高鑫,梅俊,李博*
1(上海工會(huì)管理職業(yè)學(xué)院 健康安全系,上海,201415) 2(上海交通大學(xué) 食品科學(xué)與工程系,上海,200240)
?
開(kāi)菲爾產(chǎn)品微生態(tài)、成分和功能活性的研究進(jìn)展
高鑫1,梅俊2,李博1*
1(上海工會(huì)管理職業(yè)學(xué)院 健康安全系,上海,201415)2(上海交通大學(xué) 食品科學(xué)與工程系,上海,200240)
摘要開(kāi)菲爾粒是傳統(tǒng)酸奶開(kāi)菲爾的發(fā)酵劑,其微生物組成較為復(fù)雜,該文對(duì)國(guó)內(nèi)外研究開(kāi)菲爾及其發(fā)酵產(chǎn)品的文獻(xiàn)進(jìn)行總結(jié),介紹了開(kāi)菲爾粒及其發(fā)酵產(chǎn)品的微生物多樣性、成分和功能活性。開(kāi)菲爾粒是一種混菌發(fā)酵體系,其蛋白質(zhì)、多糖構(gòu)成的骨架上棲息著乳酸菌、酵母菌和醋酸菌等多種有益微生物。在發(fā)酵牛乳時(shí),能同時(shí)進(jìn)行乳酸、醋酸和酒精發(fā)酵,其產(chǎn)物在抗癌、降壓、抑菌、提高免疫力和緩解乳糖不耐癥等功能活性方面發(fā)揮了重要作用。
關(guān)鍵詞開(kāi)菲爾;微生物多樣性;成分;功能活性
開(kāi)菲爾粒,也稱克菲爾粒,最早起源于高加索地區(qū),主要在前蘇聯(lián)、歐洲、中東等地區(qū)流行。開(kāi)菲爾粒能夠發(fā)酵牛奶、羊奶等而制得一種含醇、酸及少量CO2的發(fā)酵乳,稱為開(kāi)菲爾(Kefir)。Kefir來(lái)源于土耳其語(yǔ)“Keyif”,有安寧、幸福之意[1]。開(kāi)菲爾粒在我國(guó)主要分布在新疆天山和青藏高原地區(qū),稱之為藏靈菇,或者是西藏雪蓮。開(kāi)菲爾粒是一種乳白色、膠質(zhì)狀的塊狀物,外形酷似米粒,表面卷曲,多為白色或淺黃色,大小一般在2~3 cm。將開(kāi)菲爾粒放在牛奶中培養(yǎng),個(gè)體會(huì)增大[2]。
開(kāi)菲爾粒是一種混菌發(fā)酵體系,其蛋白質(zhì)、多糖構(gòu)成的骨架上棲息著乳酸菌、酵母菌和醋酸菌等多種有益微生物。在發(fā)酵牛乳時(shí),能同時(shí)進(jìn)行乳酸、醋酸和酒精發(fā)酵,從而使制品兼有酸味和醇味[3]。經(jīng)開(kāi)菲爾粒發(fā)酵的酸奶和市售酸奶有著較大差別,除了具有市售酸奶的酸味、香味外,還有由乳酸、CO2、乙醛、乙偶姻、微量的醇和其他發(fā)酵風(fēng)味產(chǎn)品相互混合得到的特殊風(fēng)味[4]。與此同時(shí),開(kāi)菲爾粒在發(fā)酵的過(guò)程中會(huì)產(chǎn)生水溶性多糖,因此,所得到的酸奶比市售酸奶具有更高的黏性[5-6]。袁祎琳等對(duì)藏靈菇發(fā)酵純牛奶過(guò)程中的物性變化進(jìn)行了分析,并和市售酸奶進(jìn)行了比較。藏靈菇酸奶的黏度曲線基本都呈開(kāi)口向上的不對(duì)稱拋物線狀,且拋物線的最低點(diǎn)接近600 s(轉(zhuǎn)子的剪切速率接近0 s-1)處,同時(shí)其微觀結(jié)構(gòu)較市售酸奶致密平整[7]。本文對(duì)開(kāi)菲爾粒及其發(fā)酵產(chǎn)品開(kāi)菲爾的微生物多樣性、成分及其功能活性進(jìn)行了概括論述。
1微生物多樣性
目前,在對(duì)開(kāi)菲爾粒及其發(fā)酵產(chǎn)品的諸多研究中,最關(guān)注的就是對(duì)不同地區(qū)的開(kāi)菲爾粒微生物多樣性進(jìn)行研究。開(kāi)菲爾粒及發(fā)酵產(chǎn)品的微生物群落主要是細(xì)菌和酵母,它們之間呈現(xiàn)共生關(guān)系,共生關(guān)系的存在為分離鑒定開(kāi)菲爾粒及其發(fā)酵產(chǎn)品中的微生物組成造成了一些困難。ABRAHAM等認(rèn)為,開(kāi)菲爾粒在發(fā)酵過(guò)程中會(huì)有較高的微生物數(shù)量,其質(zhì)量不低于開(kāi)菲爾總重的0.9%。開(kāi)菲爾中細(xì)菌的菌落總數(shù)在6.4×104~8.5×108CFU/g之間,而酵母菌落總數(shù)在1.5×105~3.7×108CFU/g之間[8]。IRIGOYEN等人將開(kāi)菲爾粒發(fā)酵24 h后的微生物進(jìn)行初步分離,得到乳桿菌(108CFU/mL)、乳酸乳球菌(105CFU/mL)、酵母(106CFU/mL)和乙酸菌(106CFU/mL)等[9]。開(kāi)菲爾粒及其發(fā)酵產(chǎn)品的微生物主要是乳酸菌、乙酸菌和酵母菌類,對(duì)于部分文獻(xiàn)中的開(kāi)菲爾粒及其發(fā)酵產(chǎn)品中微生物的分離鑒定進(jìn)行了總結(jié),如表1所示。
2成分分析
LOPITZ-OTSOA等報(bào)道,開(kāi)菲爾粒約含有90%水分、3.2%蛋白質(zhì)、0.3%脂類、5.8%非氮類可溶性物和0.7%灰分[34]。從宏觀看,開(kāi)菲爾粒中微生物聚集在一種膠狀物質(zhì)上,用手觸摸, 具有黏性和彈性。多項(xiàng)研究表明,這些膠狀物質(zhì)主要是多糖和蛋白質(zhì)。
表1 開(kāi)菲爾粒及其發(fā)酵產(chǎn)品中分離到的微生物總結(jié)
Table 1 The summary of microora species isolated from kefir grains and their fermented products
表1 開(kāi)菲爾粒及其發(fā)酵產(chǎn)品中分離到的微生物總結(jié)
種類來(lái)源參考文獻(xiàn)LactobacilliLactobacilluskefiri開(kāi)菲爾、開(kāi)菲爾粒、乳清發(fā)酵液等[10-16]Lactobacillussatsumensis開(kāi)菲爾粒[14]Lactobacilluskefiranofaciens開(kāi)菲爾、開(kāi)菲爾粒、Viili發(fā)酵乳、乳清發(fā)酵液等[11,16,17]Lactobacilluskefirgranum開(kāi)菲爾粒[10,17,18]Lactobacillusparakefir開(kāi)菲爾、開(kāi)菲爾粒、乳清發(fā)酵液等[10,16,17]Lactobacillusbrevis開(kāi)菲爾、開(kāi)菲爾粒等[11,12,19]Lactobacillusparabuchneri開(kāi)菲爾、開(kāi)菲爾粒等[13,17]Lactobacillusplantarum開(kāi)菲爾、開(kāi)菲爾粒等[11,15]Lactobacillushelveticus開(kāi)菲爾、開(kāi)菲爾粒等[17,18]Lactobacillusacidophilus開(kāi)菲爾、開(kāi)菲爾粒等[11,12,17]Lactobacillusdelbrueckii開(kāi)菲爾、開(kāi)菲爾粒等[11]Lactobacillusrhamnosus開(kāi)菲爾、開(kāi)菲爾粒等[12]Lactobacilluscasei開(kāi)菲爾、開(kāi)菲爾粒、開(kāi)菲爾果汁飲料等[12,20]Lactobacillusparacasei開(kāi)菲爾、開(kāi)菲爾粒等[11,13,16]Lactobacillusfructivorans開(kāi)菲爾粒[21]Lactobacillushilgardii開(kāi)菲爾粒[21]Lactobacillusfermentum開(kāi)菲爾粒[12]Lactobacillusviridescens開(kāi)菲爾粒[12]Lactobacillusgasseri開(kāi)菲爾粒[12]Lactobacillusfermentum開(kāi)菲爾粒[22]Lactobacillushordei開(kāi)菲爾果汁飲料等[20]Lactobacillusnagelii開(kāi)菲爾果汁飲料等[20]Lactobacillusmesenteroides開(kāi)菲爾粒[22]Lactobacillus.crispatus開(kāi)菲爾、開(kāi)菲爾粒等[17,22]Lactobacillusreuteri開(kāi)菲爾[17]LactococciLactococcuslactis開(kāi)菲爾、開(kāi)菲爾粒等[15]Lactococcusdiacetylactis開(kāi)菲爾粒[23]StreptococciStreptococcusthermophilus開(kāi)菲爾、開(kāi)菲爾粒等[18]Streptococcuscremoris開(kāi)菲爾、開(kāi)菲爾粒等[18]Streptococcusdurans開(kāi)菲爾[19]Leuconostocmesenteroides開(kāi)菲爾、開(kāi)菲爾粒、開(kāi)菲爾果汁飲料等[20]Leuconostoccitreum開(kāi)菲爾果汁飲料[20]AceticAcidBacteriaAcetobactersp.開(kāi)菲爾粒[23]Acetobacterpasteurianus開(kāi)菲爾粒[23]Acetobacteraceti開(kāi)菲爾[10]Acetobacterlovaniensis開(kāi)菲爾[13]Gluconobacterjaponicus開(kāi)菲爾、開(kāi)菲爾粒等[14]Acetobactersyzygii開(kāi)菲爾、開(kāi)菲爾粒等[14]Acetobacterfabarum開(kāi)菲爾果汁飲料[20]Acetobacterorientalis開(kāi)菲爾果汁飲料[20]YeastSaccharomycescerevisiae開(kāi)菲爾、開(kāi)菲爾粒、乳清發(fā)酵液、開(kāi)菲爾果汁飲料、干酪等[12,13,15,20,24]Saccharomycesdelbruecki開(kāi)菲爾[25]Candidakefir開(kāi)菲爾、開(kāi)菲爾粒等[12,25,26]Kluyveromyceslactis開(kāi)菲爾[27]Issatchenkiaorientalis開(kāi)菲爾[27]Saccaromycesunisporus開(kāi)菲爾、開(kāi)菲爾粒、乳清發(fā)酵液等[24,27,28]Saccharomycesexiguus開(kāi)菲爾[27]Saccharomyceshumaticus開(kāi)菲爾[27]Kluyveromycesmarxianus開(kāi)菲爾、開(kāi)菲爾粒、乳清發(fā)酵液、開(kāi)菲爾果汁飲料等[28,24,28,29]Torulopsisholmii開(kāi)菲爾[30]Candidaholmii開(kāi)菲爾、開(kāi)菲爾粒等[12,25]Torulosporadelbrueckii開(kāi)菲爾粒[12]Candidafriedricchi開(kāi)菲爾粒[12]Candidaalbicans開(kāi)菲爾粒[12]Issatchenkiaoccidentalis開(kāi)菲爾粒[24,31]Acetobacterlovaniensis開(kāi)菲爾、開(kāi)菲爾粒等[13,32]Lachanceafermentati開(kāi)菲爾果汁飲料[20]Hanseniaosporavalbyensis開(kāi)菲爾果汁飲料[20]Kluyveromycesdobzhanskii開(kāi)菲爾粒[18]Pichiacecembensis開(kāi)菲爾粒[31]Dekkeraanomala開(kāi)菲爾粒[32]Dekkerabruxellensis低糖開(kāi)菲爾[33]
表1 開(kāi)菲爾粒及其發(fā)酵產(chǎn)品中分離到的微生物總結(jié)
Pichiacaribbica開(kāi)菲爾粒[31]Zygosaccharomycesfermentati開(kāi)菲爾粒[31]
1967年, RIVIERE等首次對(duì)開(kāi)菲爾粒的結(jié)構(gòu)進(jìn)行了系統(tǒng)研究,發(fā)現(xiàn)在開(kāi)菲爾粒上的微生物棲息在由自己產(chǎn)生多糖基質(zhì)上,并將這種多糖命名為Kefiran。開(kāi)菲爾粒中約有50%的成分是多糖,由1∶1的半乳糖和葡萄糖組成,可作為開(kāi)菲爾粒的支撐體或微生物棲息場(chǎng)所。WANG等從西藏開(kāi)菲爾粒中分離到Lb.plantarumKF5,能夠產(chǎn)胞外多糖,該多糖是雜多糖,其組成比例為甘露糖、葡萄糖和半乳糖近似比為1∶4.99∶6.90。利用原子力顯微鏡對(duì)不同濃度下的胞外多糖進(jìn)行微觀觀察,在低濃度時(shí),該胞外多糖的水溶液沉積物呈現(xiàn)鏈狀和球狀。利用掃描電鏡進(jìn)行觀察,發(fā)現(xiàn)其具有相互覆蓋的緊密結(jié)構(gòu)。因此可以判斷,構(gòu)成藏靈菇的微生物所分泌產(chǎn)生的胞外多糖在形成和維持藏靈菇顆粒結(jié)構(gòu)中起著重要作用。同時(shí),WANG等在分離到的Lb.kefiranofaciensZW3菌株產(chǎn)生的胞外多糖進(jìn)行了研究,F(xiàn)T-IR光譜顯示該多糖是一類由羧基、氨基和酰胺基組成典型的雜聚多糖[35]。
RIMADA等利用開(kāi)菲爾粒CIDCA AGK1對(duì)牛奶和脫蛋白乳清進(jìn)行發(fā)酵,并利用不同方法對(duì)多糖的提取率進(jìn)行了對(duì)比研究。當(dāng)利用加熱作為提取第一步時(shí),所得到的多糖提取率增加,利用兩步乙醇沉淀法得到的多糖濃度最高[36]。對(duì)于開(kāi)菲爾粒中分離得到的Kefiran多糖利用研究主要集中在可食膜方面,目前,Kefiran多糖在濃度5~10g/kg的時(shí)候能夠形成可食膜。Kefiran多糖膜溶液在低濃度時(shí)符合流體力學(xué)性質(zhì),而在高濃度時(shí)則表現(xiàn)出假塑性,增塑劑甘油的添加并不會(huì)改變膜液的流變性能。但是在膜液中不添加甘油所得到的膜具有較高的彈性模量、高拉伸強(qiáng)度值、低斷裂拉伸力,比較脆硬[37]。在Kefiran多糖的醫(yī)學(xué)應(yīng)用上,MAEDA等利用小鼠為模型進(jìn)行了研究,發(fā)現(xiàn)Kefiran多糖能夠顯著抑制血壓升高和降低膽固醇水平,同時(shí)Kefiran多糖也能夠明顯改變小鼠的便秘情況[38]。
對(duì)開(kāi)菲爾粒中蛋白質(zhì)的研究主要集中在開(kāi)菲爾粒中的S-layer(Surface proteins)蛋白上,它是覆蓋在細(xì)菌表層形成一層膜結(jié)構(gòu),在體外自發(fā)組裝成重復(fù)的晶體結(jié)構(gòu),在某些開(kāi)菲爾乳桿菌發(fā)揮益生菌活性、自動(dòng)聚集凝集和抑制病原菌生長(zhǎng)等功能上有著重要作用[39]。
而對(duì)于開(kāi)菲爾粒發(fā)酵酸奶開(kāi)菲爾來(lái)講,不同地區(qū)的原奶經(jīng)過(guò)發(fā)酵后得到的開(kāi)菲爾成分不同。研究人員發(fā)現(xiàn)開(kāi)菲爾在成分上的差異主要是由于原料奶的成分差異,開(kāi)菲爾粒微生物多樣性不同,以及制作開(kāi)菲爾的習(xí)慣和工藝不同。在開(kāi)菲爾中,市售酸奶的所有重要營(yíng)養(yǎng)成分都能夠找得到。其中,水分含量最多,其次是乳糖、蛋白、脂肪和灰分,還含有少量的乙醇、乳酸和CO2[40]。CO2的含量取決于開(kāi)菲爾粒的添加量,開(kāi)菲爾粒越多,CO2的含量也就越高。一般來(lái)講,在開(kāi)菲爾中理想的CO2濃度應(yīng)該不超過(guò)1.98 g/L[41]。發(fā)酵過(guò)程中產(chǎn)物,如乳酸、乙酸、丙酮酸、馬尿酸、丙酸、丁酸、雙乙酰、乙醛等,會(huì)增加開(kāi)菲爾的風(fēng)味和香氣。雙乙酰和乙醛是開(kāi)菲爾中的主要風(fēng)味成分[4]。與市售普通酸奶相比,開(kāi)菲爾含有1/2乳酸,2倍丙酮酸,9倍乙酸。同時(shí),存放條件也會(huì)影響開(kāi)菲爾的成分,在4 ℃下存放會(huì)降低乙醇、乙醛和乙偶姻的濃度,但雙乙酰的濃度不會(huì)下降[42]。此外,開(kāi)菲爾中也存在相當(dāng)數(shù)量的維生素和微量元素。乙酸菌在開(kāi)菲爾制作過(guò)程中會(huì)合成維生素B2和尼克酸,酵母菌在發(fā)酵過(guò)程中會(huì)合成維生素B1、維生素B2和維生素B12,丙酸菌的代謝能提高B族維生素的含量,其中維生素B12和葉酸的含量比普通酸奶高4~5倍[43]。實(shí)際上,開(kāi)菲爾的高營(yíng)養(yǎng)價(jià)值要?dú)w結(jié)于含量平衡的營(yíng)養(yǎng)物質(zhì)。
3開(kāi)菲爾粒及其發(fā)酵產(chǎn)品的功能活性
開(kāi)菲爾粒及其發(fā)酵產(chǎn)品自身的多樣微生物和豐富的營(yíng)養(yǎng)成分使其具有很高的功能活性,如抑菌性、改善腸道健康、抗癌、降低血糖和膽固醇、增強(qiáng)免疫力等。開(kāi)菲爾粒及其發(fā)酵產(chǎn)品中的成分與功能活性之間的關(guān)系簡(jiǎn)要總結(jié)如表2。
3.1抗癌活性
開(kāi)菲爾粒及其發(fā)酵產(chǎn)品在抗癌性活性方面的研究已經(jīng)開(kāi)展很長(zhǎng)時(shí)間,抗癌活性與開(kāi)菲爾粒及其發(fā)酵產(chǎn)品中的蛋白質(zhì)和多糖有關(guān)。蛋白質(zhì)和多糖可以將致癌物前體在轉(zhuǎn)化為致癌物過(guò)程中產(chǎn)生作用,使致癌物前體轉(zhuǎn)化為失活物質(zhì)(圖1)。蛋白質(zhì)也可以抑制致癌物對(duì)基因的損壞和由基因損壞導(dǎo)致腫瘤細(xì)胞的萌生。開(kāi)菲爾含有中等量的四碳雙羧酸,可在有機(jī)體內(nèi)溶解癌細(xì)胞。同時(shí),開(kāi)菲爾也可以增強(qiáng)人體的免疫系統(tǒng),通過(guò)對(duì)體液免疫和細(xì)胞免疫的調(diào)節(jié)作用,能夠增強(qiáng)巨噬細(xì)胞能力和自然殺傷細(xì)胞的活力,清除異常突變細(xì)胞,也可以起到防癌和抗癌的功效[60]。
3.2降壓活性
開(kāi)菲爾粒及其發(fā)酵產(chǎn)品在降血壓方面的作用主要是能夠抑制血管緊張素轉(zhuǎn)換酶(ACE)的活性,ACE可以將血管緊張素(AT)I轉(zhuǎn)化成AT II,AT II是一種強(qiáng)效血管收縮劑,可以刺激腎臟中的醛固酮分泌,能使腎臟保留更多的液體在體內(nèi),從而升高血壓(圖2)。開(kāi)菲爾中的某些肽可以作為ACE的抑制劑,阻止AT I轉(zhuǎn)化成AT II,從而調(diào)節(jié)血壓[60]。
表2 開(kāi)菲爾粒及其發(fā)酵產(chǎn)品中的功能活性[44]
3.3抑菌活性
研究人員發(fā)現(xiàn)開(kāi)菲爾中的乳桿菌會(huì)產(chǎn)生一些抑菌性化合物,如有機(jī)酸、過(guò)氧化氫、乙醛、CO2和細(xì)菌素等,在一定程度上能夠抑制病原微生物的生長(zhǎng)繁殖[11]。一般情況下,開(kāi)菲爾對(duì)革蘭氏陽(yáng)性菌的抑菌效果要比陰性菌要好。MARQUINA等經(jīng)過(guò)動(dòng)物實(shí)驗(yàn)對(duì)比發(fā)現(xiàn),在小鼠模型中使用開(kāi)菲爾會(huì)使得腸道中的乳酸菌數(shù)量增加,而腸桿菌和梭狀芽胞桿菌的數(shù)目減少[49]。
3.4提高免疫活性
食物的營(yíng)養(yǎng)和免疫活性之間有著直接關(guān)系,開(kāi)菲爾中的乳酸菌及其發(fā)酵產(chǎn)物能明顯提高特異性或非特異性免疫應(yīng)答。通過(guò)食用開(kāi)菲爾,肺及腹腔中的巨噬細(xì)胞能夠降低致病菌的活性,從而影響身體各部位的黏膜應(yīng)答。開(kāi)菲爾中發(fā)微生物也改變了外來(lái)微生物細(xì)胞因子的響應(yīng),提高了先天免疫能力。VINDEROLA等發(fā)現(xiàn)開(kāi)菲爾可以誘導(dǎo)黏膜應(yīng)答提高免疫力,從而維持腸道內(nèi)環(huán)境穩(wěn)定[61]。IRAPORDA等在研究開(kāi)菲爾奶酒時(shí)將提高免疫活性的原因歸結(jié)于代謝過(guò)程中產(chǎn)生的乳酸鹽,在一定濃度下能夠抑制由白介素-1β、腫瘤壞死因子-α和鞭毛蛋白引起腸道上皮細(xì)胞的激活[62]。
圖1 體內(nèi)腫瘤形成和開(kāi)菲爾的作用部位[60]Fig.1 Tumor formation in body and proposed sites of action of kefir
圖2 開(kāi)菲爾調(diào)節(jié)血壓的作用示意圖[60]Fig.2 Role of kefir in regulating blood pressure
3.5緩解乳糖不耐癥
乳糖不耐癥的發(fā)生是由于腸道中沒(méi)有足夠的β-半乳糖苷酶或者是活性不足,β-半乳糖苷酶可以講解乳糖生成葡萄糖和半乳糖。如果β-半乳糖苷酶活性不足,乳糖到腸道內(nèi)后會(huì)被大腸中的細(xì)菌消化產(chǎn)生CO2,從而引起胃腸道不適。發(fā)酵乳制品是目前唯一能夠緩解乳糖不耐癥的解決方法,開(kāi)菲爾粒中的一些微生物如Lb.delbrueckiisubsp.bulgaricus和S.salivariussubsp.thermophilus可以產(chǎn)生β-半乳糖苷酶發(fā)酵乳糖[63]。
4結(jié)論
目前,對(duì)開(kāi)菲爾的研究取得了一定的進(jìn)展,但是還有許多問(wèn)題亟待解決。開(kāi)菲爾粒中微生物多樣性較為復(fù)雜,微生物之間的共生關(guān)系和比例組成并不是一成不變,隨氣候和培養(yǎng)基等變化,對(duì)于大規(guī)模商業(yè)化生成來(lái)講難以得到合適的發(fā)酵劑。同時(shí)在發(fā)酵過(guò)后開(kāi)菲爾粒的回收、清洗等工作存在著感染雜菌的風(fēng)險(xiǎn)。因此,研究如何獲得合適的凍干粉發(fā)酵劑是今后研究的熱點(diǎn)之一。同時(shí),開(kāi)菲爾產(chǎn)品的口味應(yīng)當(dāng)多樣化,以滿足不同人群的需要。
參考文獻(xiàn)
[1]SABIR F,BEYATLI Y,COKMUS C,et al. Assessment of potential probiotic properties ofLactobacillusspp.,Lactococcusspp.,andPediococcusspp. strains isolated from kefir[J]. Journal of Food Science,2010,75(9):M568-M573.
[2]LIKOTRAFITI E,VALAVANI P,ARGIRIOU A,et al.Invitroevaluation of potential antimicrobial synbiotics usingLactobacilluskefiri isolated from kefir grains[J]. International Dairy Journal,2015,45:23-30.
[3]HAMET MF,PIERMARIA JA,ABRAHAM AG. Selection of EPS-producingLactobacillusstrains isolated from kefir grains and rheological characterization of the fermented milks[J]. LWT-Food Science and Technology,2015,63(1):129-135.
[4]周傳云,唐書(shū)澤,聶明,等. 利用開(kāi)菲爾粒制備酸豆乳酒的最佳發(fā)酵條件[J]. 食品與發(fā)酵工業(yè),2004,30(3):33-35.
[6]SERAFINI F,TURRONI F,RUAS-MADIEDO P,et al. Kefir fermented milk and kefiran promote growth ofBifidobacteriumbifidum PRL2010 and modulate its gene expression[J]. International Journal of Food Microbiology,2014,178:50-59.
[7]袁祎琳,李云飛,梅俊,等. 藏靈菇發(fā)酵純牛奶過(guò)程中的物性變化[J]. 食品工業(yè)科技,2013,34(10):208-211.
[8]WITTHUHN RC,SCHOEMAN T,BRITZ TJ. Isolation and characterization of the microbial population of different South African kefir grains[J]. International Journal of Dairy Technology,2004,57(1):33-37.
[9]IRIGOYEN A,ARANA I,CASTIELLA M,et al. Microbiological, physicochemical, and sensory characteristics of kefir during storage[J]. Food Chemistry,2005,90(4):613-620.
[10]TAKIZAWA S,KOJIMA S,TAMURA S,et al.Lactobacilluskefirgranumsp. nov. andLactobacillusparakefirsp. nov.,two new species from kefir grains[J]. International Journal of Systematic Bacteriology,1994,44(3):435-439.
[11]SANTOS A,SAN MAURO M,SANCHEZ A,et al. The antimicrobial properties of different strains ofLactobacillusspp. isolated from kefir[J]. Systematic and Applied Microbiology,2003,26(3):434-437.
[12]ANGULO L,LOPEZ E,LEMA C. Microflora present in kefir grains of the Galician region (North-West of Spain) [J]. Journal of Dairy Research,1993,60(2):263-267.
[13]MAGALH?ES KT,PEREIRA GVM,DIAS DR,et al. Microbial communities and chemical changes during fermentation of sugary Brazilian kefir[J]. World Journal of Microbiology and Biotechnology,2010,26(7):1 241-1 250.
[14]MIGUEL MGCP,CARDOSO PG,DE ASSIS L L,et al. Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods[J]. Food Research International,2010,43(5):1 523-1 528.
[15]BOLLAPA,de LOS Angeles Serradell M,de URRAZA PJ,et al. Effect of freeze-drying on viability andinvitroprobiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir[J]. Journal of Dairy Research,2011,78(1):15-22.
[16]HAMET MF,LONDERO A,MEDRANO M,et al. Application of culture-dependent and culture-independent methods for the identification ofLactobacilluskefiranofaciensin microbial consortia present in kefir grains[J]. Food Microbiology,2013,36(2):327-334.
[17]DOBSON A,O'SULLIVAN O,COTTER P D,et al. High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain[J]. FEMS Microbiology Letters,2011,320(1):56-62.
[19]DENG Y,MAN C,F(xiàn)AN Y,et al. Preparation of elemental selenium-enriched fermented milk by newly isolatedLactobacillusbrevisfrom kefir grains[J]. International Dairy Journal,2015,44:31-36.
[20]GULITZ A,STADIE J,WENNING M,et al. The microbial diversity of water kefir[J]. International Journal of Food Microbiology,2011,151(3):284-288.
[21]YOSHIDA Y,YOKOI W,OHISHI K,et al. Effects of the cell wall ofKluyveromycesmarxianusYIT 8292 on the plasma cholesterol and fecal sterol excretion in rats fed on a high-cholesterol diet[J]. Bioscience,Biotechnology,and Biochemistry,2005,69(4):714-723.
[22]GARBERS I,BRITZ T,WITTHUHN R. PCR-based denaturing gradient gel electrophoretictypification and identification of the microbial consortium present in kefir grains[J]. World Journal of Microbiology and Biotechnology,2004, 20(7):687-693.
[23]GARROTE G L,ABRAHAM A G,De ANTONI G L. Chemical and microbiological characterisation of kefir grains[J]. Journal of Dairy Research,2001. 68(4):639-652.
[24]DIOSMA G,ROMANIN D E,REY-BURUSCO M F,et al. Yeasts from kefir grains:isolation,identification,and probiotic characterization[J]. World Journal of Microbiology and Biotechnology,2014,30(1):43-53.
[25]MARSHALL V M. Starter cultures for milk fermentation and their characteristics[J]. International Journal of Dairy Technology,1993,46(2):49-56.
[26]LATORRE-GARCA L,del CASTILLO-AGUDO L,POLAINA J. Taxonomical classification of yeasts isolated from kefir based on the sequence of their ribosomal RNA genes[J]. World Journal of Microbiology and Biotechnology,2007,23(6):785-791.
[27]MARSH A J,O'SULLIVAN O,HILL C,et al. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources[J]. PloS One,2013,8(7):e69371.
[28]IWASAWA S,UEDA M,MIYATA N,et al. Identification and fermentation character of kefir yeast[J]. Agricultural and Biological Chemistry,1982,46(11):2 631-2 636.
[29]DIOSMA G,ROMANIN D E,REY-BURUSCO M F,et al. Yeasts from kefir grains:isolation,identification,and probiotic characterization[J]. World Journal of Microbiology and Biotechnology,2014,30(1):43-53.
[30]LEITE A M O,LEITE D C A,DEL AGUILA E M,et al. Microbiological and chemical characteristics of Brazilian kefir during fermentation and storage processes[J]. Journal of Dairy Science,2013,96(7):4 149-4 159.
[31]da CP MIGUEL M G,CARDOSO P G,MAGALHES K T,et al. Profile of microbial communities present in tibico (sugary kefir) grains from different Brazilian States[J]. World Journal of Microbiology and Biotechnology,2011,27(8):1 875-1 884.
[33]LAUREYS D,DE VUYST L. Water kefir as a promising low-sugar probiotic fermented beverage[J]. Archives of Public Health,2014,72(1):1.
[34]LOPITZ-OTSOA F,REMENTERIA A,ELGUEZABAL N,et al. Kefir:una comunidad simbiótica de bacterias y levaduras con propiedades saludables[J]. Revista Iberoamericana de Micología,2006,23(2):67-74.
[35]WANG Y,AHMED Z,F(xiàn)ENG W,et al. Physicochemical properties of exopolysaccharide produced byLactobacilluskefiranofaciensZW3 isolated from Tibet kefir[J]. International Journal of Biological Macromolecules,2008,43(3):283-288.
[36]RIMADA P S,ABRAHAM A G. Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey[J]. Le Lait,2003,83(1):79-87.
[37]GHASEMLOU M,KHODAIYAN F,OROMIEHIE A,et al. Development and characterisation of a new biodegradable edible film made from kefiran,an exopolysaccharide obtained from kefir grains[J]. Food Chemistry,2011,127(4):1 496-1 502.
[38]MAEDA H,ZHU X,OMURA K,et al. Effects of an exopolysaccharide (kefiran) on lipids,blood pressure,blood glucose,and constipation[J]. Biofactors,2004,22(1):197-200.
[39]KESMEN Z,KACMAZ N. Determination of lactic microflora of kefir grains and kefir beverage by using culture-dependent and culture-independent methods[J]. Journal of Food Science,2011,76(5):M276-M283.
[40]WONG N P. Fundamentals of Dairy Chemistry[M]. Berlin:Springer Science & Business Media,2012.
[41]GARROTE G L,ABRAHAM A G,DE ANTONI G L. Inhibitory power of kefir:the role of organic acids[J]. Journal of Food Protection,2000,63(3):364-369.
[42]KLYAVINYA L. Department for dairy products for children[J]. Molochnaya Promyshlennost,1980,3:11-12.
[43]金世琳. 古老而新型的酒精性發(fā)酵乳飲料——開(kāi)菲爾[J]. 中國(guó)乳品工業(yè),1999,27(2):18-23.
[44]GUZEL-SEYDIM ZB,KOK-TAS T,GREENE AK,et al. Review:functional properties of kefir[J]. Critical Reviews in Food Science and Nutrition,2011,51(3):261-268.
[45]VINDEROLA C G,DUARTE J,THANGAVEL D,et al. Immunomodulating capacity of kefir[J]. Journal of Dairy Research,2005,72(2):195-202.
[46]HONG W S,CHEN H C,CHEN Y P,et al. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage[J]. International Dairy Journal,2009,19(4):244-251.
[47]URDANETA E,BARRENETXE J,ARANGUREN P,et al. Intestinal beneficial effects of kefir-supplemented diet in rats[J]. Nutrition Research,2007,27(10):653-658.
[48]LIU J R,WANG S Y,CHEN M J,et al. The anti-allergenic properties of milk kefir and soymilk kefir and their beneficial effects on the intestinal microflora[J]. Journal of the Science of Food and Agriculture,2006,86(15):2 527-2 533.
[49]MARQUINA D,SANTOS A,CORPAS I,et al. Dietary influence of kefir on microbial activities in the mouse bowel[J]. Letters in Applied Microbiology,2002,35(2):136-140.
[50]De VRESE M,KELLER B,BARTH C A. Enhancement of intestinal hydrolysis of lactose by microbial b-galactosidase (EC 3.2. 1.23) of kefir[J]. British Journal of Nutrition,1992,67(1):67-75.
[51]GARROTE G L,DELFEDERICO L,BIBILONI R,et al. Lactobacilli isolated from kefir grains:evidence of the presence of S-layer proteins[J]. Journal of Dairy Research,2004,71(2):222-230.
[52]LIU J R,CHEN M J,LIN C W. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir[J]. Journal of Agricultural and Food Chemistry,2005,53(7):2 467-2 474.
[53]SVENSSON M,SABHARWAL H,H?KANSSON A,et al. Molecular characterization of α-lactalbumin folding variants that induce apoptosis in tumor cells[J]. Journal of Biological Chemistry,1999,274(10):6 388-6 396.
[54]TOPUZ E,DERIN D,CAN G,et al. Effect of oral administration of kefir on serum proinflammatory cytokines on 5-FU induced oral mucositis in patients with colorectal cancer[J]. Investigational New Drugs,2008,26(6):567-572.
[55]NAGIRA T,NARISAWA J,KUSUMOTO K,et al. Protection of human melanoma cells from UV damage by a fermented milk,Kefir[J]. Animal Cell Technology,1999,10:369-374.
[56]LIU J R,WANG S Y,LIN Y Y,et al. Antitumor activity of milk kefir and soy milk kefir in tumor-bearing mice[J]. Nutrition and Cancer,2002,44(2):183-187.
[57]LIU J R,WANG S Y,CHEN M J,et al. Hypocholesterolaemic effects of milk-kefir and soyamilk-kefir in cholesterol-fed hamsters[J]. British Journal of Nutrition,2006,95(5):939-946.
[58]MOREIRA M E C,SANTOS M H D,ZOLINI G P P,et al. Anti-inflammatory and cicatrizing activities of a carbohydrate fraction isolated from sugary kefir[J]. Journal of Medicinal Food,2008,11(2):356-361.
[59]GUZEL-SEYDIM Z,SEYDIM A,GREENE A. Comparison of amino acid profiles of milk,yogurt and Turkish kefir[J]. Milchwissenschaft,2003,58(3-4):158-160.
[60]AHMED Z,WANG Y,AHMAD A,et al. Kefir and health:a contemporary perspective[J]. Critical Reviews in Food Science and Nutrition,2013,53(5):422-434.
[61]VINDEROLA G,PERDIGN G,DUARTE J,et al. Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation[J]. Journal of Dairy Research,2006,73(4):472-479.
[62]IRAPORDA C,ROMANIN D E,RUMBO M,et al. The role of lactate on the immunomodulatory properties of the nonbacterial fraction of kefir[J]. Food Research International,2014,62:247-253.
[63]LEITE A M O,MIGUEL M A L,PEIXOTO R S,et al. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains[J]. Journal of Dairy Science,2015,98(6):3 622-3 632.
Research on microbial diversities, chemical composition and functional activities of kefir grains and their fermented products
GAO Xin1, MEI Jun2, LI Bo1*
1(Department of Health and security, Shanghai Vocational Management College of Trade Union, Shanghai 201415, China)2(Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China)
ABSTRACTKefir grains is a starter in the traditional yoghourt “kefir” and the microbial components is very complicated. In the text, some literature about kefir grains and their fermented products were summarized and the microbial diversity, composition and functional activity were introduced. Kefir grains is a kind of mixed bacteria fermentation system, and lactic acid bacteria, yeast and acetic acid bacteria inhabit on its skeleton composed by protein and polysaccharide. When the milk is fermented with kefir grains, the lactic acid, alcohol and acetic acid fermentation can simultaneously be carried out. The products play an important role in anticancer activities, antihypertensive activities, antibacterial activities, enhancing immunity, and reducing lactose intolerance, which provide theoretical basis for use of kefir grains and their fermented products as functional foods.
Key wordskefir grain; microbial diversities; composition; functional activity
收稿日期:2015-08-03,改回日期:2015-09-10
基金項(xiàng)目:上海市高校選拔培訓(xùn)優(yōu)秀青年教師科研專項(xiàng)基金資助項(xiàng)目(ghz09005)
DOI:10.13995/j.cnki.11-1802/ts.201603043
第一作者:碩士,講師(李博為通訊作者,E-mail:hellob1101@163.com)。