電解液溫度約為36 ℃.空氣冷卻條件下,陽(yáng)極氧化時(shí)間相同時(shí),施加的電壓越大,電解液的溫度越高,制備的模板孔道直徑尺寸越大.50 V電壓氧化時(shí),電解液的溫度在短時(shí)間內(nèi)迅速升高了,制備的模板厚度非常薄,并且易碎.
2.2 水浴冷卻
將圖2的裝置置于約25 ℃室溫水浴中,使金屬鋁板與水浴充分接觸.不同陽(yáng)極氧化電壓下制備的AAO模板孔道SEM形貌如圖5所示.由圖5可知,40 V電壓氧化8 h時(shí),制備的模板孔道直徑約為80 nm,電解液溫度仍約為25 ℃;50 V電壓氧化8 h時(shí),制備的模板孔道直徑約為130 nm,電解液溫度約為25 ℃.水浴冷卻條件下,電壓較高時(shí)制備的模板孔道直徑尺寸較大,與文獻(xiàn)[6-8]中觀察到的現(xiàn)象基本一致.在40 V或50 V電壓下陽(yáng)極氧化,水浴冷卻時(shí)電解液的溫度幾乎不變化,這是因?yàn)榻饘黉X的導(dǎo)熱性能良好,阻擋層處產(chǎn)生的熱量[9-11]可以很快地通過(guò)鋁基底和金屬鋁板傳遞給水,水的散熱性能較好,因此,電解液的溫度幾乎不變化.
圖4 空氣冷卻條件下制備的AAO模板孔道SEM形貌
圖5 水浴冷卻條件下制備的AAO模板孔道SEM形貌
40 V電壓下,空氣冷卻時(shí)制備的模板表面存在有納米氧化鋁纖維(圖6a右側(cè));而水浴冷卻時(shí)制備的模板表面沒(méi)有納米氧化鋁纖維形成(圖6b),并且空氣冷卻條件下制備的模板孔道直徑為120 nm(圖4c)略大于水浴冷卻條件下制備的模板孔道直徑80 nm(圖5a).這是由于空氣冷卻條件下,空氣的散熱性能較差,陽(yáng)極氧化產(chǎn)生的熱量不易通過(guò)金屬鋁板和周?chē)目諝鈧鬟f出去,對(duì)模板孔道內(nèi)的電解液產(chǎn)生加熱作用,電解液的溫度較高(圖3),模板孔壁溶解較快[26],因此,空氣冷卻條件下制備的模板表面存在有納米氧化鋁纖維,并且孔道直徑較大;而水浴冷卻條件下,水的散熱性能較好,陽(yáng)極氧化反應(yīng)產(chǎn)生的熱量可以很快地通過(guò)金屬鋁板及周?chē)乃畟鬟f出去,電解液溫度較低,模板孔壁溶解較慢[26],因此,水浴冷卻條件下制備的模板表面沒(méi)有納米氧化鋁纖維,并且孔道直徑較小.
圖6 40 V電壓下制備的模板橫斷面SEM形貌
2.3 鋁基底去除
將含鋁基底的AAO模板置于兩片銅網(wǎng)之間(見(jiàn)圖7),浸入到乙醇/濃鹽酸混合溶液中,使銅網(wǎng)與鋁基底接觸形成原電池結(jié)構(gòu).鋁基底作原電池的陽(yáng)極,銅網(wǎng)作陰極.作為陽(yáng)極的鋁基底首先失去電子生成Al3+進(jìn)入到溶液中,失去的電子轉(zhuǎn)移給銅網(wǎng),然后溶液中的H+在銅網(wǎng)上得到電子生成H2排出.上述過(guò)程持續(xù)進(jìn)行,直到鋁基底被完全溶解.排出的H2使含鋁基底的AAO模板在翻騰的液體中不停地晃動(dòng),為防止鋁基底與銅網(wǎng)分離,將含鋁基底的模板夾在兩片銅網(wǎng)之間.溶解鋁基底的過(guò)程中,銅網(wǎng)的性質(zhì)和質(zhì)量幾乎不發(fā)生變化,起到加速鋁基底溶解的作用.銅網(wǎng)可循環(huán)使用.
圖7 鋁基底溶解機(jī)理圖
乙醇/濃鹽酸的體積比為2~3時(shí),溶解鋁基底的時(shí)間約為30 min.鋁基底被完全溶解后,模板的表面(圖6)及阻擋層(圖8)均保持完好,AAO模板幾乎不受損害.乙醇/濃鹽酸的體積比≥4時(shí),溶解鋁基底的時(shí)間明顯延長(zhǎng).乙醇/濃鹽酸的體積比≤1時(shí),反應(yīng)劇烈并大量放熱.
圖8 50 V電壓水浴冷卻條件下制備的模板阻擋層SEM形貌
(1) 鋁基底置于電解液外,空氣冷卻時(shí),陽(yáng)極氧化電壓越大,電解液溫度升高得越快,制備的模板孔道直徑尺寸越大;水浴冷卻時(shí),陽(yáng)極氧化電壓越高,制備的模板孔道直徑也越大,但小于同電壓空氣冷卻時(shí)制備的模板孔道直徑,電解液的溫度幾乎不變化.將鋁基底置于電解液外通過(guò)水浴冷卻轉(zhuǎn)移反應(yīng)熱是可行的.
(2) 溶解鋁基底后的溶液中,除銅網(wǎng)和AAO模板為固體外,其余為液體,容易實(shí)現(xiàn)固液分離.溶液中的金屬離子幾乎全部為鋁離子,便于回收利用,無(wú)重金屬離子,綠色環(huán)保,對(duì)環(huán)境污染小.乙醇/濃鹽酸的體積比為2~3時(shí),溶解鋁基底的時(shí)間約為 30 min.
[1]Zhang L D, Fang X S, Ye C H. Controlled growth of nanomaterials [M]. Singapore: World Scientific, 2007: 167-175.
[2]Lupu N. Electrodeposited nanowires and their applications [M]. Croatia: InTech, 2010: 86, 113-119.
[3]Peng Y T, Chen Q F. Fabrication and characterization of crystalline copper nanowires by electrochemical deposition inside anodic alumina template [J]. Chinese science bulletin, 2013, 58(27): 3409-3414.
[4]Jia Y Y, Yang D C, Luo B,etal. One-pot synthesis of Bi-Ni nanowire and nanocable arrays by coelectrodeposition approach [J]. Nanoscale Research Letters, 2012, 7(1): 1-6.
[5]Chowdhury T, Casey D P, Rohan J F. Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates [J]. Electrochemistry Communications, 2009, 11(6): 1203-1206.
[6]St?pniowski W J, Bojar Z. Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the in-uence of anodization conditions on the alumina structural features [J]. Surface and Coatings Technology, 2011, 206(2-3): 265-272.
[7]St?pniowski W J, Michalska-Domańska M, Norek M,etal. Anodization of cold deformed technical purity aluminum (AA1050) in oxalic acid [J]. Surface and Coatings Technology, 2014, 258: 268-274.
[8]St?pniowski W J, Norek M, Michalska-Domańska M,etal. Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages [J]. Materials Letters, 2013, 111: 20-23.
[9]Chowdhury P, Thomas A N, Sharma M,etal. An approach for in situ measurement of anode temperature during the growth of self-ordered nanoporous anodic alumina thin films: influence of joule heating on pore microstructure [J]. Electrochimica Acta, 2014, 115: 657-664.
[10]Chung C K, Chang W T, Liao M W,etal. Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling [J]. Electrochimica Acta, 2011, 56(18): 6489-6497.
[11]Wang Y, Santos A, Evdokiou A,etal. Rational design of ultra-short anodic alumina nanotubes by short-time pulse anodization [J]. Electrochimica Acta, 2015, 154: 379-386.
[12]Zhang R, Jiang K M, Zhu Y,etal. Ultrasound-assisted anodization of aluminum in oxalic acid [J]. Applied Surface Science, 2011, 258(1): 586-589.
[13]Lee W, Ji R, G?sele U,etal. Fast fabrication of long-range ordered porous alumina membranes by hard anodization [J]. Nature materials, 2006, 5(9): 741-747.
[14]Li Y, Ling Z Y, Wang J C,etal. Fabrication of porous alumina templates with a large-scale tunable interpore distance in a H2C2O4-C2H5OH-H2O solution[J]. Chinese Science Bulletin, 2008, 53(10): 1608-1612.
[15]Proenca M P, Sousa C T, Ventura J,etal. Ni growth inside ordered arrays of alumina nanopores: Enhancing the deposition rate [J]. Electrochimica Acta, 2012, 72: 215-221.
[16]Shang G L, Fei G T, Xu S H,etal. Preparation of the very uniform pore diameter of anodic alumina oxidation by voltage compensation mode [J]. Materials Letters, 2013, 110: 156-159.
[17]Chen Y H, Shen Y M, Wang S C,etal. Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition [J]. Thin Solid Films, 2014, 570: 303-309.
[18]Lee J, Kim D H, Hong S H,etal. A hydrogen gas sensor employing vertically aligned TiO2nanotube arrays prepared by template-assisted method [J]. Sensors and Actuators B: Chemical, 2011, 160(1): 1494-1498.
[20]TAkiya S, Kikuchi T, Natsui S,etal. Self-ordered porous alumina fabricated via phosphonic acid anodizing [J]. Electrochimica Acta, 2016, 190: 471-479.
[21]TKikuchi T, Yamamoto T, Suzuki R O. Growth behavior of anodic porous alumina formed in malic acid solution [J]. Applied Surface Science, 2013, 284: 907-913.
[22]TLi D D, Jiang C H, Jiang J H,etal. Investigation on highly ordered porous anodic alumina membranes formed by high electric field anodization [J]. Materials Chemistry and Physics, 2008, 111(1): 168-171.
[23]張立德, 解思深. 納米材料和納米結(jié)構(gòu)[M]. 北京:化學(xué)工業(yè)出版社, 2005: 172-181. (Zhang Lide, Xie Sishen. Nanomaterials and nanostructures [M]. Beijing: Chemical Industry Press, 2005: 172-181.)
[24]TJani A M M, Losic D, Voelcker N H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications [J]. Progress in Materials Science, 2013, 58(5): 636-704.
[25]TKikuchi T, Nishinaga O, Natsui S,etal. Self-ordering behavior of anodic porous alumina via selenic acid anodizing [J]. Electrochimica Acta, 2014, 137: 728-735.
[26]TManzano C V, Martín J, Martín-González M S. Ultra-narrow 12 nm pore diameter self-ordered anodic alumina Templates [J]. Microporous and Mesoporous Materials, 2014, 184: 177-183.
Experimental study on transfer of reaction heat and removal of aluminum substrate
Zhang Xiaoyan,Wang Minghua,Chen Zhongyi,Zhai Yuchun
(School of Metallurgy,Northeastern University,Shenyang 110819, China)
Heat generated during the anodic oxidation of aluminum plate has a negative effect on preparation of anodic aluminum oxide (AAO) template. Joule heat is the main heat source, and it is generated from the barrier layer of aluminum substrate. Placed the aluminum substrate outside the oxalic acid electrolyte, effects of anodic voltage, cooling mode and other factors on preparation of AAO template were investigated. The results indicated that both channel diameter of AAO template and electrolyte temperature are affected by anodic voltage and cooling mode. Under a condition of the air cooling, anodic voltage of 30 V and anodization time of 8 h, the channel diameter of prepared template is about 40 nm, and the electrolyte temperature is about 31 ℃. When it was cooled by water, anodic voltage was 40 V and anodization time was 8 h, the channel diameter of prepared template is about 80 nm, the electrolyte temperature is about 25 ℃, and there are no alumina nano-fibers on the surface of prepared AAO template. When a mixed solution of ethanol and concentrated hydrochloric acid with the volume ratio of 2~3 was used to dissolve the aluminum substrate, the dissolution time of aluminum substrate is about 30 min, and the AAO template is not damaged.
AAO template; anodization; reaction heat; aluminum substrate
10.14186/j.cnki.1671-6620.2016.03.010
O 646
A
1671-6620(2016)03-0209-05