楊靜,李坤,雷曉斐,楊宏麗,李雙玲,徐昌青
(山東省千佛山醫(yī)院,濟(jì)南250014)
Epac1對大鼠內(nèi)臟高敏感的調(diào)控作用及其機(jī)制
楊靜,李坤,雷曉斐,楊宏麗,李雙玲,徐昌青
(山東省千佛山醫(yī)院,濟(jì)南250014)
目的 探討環(huán)磷酸腺苷活化交換蛋白1(Epac1)對大鼠內(nèi)臟高敏感的調(diào)控作用及其機(jī)制。方法 選擇雄性SD大鼠45只,隨機(jī)分為對照組、模型組、CE3F4組、每組15只。模型組、CE3F4組建立內(nèi)臟高敏感模型,對照組不建模。標(biāo)準(zhǔn)環(huán)境下飼養(yǎng)至出生后第8周,對照組、模型組鞘內(nèi)注射生理鹽水25 μL,CE3F4組鞘內(nèi)注射0.2 nmol/μL CE3F4溶液25 μL。鞘內(nèi)注射第4天采用球囊擴(kuò)張法擴(kuò)張結(jié)直腸,分別于20、40、60、80 mmHg壓力下行腹壁收縮反射(AWR)評分,同時測量疼痛感覺閾值、最大容量感覺閾值時的壓力。應(yīng)用qRT-PCR及蛋白印跡法檢測支配結(jié)腸的L5~S1節(jié)段背根神經(jīng)節(jié)(DRG)Epac1、蛋白激酶C(PKC)ε mRNA和蛋白表達(dá)。結(jié)果 與對照組比較,模型組40、60、80 mmHg壓力時AWR評分升高,疼痛感覺閾值與最大容量感覺閾值時的壓力下降(P均<0.05),提示成功建立內(nèi)臟高敏感模型。與模型組比較,CE3F4組在40、60 mmHg壓力時AWR評分顯著下降(P均<0.05)。模型組在疼痛感覺閾值、最大容量感覺閾值時的壓力較對照組明顯降低(P均<0.05),而CE3F4組較模型組明顯升高(P均<0.05)。與對照組比較,模型組DRG的Epac1、PKCε mRNA和蛋白表達(dá)均顯著升高(P均<0.05)。與模型組比較,CE3F4組Epac1 mRNA和蛋白表達(dá)無明顯變化(P均>0.05),但PKCε mRNA和蛋白表達(dá)顯著降低(P均<0.05)。結(jié)論 Epac1可能參與大鼠內(nèi)臟高敏感的調(diào)控,其機(jī)制與下游PKCε活化有關(guān)。
腸易激綜合征;內(nèi)臟高敏感;環(huán)磷酸腺苷活化交換蛋白1;蛋白激酶Cε;大鼠
腸易激綜合征(IBS)的發(fā)病機(jī)制目前尚未明確[1]。流行病學(xué)調(diào)查顯示,急性腸炎后有4%~26%的患者可遺留IBS相關(guān)癥狀,其原因可能與前列腺素E2等炎性介質(zhì)釋放增多并作用于腸道感覺傳入通路,導(dǎo)致腸道敏感性異常有關(guān)[2]。位于脊髓兩側(cè)的背根神經(jīng)節(jié)(DRG)是內(nèi)臟感覺傳入通路的“門控”, DRG處神經(jīng)元感覺調(diào)控分子的變化可導(dǎo)致內(nèi)臟感覺異常[3]。環(huán)磷酸腺苷活化交換蛋白1(Epac1)是一種環(huán)磷酸腺苷效應(yīng)分子。研究證實(shí),機(jī)體在炎癥刺激后DRG內(nèi)Epac1表達(dá)上調(diào),可導(dǎo)致前列腺素E2誘導(dǎo)的持續(xù)性軀體痛發(fā)生[4]。Epac1在腸道和DRG表達(dá)豐富,可參與神經(jīng)元的機(jī)械刺激傳導(dǎo)[5,6],因此推測其可能參與腸道敏感性的調(diào)控,但目前尚缺乏相關(guān)證據(jù)。2015年6~10月,本研究觀察了Epac1對大鼠內(nèi)臟高敏感模型的調(diào)控作用,現(xiàn)分析結(jié)果并探討其機(jī)制。
1.1 材料 健康雄性SD乳鼠45只,8日齡,體質(zhì)量20~22 g,由山東大學(xué)實(shí)驗(yàn)動物中心提供。主要儀器:lightcycler480實(shí)時定量PCR儀(德國Roche公司),F(xiàn)luor Chem E凝膠圖像分析系統(tǒng)(美國Protein Simple公司),VE-180垂直電泳槽、VE-186蛋白質(zhì)凝膠轉(zhuǎn)印槽(上海天能科技有限公司)。主要試劑:Epac1抑制劑CE3F4(美國Cayman Chemical公司),Epac1小鼠單克隆抗體(美國Cell Signaling公司),蛋白激酶C(PKC)ε兔多克隆抗體、β-actin兔多克隆抗體(美國Abcam公司),山羊抗兔二抗(杭州聯(lián)科生物技術(shù)股份有限公司),山羊抗小鼠二抗(美國Bioworld公司)。RNA逆轉(zhuǎn)錄試劑盒(美國Promega公司),Trizol溶液(美國Invitrogen公司),SYBR-Green Real-time PCR Master Mix(日本ToYoBo公司),ECL Plus發(fā)光試劑盒、BCA蛋白測定試劑盒(上海碧云天生物技術(shù)有限公司)。
1.2 動物分組及模型制備 采用隨機(jī)數(shù)字表法將45只乳鼠分為對照組、模型組、CE3F4組,每組15只。三組均與母鼠同籠飼養(yǎng)。對照組出生第8~21天用0.3 mL生理鹽水灌腸;模型組、CE3F4組參照文獻(xiàn)[7]建立內(nèi)臟高敏感模型,即出生第8~21天用0.3 mL 0.5%醋酸溶液灌腸;每天灌腸1次。出生第25天,三組均與母鼠分離,每4只1籠,標(biāo)準(zhǔn)環(huán)境下飼養(yǎng)至出生第8周。1.3 鞘內(nèi)注射干預(yù) 各組于出生第8周參照文獻(xiàn)[8]方法行鞘內(nèi)注射干預(yù):腹腔注射1%戊巴比妥(35 mg/kg)麻醉后,剃除腰背部毛發(fā),選擇L5~6間隙為進(jìn)針點(diǎn),操作者持25 μL微量進(jìn)樣器進(jìn)針,以明確的突破感和鼠尾側(cè)擺為到達(dá)鞘內(nèi)的標(biāo)志。對照組、模型組鞘內(nèi)注射生理鹽水25 μL,CE3F4組鞘內(nèi)注射CE3F4溶液25 μL(0.2 nmol/μL),注射速度1 μL/s,各組均注射1次。注射結(jié)束停留2 s拔出針頭,肌肉注射青霉素3萬U預(yù)防感染。
1.4 相關(guān)指標(biāo)觀察
1.4.1 內(nèi)臟敏感性 鞘內(nèi)注射結(jié)束,各組隨機(jī)取8只行腹壁收縮反射(AWR)評分,剩余7只行感覺閾值測定。①AWR評分:鞘內(nèi)注射第4天進(jìn)行試驗(yàn),當(dāng)日禁食8 h、不禁水。采用球囊擴(kuò)張法擴(kuò)張結(jié)直腸,于不同壓力下行AWR評分[6]。具體步驟:大鼠適量乙醚吸入麻醉后置于特制透明塑料籠中,球囊(長5 cm)石蠟油潤滑后與導(dǎo)管連接,經(jīng)肛門插入,球囊末端距肛門1 cm,用醫(yī)用膠帶把導(dǎo)管和鼠尾根部固定,導(dǎo)管另一端連接改造的水銀血壓計。大鼠適應(yīng)30 min、呈安靜狀態(tài)時,向球囊內(nèi)注氣,分別于20、40、60、80 mmHg壓力下進(jìn)行擴(kuò)張,每次持續(xù)20 s,間隔5 min,記錄不同壓力下AWR評分;重復(fù)3次,取平均值。AWR評分標(biāo)準(zhǔn):0分:對球囊擴(kuò)張無反應(yīng);1分:身體靜止不動或頭部運(yùn)動減少;2分:腹部肌肉收縮;3分:腹部抬高;4分:骨盆抬起,身體呈弓形。②感覺閾值:同日應(yīng)用上述球囊擴(kuò)張裝置逐漸注氣擴(kuò)張大鼠結(jié)腸,以5 mmHg為階梯單位由0 mmHg逐漸增加至80 mmHg,記錄疼痛感覺閾值(大鼠腹壁肌肉收縮并有腹部抬起時的擴(kuò)張壓力值)及最大容量感覺閾值(大鼠背部拱起時的擴(kuò)張壓力值)時的壓力;重復(fù)測量3次,每次間隔10 min,取平均值。1.4.2 DRG Epac1、PKCε mRNA表達(dá) 采用qRT-PCR技術(shù)。各組內(nèi)臟敏感性檢測結(jié)束后處死,每組隨機(jī)取7只,取支配結(jié)腸的腰骶部L5~S1節(jié)段DRG,每只大鼠取6個DRG作為1個樣本。應(yīng)用TRIzol離心柱法提取樣本總RNA,通過核酸蛋白測量儀檢測抽提RNA的質(zhì)量和純度,A260/A280為1.8~2.0,計算RNA含量。應(yīng)用逆轉(zhuǎn)錄試劑盒將RNA逆轉(zhuǎn)錄成cDNA,應(yīng)用SYBRGreen和qRT-PCR檢測儀檢測Epac1、PKCε mRNA水平。引物由上海桑尼生物技術(shù)有限公司合成。Epac1(NM_021690.1)上游引物:5′-TGGTGCTGAAGAGAATGCAC-3′,下游引物:5′-TCCAGGCTCACTCTGAAGTC-3′,目標(biāo)產(chǎn)物142 bp;PKCε(NM_017171.1)上游引物:5′-AAGGTGTTAGGCAAAGGCAG-3′,下游引物: 5′-GCAGCAATAGAG-
TTGGGTTAG-3′,目標(biāo)產(chǎn)物192 bp;內(nèi)參β-actin(NM_81822)上游引物:5′-CCCATCTATGAGGGTTACGC-3′,下游引物: 5′-TTTAATGTCACGCACGAT-
TTC-3′,目標(biāo)產(chǎn)物150 bp。采用2-ΔΔCT法計算Epac1、PKCε mRNA的相對表達(dá)量。
2.1 各組不同壓力時AWR評分及疼痛閾值、最大容量感覺閾值時的壓力比較 見表1、2。
表1 各組不同壓力時AWR評分比較
注:與對照組比較,*P<0.01;與模型組比較,△P<0.05。
表2 各組疼痛閾值、最大容量感覺閾值時的壓力比較
注:與對照組比較,*P<0.01;與模型組比較,△P<0.05,△△P<0.01。
2.2 各組DRG Epac1、PKCε mRNA的相對表達(dá)量比較 見表3。
表3 各組DRG Epac1、PKCε mRNA的相對表達(dá)量比較
注:與對照組比較,*P<0.01;與模型組比較,△P<0.05。
2.3 各組DRG Epac1、PKCε蛋白的相對表達(dá)量比較 見表4。
表4 各組DRG Epac1、PKCε蛋白的相對表達(dá)量比較
注:與對照組比較,*P<0.01;與模型組比較,△P<0.01。
既往研究證實(shí),急性腸道炎癥后部分患者可遺留IBS癥狀,內(nèi)臟高敏感是其慢性腹痛、腹部不適癥狀發(fā)生的主要病理生理基礎(chǔ)[9,10]。這種高敏感狀態(tài)與前列腺素E2、緩激肽等炎性介質(zhì)持續(xù)釋放,導(dǎo)致腸道傳入神經(jīng)通路敏感化和抑制性調(diào)控神經(jīng)通路功能減退有關(guān)[11,12]。結(jié)腸受到炎癥、機(jī)械及化學(xué)刺激后通過內(nèi)臟傳入神經(jīng)將感覺信號傳至脊髓兩側(cè)的DRG,DRG處神經(jīng)元將感覺信息整合后傳遞至脊髓背角,進(jìn)而投射至中樞神經(jīng)系統(tǒng),因此一過性炎癥后DRG處神經(jīng)元感覺調(diào)控分子的變化將導(dǎo)致內(nèi)臟敏感性異常[11,13]。
de Rooij等[14]于1998年發(fā)現(xiàn)一類環(huán)磷酸腺苷下游效應(yīng)分子Epac,可能參與調(diào)控細(xì)胞增殖、分化、凋亡等病理生理過程,如增強(qiáng)細(xì)胞黏附、調(diào)控血管內(nèi)皮細(xì)胞屏障和中樞神經(jīng)元囊泡遞質(zhì)釋放過程等[15]。Epac包括Epac1、Epac2兩種亞型,Epac1在體內(nèi)組織細(xì)胞廣泛表達(dá),而Epac2僅選擇性表達(dá)于腦、垂體、腎臟等[16,17]。Wang等[4]研究證實(shí),炎癥狀態(tài)時DRG內(nèi)Epac1表達(dá)上調(diào),參與炎癥后慢性痛覺過敏的發(fā)生與調(diào)控。Epac1在神經(jīng)元的分布與生理特性提示其可能參與內(nèi)臟高敏感的調(diào)節(jié),但目前尚無相關(guān)研究證實(shí)。
CE3F4為Epac1特異性抑制劑。本研究結(jié)果顯示,與對照組比較,模型組結(jié)直腸壓力擴(kuò)張后AWR評分增加、感覺閾值下降,表明內(nèi)臟高敏感動物模型復(fù)制成功;鞘內(nèi)注射CE3F4可降低40、60 mmHg壓力時AWR評分,并升高其疼痛閾值、最大容量感覺閾值時的壓力。提示Epac1參與了內(nèi)臟高敏感調(diào)控。內(nèi)臟高敏感調(diào)控機(jī)制復(fù)雜,有內(nèi)源性大麻素、5-羥色胺、降鈣素基因相關(guān)肽等多種介質(zhì)參與,同時不同壓力擴(kuò)張可激活瞬時感受器電離子通道、上皮鈉離子通道、Piezo等不同閾值感受器[11,18]。既往研究顯示,80 mmHg壓力作為傷害性結(jié)直腸擴(kuò)張的最大閾值[19]。故單一抑制Epac1活性對80 mmHg壓力時AWR評分無明顯抑制作用。本研究CE3F4組80 mmHg壓力時AWR評分與模型組比較無統(tǒng)計學(xué)差異,與以往報道一致。
PKCε是PKC的一種亞型。既往研究證實(shí),PKCε是參與炎癥后外周傳入神經(jīng)致敏的關(guān)鍵分子,同時可參與急性疼痛向慢性疼痛的轉(zhuǎn)換[20~22]。研究證實(shí),炎癥狀態(tài)時環(huán)磷酸腺苷上調(diào),而PKCε可參與環(huán)磷酸腺苷信號通路炎性致敏的機(jī)制[23,24]。因此推測,Epac1對內(nèi)臟高敏感的調(diào)控由Epac1-PKCε信號通路介導(dǎo)。本研究結(jié)果表明,內(nèi)臟高敏感大鼠DRG PKCε表達(dá)增加,而抑制Epac1活性可抑制PKCε表達(dá),進(jìn)而改善內(nèi)臟高敏感,提示PKCε作為下游信號通路分子參與Epac1對內(nèi)臟高敏感的調(diào)控。
綜上所述,Epac1對內(nèi)臟高敏感具有調(diào)節(jié)作用,并通過下游信號PKCε通路分子介導(dǎo);本研究為IBS等內(nèi)臟高敏感相關(guān)性疾病的藥物治療提供了新的靶點(diǎn)。
[1] Chang L, Munakata J, Mayer EA, et al. Perceptual responses in patients with inflammatory and functional bowel disease[J]. Gut, 2000,47(4):497-505.
[2] 梁海清,王世和,李延青,等.腸易激綜合征患者外周血炎性細(xì)胞因子表達(dá)失衡的分析[J].胃腸病學(xué),2008,13(2):111-113.
[3] Beyak MJ. Visceral afferents-determinants and modulation of excitability[J]. Auton Neurosci, 2010,153(1-2):69-78.
[4] Wang H, Heijnen CJ, van Velthoven CT, et al. Balancing GRK2 and EPAC1 levels prevents and relieves chronic pain[J]. J Clin Invest, 2013,123(12):5023-5034.
[5] Hoque KM, Woodward OM, van Rossum DB, et al. Epac1 mediates protein kinase a-independent mechanism of forskolin-activated intestinal chloride secretion[J]. J Gen Physiol, 2010,135(1):43-58.
[6] Eijkelkamp N, Linley JE, Torres JM, et al. A role for Piezo2 in EPAC1-dependent mechanical allodynia[J]. Nat Commun, 2013(4):1682.
[7] Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development[J]. Gastroenterology, 2000,119(5):1276-1285.
[8] 曹海蓮,高峻,金震東,等.三硝基苯三磷酸腺苷鞘內(nèi)注射對大鼠內(nèi)臟高敏感性的影響[J].胃腸病學(xué),2007,12(6):344-348.
[9] Hughes PA, Brierley SM, Martin CM, et al. Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses[J]. Gut, 2009,58(10):1333-1341.
[10] 王子愷,楊云生.感染后腸易激綜合征[J].胃腸病學(xué)和肝病學(xué)雜志,2012,21(10):966-970.
[11] Gebhart GF. Pathobiology of visceral pain: molecular mechanisms and therapeutic implications Ⅳ. Visceral afferent contributions to the pathobiology of visceral pain[J]. Am J Physiol Gastrointest Liver Physiol, 2000,278(6):G834-G838.
[12] La JH, Kim TW, Sung TS, et al. Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis[J]. World J Gastroenterol, 2003,9(12):2791-2795.
[13] Martinez V, Melgar S. Lack of colonic-inflammation-induced acute visceral hypersensitivity to colorectal distension in Na(v)1.9 knockout mice[J]. Eur J Pain, 2008,12(7):934-944.
[14] de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP[J]. Nature, 1998,396(6710):474-477.
[15] Roscioni SS, Elzinga CR, Schmidt M. Epac: effectors and biological functions[J]. Naunyn Schmiedebergs Arch Pharmacol, 2008,377(4-6):345-357.
[16] Parnell E, Smith BO, Yarwood SJ. The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal[J]. Cell Signal, 2015,27(5):999-996.
[17] Pereira L, Rehmann H, Lao DH, et al. Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes[J]. Proc Natl Acad Sci U S A, 2015,112(13):3991-3996.
[18] Matsumoto K, Lo MW, Hosoya T, et al. Experimental colitis alters expression of 5-HT receptors and transient receptor potential vanilloid 1 leading to visceral hypersensitivity in mice[J]. Lab Invest, 2012,92(5):769-782.
[19] Lu CL, Pasricha PJ, Hsieh JC, et al. Changes of the neuropeptides content and gene expression in spinal cord and dorsal root ganglion after noxious colorectal distension[J]. Regul Pept, 2005,131(1-3):66-73.
[20] Numazaki M, Tominaga T, Toyooka H, et al. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues[J]. J Biol Chem, 2002,277(16):13375-13378.
[21] Sweitzer SM, Wong SM, Peters MC, et al. Protein kinase C epsilon and gamma: involvement in formalin-induced nociception in neonatal rats[J]. J Pharmacol Exp Ther, 2004,309(2):616-625.
[22] Parada CA, Yeh JJ, Reichling DB, et al. Transient attenuation of protein kinase Cepsilon can terminate a chronic hyperalgesic state in the rat[J]. Neuroscience, 2003,120(1):219-226.
[23] Parada CA, Reichling DB, Levine JD. Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCvarepsilon second messenger pathways[J]. Pain, 2005,113(1-2):185-190.
[24] Vervloet D, Anfosso F, Vellieux P, et al. Cyclic AMP in hypersensitivity reactions[J]. Allergy, 1979,34(6):421-424.
Regulating effect of Epac1 on visceral hypersensitivity in rats and its mechanism
YANGJing,LIKun,LEIXiaofei,YANGHongli,LIShuangling,XUChangqing
(ShandongProvincialQianfoshanHospital,Jinan250014,China)
Objective To investigate the regulating effect of Epac1 on the visceral hypersensitivity in rats and its downstream mechanism. Methods Forty-five neonatal SD male rats were randomly divided into three groups: the control group, model group and CE3F4 group with 15 rats per group. Visceral hypersensitive model was established in the model group and CE3F4 group but not in the control group. At the age of 8 weeks, rats in the control group and model group were both injected by 25 μL normal saline intrathecally, while CE3F4 group was injected by 25 μL solution of Epac1 specific antagonist CE3F4 (0.2 nmol/μL). Three days after injection, AWR scores, pain threshold and maximal tolerance threshold at graded colorectal distension pressures (20, 40, 60 and 80 mmHg) were examined. Real-time quantitative PCR and Western blotting were operated to investigate the mRNA and protein expression levels of Epac1 and PKCε in L5-S1 colonic-afferent dorsal root ganglions (DRGs). Results Compared with the control group, AWR scores in model group were increased at 40, 60 and 80 mmHg, while the pain threshold and maximal tolerance threshold were decreased (allP<0.05), which indicated the successful establishment of visceral hypersensitive model. Compared with the model group, AWR scores in the CE3F4 group were decreased at 40 and 60 mmHg, while the pain threshold and maximal tolerance threshold were increased (allP<0.05), meanwhile, the CE3F4 group was significantly higher than the model group (allP<0.05). Compared with the control group, the expression levels of Epac1 and PKCεat mRNA and protein in DRGs of the model group were increased (allP<0.05). Compared with the model group, the expression levels of Epac1 at mRNA and protein in DRGs of the CE3F4 group were not significantly different (allP>0.05), but the expression of PKCε at mRNA and protein levels in DRGs of the CE3F4 group were significantly decreased (allP<0.05). Conclusions Epac1 participates in the regulation of visceral hypersensitivity and the mechanism may be related with the downstream activation of PKCε.
irritable bowel syndrome; visceral hypersensitivity; Epac1; protein kinase Cε; rats
國家自然科學(xué)基金資助項(xiàng)目青年科學(xué)基金項(xiàng)目(81200275);山東省自然科學(xué)基金資助項(xiàng)目(ZR2012HL20)。
楊靜(1982-),女,主治醫(yī)師,研究方向?yàn)楣δ苄晕改c病發(fā)病機(jī)制基礎(chǔ)與臨床研究。E-mail: doctorjingyang@hotmail.com
徐昌青(1963-),男,主任醫(yī)師,研究方向?yàn)橄到y(tǒng)疾病診斷與治療。E-mail: xcqys@126.com
10.3969/j.issn.1002-266X.2016.24.003
R574.4
A
1002-266X(2016)24-0009-04
2016-03-25)