龔 丹,章成廣油氣資源與勘探技術(shù)教育部重點實驗室(長江大學),湖北 武漢長江大學期刊社,湖北 荊州
裂縫性致密砂巖儲層聲波測井數(shù)值模擬
龔 丹1,2,章成廣1
1油氣資源與勘探技術(shù)教育部重點實驗室(長江大學),湖北 武漢2長江大學期刊社,湖北 荊州
Received: Jan.12th, 2016; accepted: Apr.11th, 2016; published: Jun.15th, 2016
Copyright ? 2016 by authors, Yangtze University and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).http://creativecommons.org/licenses/by/4.0/
目前,用來評價致密砂巖儲層有效性的測井方法主要有常規(guī)測井、成像測井及聲波測井3種。由于裂縫性致密砂巖儲層的裂縫寬度一般小于100 μm,常規(guī)測井和成像測井對微裂縫難以進行有效識別,而聲波測井可通過斯通利波衰減系數(shù)等參數(shù)對微裂縫進行定性甚至定量識別。通過數(shù)值模擬計算,對含有裂縫的致密儲層井孔聲場進行研究,掌握裂縫對井內(nèi)聲場的影響規(guī)律,對于聲波測井數(shù)據(jù)處理及解釋具有重要意義。應(yīng)用三維交錯網(wǎng)格應(yīng)力–速度有限差分方法,模擬了含有傾斜薄裂縫的孔隙介質(zhì)地層中點聲源所激發(fā)的井孔聲場問題。針對單條水平裂縫,確定了不同裂縫寬度(20~1000 μm)對斯通利波識別微裂縫的影響,即裂縫寬度越大,波形振幅越小;裂縫寬度較小時(裂縫寬度小于100 μm),波形幅度對裂縫寬度的變化非常敏感,遞減非???;裂縫寬度越大時,斯通利波衰減系數(shù)越大。此外,還計算了孔隙介質(zhì)地層不同孔隙度條件下斯通利波、橫波、縱波幅度及衰減系數(shù)與裂縫寬度的關(guān)系,即孔隙度越大,斯通利波、橫波、縱波幅度越小,衰減系數(shù)越大。
聲波測井,斯通利波,裂縫性致密砂巖,數(shù)值模擬,測井響應(yīng)特征
隨著世界油氣勘探的發(fā)展,裂縫性儲集層已成為油氣勘探的主要對象之一。由于致密砂巖儲層的微裂縫寬度一般小于100 μm,裂縫與井壁之間的位置關(guān)系也不確定,常規(guī)測井和成像測井等測井方法難以對微裂縫進行有效識別,使得對裂縫地層的識別與評價成為當今測井行業(yè)所面臨的難題之一。利用聲波測井檢測傾斜地層、探測裂縫性儲集層以及對微裂縫進行有效識別等,是實際工作中迫切需要解決的問題。通過數(shù)值模擬計算,對含有裂縫的致密儲層井孔聲場進行研究,掌握裂縫對井內(nèi)聲場的影響規(guī)律,對于聲波測井數(shù)據(jù)處理及解釋具有重要意義。Spring and Dudley [1]和Kostek等[2]分別采用積分方程和有限差分法計算了裂縫存在時的時域井孔聲波場;Matuszyk等[3]采用有限元法模擬計算了裂縫性地層的井孔聲場;Guan等[4]采用有限差分法計算了水平分層孔隙介質(zhì)地層中的井孔聲波場;陳德華等[5]、叢健生[6]也針對裂縫性地層的井孔聲場進行了有限差分模擬計算,但上述計算都是針對二維情況,并且水平層或裂縫寬度較大。
由于有限元法在地震波模擬問題上比有限差分法更耗時,因此對于井孔聲場的模擬大都采用有限差分法。三維交錯網(wǎng)格有限差分法近年來被應(yīng)用于大斜度井、傾斜分層地層及各向異性介質(zhì)地層等非軸對稱問題的數(shù)值模擬研究[7]-[11],得到了較好效果,但對非軸對稱裂縫地層的井孔聲場研究相對較少。為此,筆者采用三維不規(guī)則交錯網(wǎng)格有限差分法對含有傾斜薄裂縫孔隙地層中的井孔聲波場進行了數(shù)值模擬計算,考察了不同裂縫寬度(20~1000 μm)及地層參數(shù)情況下的井孔聲場特性,為進一步研究、利用井孔聲場信息反演裂縫參數(shù)奠定基礎(chǔ)。
該次研究應(yīng)用三維交錯網(wǎng)格應(yīng)力–速度有限差分方法,模擬了含有傾斜薄裂縫孔隙介質(zhì)地層中點聲源所激發(fā)的井孔聲場問題。圖1為含有傾斜裂縫地層的井孔模型示意圖,假定聲源位于笛卡爾坐標系的原點,井軸與Z軸重合,井外裂縫與XZ軸構(gòu)成的平面垂直,與XY軸構(gòu)成的平面傾角為α,裂縫下界面與Z軸的交點與原點的距離為d,裂縫的垂直厚度為H,裂縫間隔為h。
由于需要計算的裂縫很薄,受井孔模型大小的影響,如果采用很小的網(wǎng)格進行數(shù)值計算會導(dǎo)致計算速度過慢,甚至無法計算的情況。采用不均勻網(wǎng)格的辦法在裂縫處采用小網(wǎng)格,在非裂縫處采用大網(wǎng)格,可以大大減小計算量,在保證計算精度的同時提高了計算速度。在使用變網(wǎng)格時,網(wǎng)格步長的變化可能會導(dǎo)致數(shù)值反射的出現(xiàn),其原因是因為波場離散后,相速度是網(wǎng)格步長的函數(shù),當相速度梯度較大時,即使速度和密度都沒有變化,入射波的能量也會部分反射回來,導(dǎo)致了數(shù)值反射現(xiàn)象。在網(wǎng)格變化的區(qū)域?qū)Σ▓鲞M行插值計算雖可以在某種程度上壓制數(shù)值反射,但是插值算法計算量大,且效果并不令人滿意,所以該次研究沒有采用插值計算,而是根據(jù)各點所對應(yīng)的步長的變化計算其差分系數(shù),該方法不會產(chǎn)生數(shù)值反射,并且減小了計算量。
當井外為無裂縫的孔隙介質(zhì)地層時,將有限差分結(jié)果與實軸積分法結(jié)果進行對比(圖2),聲源頻率為2.5 kHz,接收器與聲源間距為1 m,圖中黑線為有限差分法計算結(jié)果,紅線為實軸積分法計算結(jié)果,2種方法計算結(jié)果基本符合,證明了有限差分方法的正確性。圖2中幅度上的差異是由歸一化造成的,不影響研究結(jié)果。
4.1.裂縫寬度的影響
圖3為頻率5 kHz時的砂巖不同級別裂縫寬度(20~1000 μm)的波形對比圖。從圖3中可以看出,聲探頭穿過不同裂縫寬度的裂縫時,裂縫寬度越大,波形衰減越明顯,波形幅度越?。涣芽p寬度較小(裂縫寬度 < 100 μm)時,波形幅度遞減較快,波形衰減更明顯。
圖4為頻率5 kHz時的砂巖裂縫寬度與斯通利波形幅度值關(guān)系圖及砂巖裂縫寬度與斯通利波衰減系數(shù)關(guān)系圖,可以看出,裂縫寬度越大,波形幅度越小;裂縫寬度較小(裂縫寬度 < 100 μm)時,波形幅度遞減較快,波形衰減更明顯;裂縫寬度越大,斯通利波衰減系數(shù)越大,并逐漸趨于平穩(wěn)。
4.2.孔隙度的影響
4.2.1.斯通利波
圖5是孔隙介質(zhì)地層頻率5 kHz時不同孔隙度下裂縫寬度與斯通利波幅度的匯總圖,可以看出,隨著裂縫寬度的增加,斯通利波幅度均呈明顯的下降趨勢,且裂縫寬度較小(裂縫寬度 < 100 μm)時,波形幅值遞減較快,波形衰減更明顯;孔隙度越大,相同裂縫寬度下的斯通利波幅度越小。
圖6是孔隙介質(zhì)地層頻率5 kHz時不同孔隙度下裂縫寬度與斯通利波衰減系數(shù)的匯總圖,可以看出,隨著裂縫寬度的增加,不同孔隙度下的斯通利波衰減系數(shù)均呈明顯的上升趨勢;且孔隙度越大,斯通利波衰減系數(shù)越大。
Figure 1.Hole model containing in inclined crack in formation圖1.傾斜裂縫地層中的井孔模型
Figure 2.The comparison results of real axis integrate method and finite-difference method圖2.有限差分法與實軸積分法的結(jié)果對比圖
Figure 3.The waveform comparison of different crack levels (20 - 1000 μm) of sandstone (frequency 5 kHz)圖3.砂巖不同裂縫級別(20~1000 μm)波形對比圖(頻率5 kHz)
Figure 4.Relationship between crack width and the Stoneley wave amplitude, the Stoneley wave attenuation coefficient of sand stone (frequency 5 kHz)圖4.砂巖裂縫寬度與斯通利波形幅度值關(guān)系圖(a)及裂縫寬度與斯通利波衰減系數(shù)關(guān)系圖(b)
Figure 5.Summary of relationship between crack width and Stoneley wave amplitude with different porosities of porosity formation (frequency 5 kHz)圖5.孔隙介質(zhì)地層不同孔隙度下斯通利波幅度與裂縫寬度關(guān)系匯總圖(頻率5 kHz)
Figure 6.Summary of relationship between crack width and Stoneley wave attenuation coefficient with different porosities of porosity formation (frequency 5 kHz)圖6.孔隙介質(zhì)地層不同孔隙度下斯通利波衰減系數(shù)與裂縫寬度關(guān)系匯總圖(頻率5 kHz)
通過對比孔隙介質(zhì)地層與彈性介質(zhì)地層斯通利波衰減系數(shù)與裂縫寬度關(guān)系匯總圖(圖7)可以發(fā)現(xiàn),孔隙介質(zhì)中孔隙度對斯通利波衰減系數(shù)的影響更大,不同孔隙度下,斯通利波衰減系數(shù)與裂縫寬度的關(guān)系曲線差別更大。
4.2.2.橫波
圖8是孔隙介質(zhì)地層不同角度情況下橫波幅度與孔隙度關(guān)系匯總圖,可以看出,隨著孔隙度的增大,橫波幅度逐漸減小;相同孔隙度下,裂縫角度越大,橫波幅度越大。
4.2.3.縱波
圖9為頻率5 kHz時不同孔隙度下縱波衰減系數(shù)與裂縫寬度的匯總圖,可以看出,隨著裂縫寬度的增加,不同孔隙度下的縱波衰減系數(shù)均呈明顯的上升趨勢;且孔隙度越大,縱波衰減系數(shù)越大。
Figure 7.Summary of relationship between crack width and Stoneley wave attenuation coefficient with different porosities of elastic medium formation (frequency 5 kHz)圖7.彈性介質(zhì)地層不同孔隙度下斯通利波衰減系數(shù)與裂縫寬度關(guān)系匯總圖(頻率5 kHz)
Figure 8.Summary of relationship between shear wave amplitude and porosity with different crack dips of porosity formation (frequency 5 kHz)圖8.孔隙介質(zhì)地層不同角度情況下橫波幅度與孔隙度匯總圖(頻率5 kHz)
Figure 9.Summary of relationship between crack width and longitudinal wave attenuation coefficient with different porosities of porosity formation (frequency 5 kHz)圖9.孔隙介質(zhì)地層不同孔隙度下縱波衰減系數(shù)與裂縫寬度匯總圖(頻率5 kHz)
通過數(shù)值模擬手段,對微米級(裂縫寬度最低20 μm)的單條或多條水平及不同角度的裂縫進行了數(shù)值模擬,分析了波形幅度、衰減系數(shù)與裂縫寬度、孔隙度的關(guān)系,取得了如下認識。
1) 聲探頭穿過裂縫時,波形幅度變小。聲探頭穿過不同寬度的裂縫時,裂縫寬度越大,波形幅度越小。裂縫寬度較小時(裂縫寬度 < 100 μm),波形幅值遞減很快,波形幅度隨裂縫寬度的變化非常敏感。因此,當裂縫寬度小于100 μm時,不能定量確定裂縫寬度,即聲波測井對微裂縫的反映下限是裂縫寬度100 μm。
2) 裂縫寬度越大,斯通利波、橫波、縱波幅度均減小,衰減系數(shù)均增大;在其他參數(shù)不變的情況下,孔隙度越大,斯通利波、橫波、縱波衰減系數(shù)越大。
References)
[1] Spring, C.and Dudley, D.(1992) Acoustic-Wave Propagation in a Cylindrical Borehole with Fractures.The Journal of the Acoustical Society of America, 91, 658-669.http://dx.doi.org/10.1121/1.402527
[2] Kostek, S., Johnson, D.and Randall, C.(1998) The Interaction of Tube Waves with Borehole Fractures.Part I: Numerical Models.Geophysics, 63, 800-808.http://dx.doi.org/10.1190/1.1444391
[3] Matuszyk, P.J., Torres-Verdín, C.and Pardo, D.(2013) Frequency-Domain Finite-Element Simulations of 2D Sonic Wireline Borehole Measurements Acquired in Fractured and Thinly Bedded Formations.Geophysics, 78, 193-207.http://dx.doi.org/10.1190/geo2012-0397.1
[4] Guan, W., Hu, H.and He, X.(2009) Finite-Difference Modeling of the Monopole Acoustic Logging in a Horizontally Stratified Porous Formation.The Journal of the Acoustical Society of America, 125, 1942-1950.http://dx.doi.org/10.1121/1.3081518
[5] 陳德華, 叢健生, 徐德龍, 等.裂縫性地層中的井孔聲場模擬[J].大慶石油學院學報, 2004, 28(3): 4-6, 13.
[6] 叢健生.利用有限差分法模擬計算具有分層和裂縫地層井內(nèi)外聲場[D]: [碩士學位論文].大慶: 大慶石油學院, 2004.
[7] Leslie, H.D.and Randall, C.J.(1992) Multipole Sources in Boreholes Penetrating Anisotropic Formations.The Journal of the Acoustical Society of America, 91, 12-17.http://dx.doi.org/10.1121/1.402761
[8] Cheng, N.Y., Cheng, C.H.and Toksoz, M.N.(1995) Borehole Wave Propagation in Three Dimensions.The Journal of the Acoustical Society of America, 97, 3483-3493.http://dx.doi.org/10.1121/1.412996
[9] Sinha, B.K., Ergün, ?.And Liu, Q.H.(2006) Elastic-Wave Propagation in Deviated Wells in Anisotropic Formations.Geophysics, 71, 191-202.http://dx.doi.org/10.1190/1.2358402
[10] 林偉軍, 王秀明, 張海瀾.傾斜地層中的井孔聲場研究[J].地球物理學報, 2006, 49(1): 284-294.
[11] 閻守國, 宋若龍, 呂偉國, 等.橫向各向同性地層斜井中正交偶極子激發(fā)聲場的數(shù)值模擬[J].地球物理學報, 2011, 54(9): 2412-2418.
Numerical Simulation of Sonic Logging in Fractured Tight Sandstone Reservoirs
Dan Gong1,2, Chengguang Zhang1
1Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, Wuhan Hubei2Periodical Agency of Yangtze University, Jinzhou Hubei
The logging methods to evaluate the effectiveness of the tight sandstone reservoir mainly include conventional logging, imaging logging and acoustic logging.It was difficult to effectively identify the microfractures by conventional logging and imaging logging, because the width of fractures in fractured tight sandstone reservoirs was less than 100 μm, but the acoustic logging makes an qualitative identification and quantitative evaluation to microfractures through the stoneley wave attenuation coefficient and other parameters.It will be of great importance to master the influencing rule of fracture of borehole acoustic field for acoustic logging data processing and interpretation by numerical simulation, researching the borehole acoustic field on tight reservoir with the fractures.The method of three-dimensional staggered grid stress and speed finite difference was applied to numerically simulate the problems of borehole acoustic field, which was aroused by point source in layer of elastic media and pore media containing inclined thin cracks.The microfractures in fractured tight sandstone reservoirs were effectively identified and evaluated by using the parameters of energy amplitude of Stoneley wave and etc.In consideration of single horizontal crack, the influence of crack width (20 - 1000 μm) on the Stoneley wave used to identify microfractures was determined, the wider the fracture was, the smaller the amplitude of Stoneley wave was.When the width of fractures was narrower (crack width was less than 100 μm), the waveform amplitude diminished rapidly.The wider the fracture was, the bigger the Stoneley wave attenuation would be.Nevertheless, the relationship between its waveform amplitude, attenuation and fractural width was also obtained under the condition of different porosities of porous medium in formation, that was, the bigger the porosity was, the smaller the amplitude of Stoneley wave, P-wave and S-wave was, the larger the attenuation coefficient of Stoneley wave, P-wave and S-wave was.
Acoustic Logging, Stoneley Wave, Fractured Tight Sandstone, Numerical Simulation, Logging
龔丹(1981-),女,博士,講師,主要從事石油天然氣勘探的研究及編輯工作。
2016年1月12日;錄用日期:2016年4月11日;發(fā)布日期:2016年6月15日
Response Characteristics
文章引用: 龔丹, 章成廣.裂縫性致密砂巖儲層聲波測井數(shù)值模擬[J].石油天然氣學報, 2016, 38(2): 28-35.http://dx.doi.org/10.12677/jogt.2016.382012
國家科技重大專項(2011ZX0502-008)。