国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

黃桃表面缺陷和可溶性固形物光譜同時(shí)在線(xiàn)檢測(cè)

2016-05-17 09:36:39劉燕德吳明明孫旭東朱丹寧李軼凡張智誠(chéng)
關(guān)鍵詞:黃桃可溶性光譜

劉燕德,吳明明,孫旭東,朱丹寧,李軼凡,張智誠(chéng)

(華東交通大學(xué)機(jī)電工程學(xué)院,南昌 330013)

黃桃表面缺陷和可溶性固形物光譜同時(shí)在線(xiàn)檢測(cè)

劉燕德,吳明明,孫旭東,朱丹寧,李軼凡,張智誠(chéng)

(華東交通大學(xué)機(jī)電工程學(xué)院,南昌 330013)

表面缺陷和可溶性固形物是評(píng)價(jià)黃桃品質(zhì)的重要指標(biāo),采用可見(jiàn)/近紅外漫透射光譜技術(shù),探討黃桃表面缺陷與可溶性固形物同時(shí)在線(xiàn)檢測(cè)的可行性。在運(yùn)動(dòng)速度為5個(gè)/s、積分時(shí)間100 ms、光照強(qiáng)度1 000 W的條件下采集黃桃表面缺陷果與正常果的近紅外漫透射光譜。對(duì)比分析了同一個(gè)黃桃樣品損傷前后的光譜特征,建立了黃桃的最小二乘支持向相機(jī)判別模型與偏最小二乘判別模型。同時(shí)建立了黃桃可溶性固形物偏最小二乘回歸模型并采用連續(xù)投影算法對(duì)模型進(jìn)行優(yōu)化,研究了表面缺陷果對(duì)黃桃可溶性固形物檢測(cè)模型精度的影響,最終實(shí)現(xiàn)了黃桃表面缺陷與可溶性固形物同時(shí)在線(xiàn)檢測(cè)。采用未參與建模的樣品來(lái)評(píng)價(jià)模型的在線(xiàn)分選的準(zhǔn)確性,其中表面缺陷果的正確判斷率為100%,可溶性固形物分選準(zhǔn)確率達(dá)到93%。試驗(yàn)結(jié)果表明:黃桃表面缺陷與可溶性固形物同時(shí)在線(xiàn)檢測(cè)是可行的,研究可為黃桃在線(xiàn)分選提供技術(shù)參考和理論依據(jù)。

光譜檢測(cè);農(nóng)產(chǎn)品;可見(jiàn)近紅外光譜;漫透射;在線(xiàn)檢測(cè);表面缺陷;可溶性固形物

劉燕德,吳明明,孫旭東,朱丹寧,李軼凡,張智誠(chéng).黃桃表面缺陷和可溶性固形物光譜同時(shí)在線(xiàn)檢測(cè)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):289-295.doi:10.11975/j.issn.1002-6819.2016.06.040 http://www.tcsae.org

Liu Yande,Wu Mingming,Sun Xudong,Zhu Dangning,Li Yifan,Zhang Zhicheng.Simultaneous detection of surface deficiency and soluble solids content for Amygdalus persica by online visible-near infrared transmittance spectroscopy[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):289-295.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.040 http://www.tcsae.org

0 引言

黃桃不僅味道鮮美,而且營(yíng)養(yǎng)價(jià)值高,富含維生素C。但大黃桃在人工采摘、運(yùn)輸及分選過(guò)程當(dāng)中會(huì)對(duì)果表面造成不同程度的機(jī)械損傷,在很大的程度上影響大黃桃的出口。傳統(tǒng)的人工分選方法不僅分選周期長(zhǎng),難以判斷未顯示出來(lái)的表面缺陷,而且在分選的同時(shí)可能會(huì)對(duì)桃子造成二次損傷,同時(shí)人工不能夠?qū)⑻业奶嵌冗M(jìn)行準(zhǔn)確分級(jí),滿(mǎn)足不了水果分級(jí)包裝的商業(yè)化的需求。可見(jiàn)/近紅外光譜技術(shù)能夠快速、無(wú)損的檢測(cè)水果的內(nèi)部品質(zhì)及表面缺陷[1-3],因此研究出一種能夠快速、無(wú)損、批量檢測(cè)大黃桃表面缺陷及可溶性固形物(soluble solids content,SSC)的方法,具有重大意義。

目前,有不少利用近紅外光譜技術(shù)對(duì)桃子快速分選的研究報(bào)道。大多數(shù)都是對(duì)獼猴桃可溶性固形物、硬度、表面初期損傷等單一指標(biāo)進(jìn)行檢測(cè)[4-10]。黃桃是有果核型水果,已有報(bào)道多采用漫反射方式,因在雜散光控制方面難度較大,檢測(cè)精度較低。本試驗(yàn)中采用彈性墊圈和透光孔組合結(jié)構(gòu),依靠黃桃自重實(shí)現(xiàn)密封,能較有效抑制漫透射的雜散光。表面缺陷檢測(cè)和可溶性固形物檢測(cè)都是黃桃采后商品化處理的必要環(huán)節(jié),目前還未見(jiàn)在同一條分選線(xiàn)上,在剔除表面缺陷黃桃樣品的同時(shí),實(shí)現(xiàn)按可溶性固形物含量分選。本文主要提出了能夠綜合考慮大黃桃表面缺陷以及可溶性固形物的動(dòng)態(tài)在線(xiàn)檢測(cè)方案,并對(duì)比了不用的判別方法對(duì)判別模型的影響。

1 材料與方法

1.1 試驗(yàn)材料

試驗(yàn)所采用的大黃桃由河北省某果園提供。試驗(yàn)前先挑出表面無(wú)損傷、無(wú)畸形的正常果作為試驗(yàn)樣品,然后去除黃桃樣品表面灰塵并將其編號(hào),分別將黃桃樣品縫合線(xiàn)光滑側(cè)和凸起側(cè)標(biāo)號(hào)并置于25℃的環(huán)境中保存12 h,待試驗(yàn)樣品溫度與室溫基本一致后,依次測(cè)量黃桃樣品的橫縱徑、重量等物理指標(biāo)如表1所示。試驗(yàn)所需的樣品表面缺陷果,采用聚四氟乙烯球撞擊標(biāo)號(hào)的2個(gè)面來(lái)模擬實(shí)際生產(chǎn)運(yùn)輸過(guò)程中的碰撞擠壓造成的表面損傷。撞擊面為縫合線(xiàn)光滑面和凸起面。據(jù)有關(guān)報(bào)道,桃子表面對(duì)撞傷等損傷最為敏感,30 min后表面就有明顯變化[11]。撞擊后試驗(yàn)中所使用的表面缺陷果與撞擊示意圖如下圖1所示,最右側(cè)2個(gè)為正常果,其余10個(gè)均為表面損傷果,圖中H=108 mm,β約為13°,小球的質(zhì)量約為0.38 kg,樣品置于斜坡最下方位置,忽略斜坡與小球之間的摩擦力,近似計(jì)算碰撞的能量約為0.4 J。

圖1 試驗(yàn)樣品及試驗(yàn)Fig.1 Experiment and Samples

試驗(yàn)中共100個(gè)樣品,其中正常果60個(gè),表面缺陷果40個(gè)。為考察黃桃表面缺陷對(duì)可溶性固形物模型的影響,將試驗(yàn)所用黃桃樣品分為2組進(jìn)行考察,按3∶1的比例劃分建模集與預(yù)測(cè)集。組1為60個(gè)正常果樣品與40個(gè)表面缺陷果樣品,其中75個(gè)用于建立正常果與表面缺陷果的可溶性固形物混合模型,且75個(gè)樣本中包含44個(gè)正常樣品以及31個(gè)異常樣品,剩余25個(gè)用于對(duì)模型進(jìn)行預(yù)測(cè)。組2為60個(gè)正常果樣品用于建立及預(yù)測(cè)正常果的可溶性固形物混合模型。其可溶性固形物真實(shí)值與橫縱徑統(tǒng)計(jì)如表1所示。

表1 建模集與預(yù)測(cè)集黃桃樣品可溶性固形物真實(shí)值與橫縱徑統(tǒng)計(jì)結(jié)果Table 1 Statistical values of soluble solid content and diameter for Amygdalus persica in calibration and prediction set

1.2 在線(xiàn)檢測(cè)裝置與光譜采集

試驗(yàn)所采用的光譜采集裝備為漫透射式動(dòng)態(tài)在線(xiàn)檢測(cè)裝置如圖2所示,該裝置由光源、果杯、傳送鏈條、光譜儀這幾部分組成。試驗(yàn)中所用的光譜儀為Ocean Optics公司的QE65000光譜儀,其采集光譜是短波近紅外光譜,波長(zhǎng)范圍為350~1 150 nm,光源采用10個(gè)12 V、100 W的鹵鎢燈成一定角度分布在樣品2側(cè)如圖所示,果杯內(nèi)裝有一圈特殊的軟塑料遮光圈,由于果的重力作用,能夠抑制雜散光現(xiàn)象,在動(dòng)態(tài)采集光譜時(shí),傳送鏈帶動(dòng)果杯移動(dòng),經(jīng)過(guò)下方探頭采集光譜信息。

圖2 近紅外漫透射在線(xiàn)檢測(cè)裝置Fig.2 Device of NIR diffuse transmittance detection

在采集光譜前,先要將光源預(yù)熱30 min。待光源基本穩(wěn)定后,用白色聚四氟乙烯球作為參比,多次采集參比球的能量譜至標(biāo)準(zhǔn)差小于1%后開(kāi)始試驗(yàn)。采用人工按序號(hào)依次上果,由于黃桃樣品中存在較大的果核影響光的通過(guò),故將黃桃樣品果柄與運(yùn)動(dòng)方向一致、縫合面垂直于水平面放置,光線(xiàn)如圖2所示經(jīng)過(guò)樣本被探頭接收,大大降低了大果核對(duì)檢測(cè)的影響。在光譜采集時(shí),觸發(fā)過(guò)程如下:大小2個(gè)齒輪都安裝在主軸上如圖3所示,驅(qū)動(dòng)齒輪68齒,編碼盤(pán)17齒,驅(qū)動(dòng)齒輪4齒對(duì)應(yīng)編碼盤(pán)一齒,驅(qū)動(dòng)齒輪每4齒對(duì)應(yīng)4節(jié)鏈條安裝一個(gè)果盤(pán),即編碼盤(pán)每轉(zhuǎn)一齒位置,傳送鏈行程為一個(gè)果盤(pán)位置。在編碼盤(pán)齒頂2 mm安裝霍爾傳感器,實(shí)現(xiàn)編碼盤(pán)每轉(zhuǎn)一齒,觸發(fā)霍爾傳感器,使相應(yīng)電路發(fā)出3.5 V高電平信號(hào),觸發(fā)光譜儀采集并保存一條光譜。

圖3 在線(xiàn)檢測(cè)設(shè)備的光譜數(shù)據(jù)采集原理圖Fig.3 Schematic diagram of spectral data acquisition in on-line detection equipment

光譜儀設(shè)定的參數(shù)為:積分時(shí)間100 ms,運(yùn)動(dòng)速度5個(gè)/s,光譜儀能采集到的信息為整個(gè)果的信息,并在樣品底部形成一個(gè)5~10 mm的光斑。

1.3 SSC含量與表面缺陷果判定

試驗(yàn)所用的黃桃樣品采用折射式數(shù)字糖度計(jì)(PR—101a,日本)進(jìn)行可溶性固形物含量測(cè)量,測(cè)量前,需將糖度計(jì)擦干后用純凈水標(biāo)定糖度0%,在測(cè)量時(shí),取光譜采集部位約5 mm深果肉擠汁滴于糖度計(jì)上測(cè)試窗口,重復(fù)測(cè)量3次,取2次或2次相同的糖度值作為測(cè)量值。由于實(shí)際生產(chǎn)中果被測(cè)量一次就被推入分選框中,故不取平均值。表面缺陷的試驗(yàn)樣品模擬實(shí)際貯藏、包裝過(guò)程的擠壓、碰撞獲得。表面出現(xiàn)變軟現(xiàn)象及有明顯深色顏色差異即判定為表面缺陷果。

1.4 數(shù)據(jù)處理

黃桃樣品的試驗(yàn)所得的光譜由Spectrasuite軟件采集,試驗(yàn)數(shù)據(jù)采用主成分分析(principal component analysis,PCA)進(jìn)行聚類(lèi)分析,主成分分析能夠有效的用來(lái)壓縮光譜數(shù)據(jù)和提取光譜特征信息[12-13]。其原理如公式1所示。

其中Y為樣品的光譜矩陣;t為樣品的得分矩陣,反映樣品與樣品之間的差距;p為載荷向量,反映光譜能量之間的差距;E為殘差矩陣。采用最小二乘支持向量機(jī)(least squares support vector machine,LS-SVM)建立定性判別模型,其基本原理如公式2所示。

其中,K(x,xi)是核函數(shù),xi輸入向量,αi是拉格朗日算子也叫支持向量;b是偏差;N是樣品數(shù)量,通過(guò)該公式計(jì)算模型預(yù)測(cè)值。本試驗(yàn)將表面損傷果定義為8,而將正常果定義為2,采用表面缺陷果與正常果的正確率評(píng)價(jià)最小二乘支持向量機(jī)與最小二乘判別模型的效果。采用相關(guān)系數(shù)與均方根誤差來(lái)評(píng)價(jià)偏最小二乘模型(partial least squares,PLS)的效果。

2 結(jié)果與討論

2.1 正常果與表面缺陷果的光譜對(duì)比

隨機(jī)取同一個(gè)試驗(yàn)樣品,采集其表面損傷前后的光譜信息如圖4所示,據(jù)上圖顯示,2條光譜有明顯的差異,首先表面損傷果能量譜明顯高于正常果,其中表面損傷果光譜能量最高值達(dá)6500光子數(shù),而正常果的光譜能量最高值僅僅只有3000光子數(shù)左右,產(chǎn)生這種光譜能量的差異的原因可能是黃桃碰傷后,果肉組織發(fā)生變化,影響光的透過(guò)能力,撞擊導(dǎo)致果內(nèi)組織變軟,透光能量增強(qiáng)。試驗(yàn)裝置采用光源四周照射、探頭底部接收的方式,采集的光譜反映了整果的光譜信息,一側(cè)或兩側(cè)存在碰傷均可在光譜中有所體現(xiàn),所以在試際采摘運(yùn)輸中一側(cè)碰傷也能有效的進(jìn)行判別。本試驗(yàn)中,采集過(guò)黃桃樣品的一側(cè)碰傷的可見(jiàn)近紅外光譜,并與兩側(cè)碰傷的樣品的光譜進(jìn)行了對(duì)比,對(duì)比發(fā)現(xiàn)一側(cè)碰傷與兩側(cè)碰傷的黃桃樣品光譜差異極小。另外2條光譜的波峰與波谷的位置基本一致,均在710與800nm附近存在波峰,在730nm附近存在波谷。其光譜有效信息都集中在550~900nm之間,故選用550~900nm的波段范圍進(jìn)行建模。

圖4 正常與表面缺陷果光譜Fig.4 Spectra of sound and surface deficiency

2.2 主成分分析

主成分分析采用全譜分析,將試驗(yàn)所采集的光譜信息壓縮為若干個(gè)主成分的線(xiàn)性組合,前3個(gè)主成分因子的得分散點(diǎn)圖如圖5所示。由圖5可以看出,正常果與表面損傷果存在聚類(lèi)現(xiàn)象,圖中正常樣品60個(gè),表面損傷樣品40個(gè),由主成分分析可得,第一個(gè)主成分累積的貢獻(xiàn)率為91%,而第二個(gè)主成分僅僅只8%的貢獻(xiàn)率,第三個(gè)主成分的貢獻(xiàn)率為1%。通過(guò)主成分分析能夠簡(jiǎn)單的將100個(gè)樣品簡(jiǎn)單的分為2類(lèi)。

圖5 主成分得分散點(diǎn)圖Fig.5 Scores plots of principal component

2.3 最小二乘支持向量機(jī)

最小二乘支持向量機(jī)在進(jìn)行模型判別分析的時(shí)候,其映射函數(shù)為非線(xiàn)性的,在高緯度的空間把近紅外光譜變量與特征矩陣進(jìn)行一一對(duì)應(yīng),將優(yōu)化問(wèn)題轉(zhuǎn)化為等式約束條件問(wèn)題[14-15]。分別討論最小二乘支持向量機(jī)線(xiàn)性核函數(shù)(Lin_kernel)與徑向基核函數(shù)(RBF_kernel)對(duì)判別模型的影響,在550~900 nm波段進(jìn)行建模,共465個(gè)波長(zhǎng)點(diǎn)。模型預(yù)測(cè)結(jié)果如表2所示。由表2可知,采用不同的核函數(shù)建立的判別模型有較大差異,其中采用線(xiàn)性核函數(shù)模型預(yù)測(cè)效果較好,在25個(gè)預(yù)測(cè)樣品中,誤判率較高為60%;另外采用核函數(shù)為徑向基核函數(shù)時(shí),模型預(yù)測(cè)25個(gè)樣品計(jì)算所耗比采用線(xiàn)性核函數(shù)更多,而模型預(yù)測(cè)效果卻更差其誤判率為52%。由于選用2種核函數(shù)誤判率均較高,因此在本試驗(yàn)中最小二乘支持向量機(jī)判別模型不適用于判別表面缺陷果。

表2 不同核函數(shù)對(duì)LS-SVM模型預(yù)測(cè)結(jié)果的影響Table 2 Effect of different core function on prediction in LS-SVM model

2.4 偏最小二乘判別分析

偏最小二乘判別分析方法是在偏最小二乘法的基礎(chǔ)上建立的樣本分類(lèi)模型。該方法需要按照樣本的類(lèi)別特性,賦予樣本分類(lèi)變量值[16-20]。選用550~900 nm建立偏最小二乘判別模型,其建模結(jié)果如圖6所示,采用75個(gè)樣品建模,人為設(shè)定正常樣品為2,表面缺陷樣品為8,域值設(shè)置為4。模型相關(guān)系數(shù)RP為0.96,建模的標(biāo)準(zhǔn)偏差為0.89,由圖6a可得模型的誤判率為0%,能夠很好的將正常果與表面缺陷果分開(kāi)。圖6b為PLSDA預(yù)測(cè)模型,相關(guān)系數(shù)為0.92,預(yù)測(cè)模型的標(biāo)準(zhǔn)偏差為1.21,誤判率為0%。該模型選用的主成份數(shù)與預(yù)測(cè)集的均方根誤差關(guān)系如圖7所示。據(jù)圖可知,隨著主成數(shù)的增加,預(yù)測(cè)集的均方根誤差逐漸降低,當(dāng)主成分?jǐn)?shù)為8時(shí),預(yù)測(cè)集均方根誤差最小。當(dāng)主成分?jǐn)?shù)選用過(guò)小時(shí)會(huì)造成“欠擬合”現(xiàn)象,損失較多的有效信息,直接導(dǎo)致模型效果變差,當(dāng)主成分?jǐn)?shù)選用過(guò)高時(shí)會(huì)產(chǎn)生“過(guò)擬合”現(xiàn)象,其中包含了較多的噪聲干擾信息,模型效果不好。回歸系數(shù)如圖8所示,所用的光譜變量與回歸系數(shù)的加權(quán)求和再加上截距b=0.88,即為PLSDA模型預(yù)測(cè)的類(lèi)別值。再通過(guò)與閾值的比較,實(shí)現(xiàn)表面缺陷樣品的預(yù)測(cè)。

圖6 偏最小二乘判別模型Fig.6 DPLS model

圖8 回歸系數(shù)Fig.8 Regression coefficient

2.5 偏最小二乘可溶性物模型及優(yōu)化

首先將75個(gè)樣品混合建模,其中包含44個(gè)正常果,31個(gè)表面缺陷果,建模結(jié)果如下表3所示,采用全部樣品建模預(yù)測(cè)集相關(guān)系數(shù)僅為0.72,預(yù)測(cè)集均方根誤差為1.45%。而組別2用45個(gè)正常果進(jìn)行建模,用連續(xù)投影算法(successive projections algorithm,SPA)進(jìn)行光譜變量篩選,連續(xù)投影算法是隨機(jī)選取光譜矩陣中的某幾個(gè)變量,最后分別計(jì)算對(duì)其他變量的投影,根據(jù)均方根誤差最小的原則來(lái)決定變量個(gè)數(shù)。經(jīng)過(guò)連續(xù)投影算法篩選,共產(chǎn)生21個(gè)光譜變量。其結(jié)果如圖9所示。采用篩選后的光譜建模,預(yù)測(cè)集相關(guān)系數(shù)為0.95,預(yù)測(cè)集均方根誤差為0.71。對(duì)比可得,組別2的效果優(yōu)于組別1,因此表面缺陷果影響黃桃的可溶性固形物的模型預(yù)測(cè)精度,故要建立黃桃的可溶性固形物模型需將表面缺陷樣品剔除。最終建立的黃桃可溶性固形物偏最小二乘模型如圖10所示。

圖9 連續(xù)投影算法篩選變量Fig.9 Screening variable of SPA

圖10 偏最小二乘回歸建模和模型預(yù)測(cè)散點(diǎn)圖Fig.10 Scatters PLS calibration and prediction models

表3 不同組別的模型的統(tǒng)計(jì)結(jié)果Table 3 Model statistical results of different classes

該模型的主成分因子數(shù)與交互驗(yàn)證均方根誤差的關(guān)系如圖11a所示。隨著主成分?jǐn)?shù)量的增加,交互驗(yàn)證均方根誤差逐漸減小。當(dāng)主成分?jǐn)?shù)為9的時(shí)候,交互驗(yàn)證均方根誤差達(dá)到最小值。主成分?jǐn)?shù)繼續(xù)增加,交互驗(yàn)證均方根誤差基本不變,故主成分?jǐn)?shù)選用9。圖11b為通過(guò)連續(xù)投影算法篩選的21個(gè)變量的回歸系數(shù)。截距b=9.24。其糖度的預(yù)測(cè)公式如公式2所示。

圖11 偏最小二乘模型Fig.11 Model of partial least squares

其中,y為模型的預(yù)測(cè)糖度值;N為參與建模的光譜變量數(shù);β為能量譜強(qiáng)度;λ為回歸系數(shù);b為模型的截距。

2.6 在線(xiàn)分選準(zhǔn)確性評(píng)價(jià)

首先,將建立的表面缺陷果偏最小二乘判別模型與可溶性固形物偏最小二乘模型加載到自主開(kāi)發(fā)的在線(xiàn)檢測(cè)軟件中,其中2種模型的基本參數(shù)有模型的回歸系數(shù)和截距。然后將未參與建模的12個(gè)黃桃樣品對(duì)模型進(jìn)行預(yù)測(cè),12個(gè)黃桃樣品中包含7個(gè)正常果和5個(gè)表面缺陷果。由于在實(shí)際水果出口中是不允許有表面缺陷果的存在,故在糖度分級(jí)檢測(cè)前必須先將表面缺陷果剔除,再進(jìn)行糖度的分級(jí)檢測(cè)。檢測(cè)方法將將定性分析與定量分析相結(jié)合。首先,樣品經(jīng)過(guò)檢測(cè)器,在線(xiàn)分選裝置自動(dòng)采集該樣品的光譜信息,然后通過(guò)偏最小二乘判別模型預(yù)測(cè)出一個(gè)值與閾值進(jìn)行比較,若大于閾值4,則判定為異常果,直接被推入表面缺陷果分級(jí)口;若小于閾值4,則判定為正常果,則繼續(xù)通過(guò)可溶性固形物偏最小二乘模型預(yù)測(cè)其可溶性固形物含量。據(jù)研究表明,糖度存在2%的差距,能夠有明顯的口感差異,綜合考慮模型的預(yù)測(cè)均方根誤差,故將糖度分級(jí)區(qū)間定為10%以下、10%~12%、12%~14%、14%以上。在試驗(yàn)中,將12個(gè)預(yù)測(cè)集樣品按照標(biāo)號(hào)次序依次放置在分選線(xiàn)上,每個(gè)樣品按標(biāo)記位置進(jìn)行上果,每個(gè)面放置4次,共放置96次并記錄每次進(jìn)入的分級(jí)口,其中表面缺陷果均被分至所設(shè)置的表面缺陷分級(jí)口,判別準(zhǔn)確率為100%,而在分選可溶性固形物中,將果誤分入相鄰的分級(jí)口6次,在線(xiàn)分選準(zhǔn)確率為93%。

3 結(jié)論

本文采用近紅外光譜漫透射技術(shù),實(shí)現(xiàn)了黃桃表面缺陷與可溶性固形物的同時(shí)檢測(cè),并建立了黃桃表面缺陷最小二乘支持向量機(jī)判別模型與偏最小二乘判別模型,其中最小二乘支持向量機(jī)判別模型的誤判率為4.1%,但該模型將表面缺陷果誤判為正常果,故不適用與實(shí)際生產(chǎn)分選中,而偏最小二乘判別模型的準(zhǔn)確判別精度為100%,并且在采用未參與建模的預(yù)測(cè)集試驗(yàn)樣品驗(yàn)證中,能夠準(zhǔn)確的將表面缺陷果推入分級(jí)入口。另外在建立了黃桃可溶性固形物最小二乘回歸模型的同時(shí)考察了表面缺陷果對(duì)模型預(yù)測(cè)精度的影響,最終建立了黃桃正常果的可溶性固形物最小二乘回歸模型,提出了黃桃表面缺陷與可溶性固形物同時(shí)檢測(cè)的方案。模型的預(yù)測(cè)均方根誤差為0.71%,采用未參與建模的樣品進(jìn)行實(shí)際在線(xiàn)分選,在線(xiàn)分選的準(zhǔn)確率為93%。論文研究可為黃桃出口生產(chǎn)在線(xiàn)檢測(cè)分選方案提供參考和理論依據(jù)。

[1]Wang Aichen,Xie Lijuan.Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit[J].Journal of Food Engineering, 2014,143:17-24.

[2] 遲茜,王轉(zhuǎn)衛(wèi),楊婷婷,等.基于近紅外高光譜成像的獼猴桃早期隱性損傷識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,3:235-241. Chi Qian,Wang Zhuanwei,Yang Tingting.Recognition of early hidden bruises on kiwifruits based near infrared hyperspectralimaging technology[J].Transactions of the Chinese Society for Agricultural Machinery,2015,3:235-241.(in Chinese with English abstract)

[3] 郭文川,王銘海,岳絨.基于近紅外漫反射光譜的損傷獼猴桃早期識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,2:142-146. Guo Wenchuan,Wang Minghai,Yue Rong.Early recognition of bruised kiwifruit based on near infrared diffuse reflectance spectroscopy[J].Transactions of the Chinese Society for Agricultural Machinery,2013,2:142-146.(in Chinese with English abstract)

[4]郭文川,王銘海,谷靜思,等.近紅外光譜結(jié)合極限學(xué)習(xí)機(jī)識(shí)別貯藏期的損傷獼猴桃[J].光學(xué)精密工程,2013,10:2720-2727. Guo Wenchuan,Wang Minghai,Gu Jingsi,et al.Identification of bruised kiwifruits during storage by near infrared spectroscopy and extreme learning machine[J].Optics and Precision Engineering, 2013,10:2720-2727.(in Chinese with English abstract)

[5] 馬廣,傅霞萍,周瑩,等.大白桃糖度的近紅外漫反射光譜無(wú)損檢測(cè)試驗(yàn)研究[J].光譜學(xué)與光譜分析,2007,5:907-910. Ma Guang,Fu Xiaping,Zhou Ying,et al.Nondestructive sugar content determination of peaches by using near infrared spectroscopy technique[J].Spectroscopy and Spectral Analysis, 2007,5:907-910.(in Chinese with English abstract)

[6]McGlone V A,Clark C J,Jordan R B.Comparing density and VNIR methods for predicting quality parameters of yellowfleshed kiwifruit(Actinidia chinensis)[J].Postharvest Biology and Technology.2007,1:1-9.

[7] 劉卉,郭文川,岳絨.獼猴桃硬度近紅外漫反射光譜無(wú)損檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,3:145-149. Liu Hui,Guo Wenchuan,Yue Rong.Non-destructive detection of kiwifruit firm ness based on near-infrared diffused spectroscopy [J].Transactions of the Chinese Society forAgricultural Machinery.2011,3:145-149.(in Chinese with English abstract)

[8]Moghimi A,Aghkhani M H,Sazgarnia A,et al.Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity(pH)of kiwifruit[J].Biosystems Engineering,2010,3:295-302.

[9] 王銘海,郭文川,商亮,等.基于近紅外漫反射光譜的多品種桃可溶性固形物的無(wú)損檢測(cè)[J].西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2014,2:142-148. WangMinghai,GuoWenchuan,ShangLiang,etal.Nondestructive detection of soluble solids content for multiple peach fruits using near-infrared diffuse reflectance spectra[J].Journal of Northwest A&F University:Natural Science Edition,2014,2:142-148.(in Chinese with English abstract)

[10]呂強(qiáng),湯明杰,趙杰文,等.近紅外光譜預(yù)測(cè)獼猴桃硬度模型的簡(jiǎn)化研究[J].光譜學(xué)與光譜析,2009,7:1768-1771. Lu Qiang,Tang Mingjie,Zhao Jiewen,Study of simplification of prediction model for kiwifruit firmness using near infrared spectroscopy[J].Spectroscopy and Spectral Analysis,2009,7: 1768-1771.(in Chinese with English abstract)

[11]Zhiguo Li,Colin Thomas.Quantitative evaluation of mechanical damages to fresh fruits[J].Trends in Food Science&Technology, 2014,35:138-150.

[12]Chang Yang,Chao Yin Tsai,Kuang-Wen Hsieh.Integration of SCIMCA and near-infrared spectroscopy for rapid and precise identification of herbal medicines[J].Journal of Food and drug analysis,2013,21:268-278.

[13]Nejadgholi I,Bolic M.A comparative study of PCA,SIMCA andCole model for classification of bioimpedance spectroscopy measurements[J].Computer in Biology and Medicine,2015,63: 42-51.

[14]劉雪梅,章海亮.基于DPLS和LS-SVM的梨品種近紅外光譜識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,9:160-164. Liu Xuemei,Zhang Hailiang.Identification of varieties of pear using near infrared spectra based on DPLS and LSSVM model [J].Transactions of the Chinese Society for Agricultural Machinery,2012,9:160-164.(in Chinese with English abstract)

[15]劉燕德,周延睿,潘圓媛.基于最小二乘支持向量機(jī)的辣椒可溶性固形物和維生素C含量近紅外光譜檢測(cè)[J].光學(xué)精密工程,2014,2:281-288. Liu Yande,Zhou Yanrui,Pan Yuanyuan.Determination of soluble solid contents and vitamin C of fresh peppers based on NIR spectrometry and least square support vector machines[J]. Optics and Precision Engineering,2014,2:281-288.(in Chinese with English abstract)

[16]董學(xué)鋒,戴連奎,黃承偉.結(jié)合PLS-DA與SVM的近紅外光譜軟測(cè)量方法[J].浙江大學(xué)學(xué)報(bào):工學(xué)版,2012,5:824-829. Dong Xuefeng,Dai Liankui,Huang Chengwei.Near-infrared spectroscopy soft-sensing method by Combining partial least squares discriminant analysis and support vector machine[J].Journal of Zhejiang University:Engineering Science,2012,5: 824-829.(in Chinese with English abstract).

[17]郝勇,孫旭東,高榮杰.基于可見(jiàn)/近紅外光譜與SIMCA和PLSDA的臍橙品種識(shí)別[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26:373-378. Hao Yong,Sun Xudong,Gao Rongjie.Application of visible and near infrared spectroscopy to dentification of navel orange varietis using SIMCA and PLS-DA Methods[J].Transactions of the Chinese Society of Agriculture Engineering(Transactions of the CSAE),2010,26:373-377.(in Chinese with English abstract)

[18]Huirong Xu,Bing Qi,Tong Sun,et al.Variable selection in visible and near-infrared spectra:Application to on-line determination of sugar content in pears[J].Journal of Food Engineering,2012,109: 142-147.

[19]Ignat T,Schmilovitch Z,Fefoldi J.Non-destructive measurement of ascorbic acid content in bell peppers by VIS-NIR and SWIR spectrometry[J].Postharvest Biology and Technology,2012,74: 91-99.

[20]Fu Haiyan,Dong Chenhuang,Yang Tianming.Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transform mid-infrared and near-infrared spectroscopy combined with partial least-squares discriminant analysis[J].Chinese Chemical Letters,2013,7:639-642.

Simultaneous detection of surface deficiency and soluble solids content for Amygdalus persica by online visible-near infrared transmittance spectroscopy

Liu Yande,Wu Mingming,Sun Xudong,Zhu Dangning,Li Yifan,Zhang Zhicheng
(School of Mechatronics Engineering,Eash China Jiaotong University,Nanchang 330013,China)

Surface deficiency and soluble solid content(SSC)are important indexes for evaluating the quality of Amygdalus persica.The feasibility was investigated for detecting surface deficiency and SSC of intact Amygdalus persica simultaneously by online visible-near infrared(visible-NIR)transmittance spectroscopy.Ten tungsten halogen lamps were installed in a sorting line.The power of each lamp was 100 watt.The light sources were illuminated from both sides of the production line,and the detector received light from the bottom of the fruit cup.The spectrum of each sample was recorded automatically by using the hardware trigger mode.The index plate and driving gear were mounted on the same shaft.The location of the index plate′s tooth was matched with the location of the fruit cup.Hall sensor was placed at a height of 2 mm above the tooth of the index plate.When the index plate turned one tooth,a Hall sensor sent a 3.5 V high frequency signal to trigger spectrometer to save one spectrum.The spectra were recorded with the integration time of 100 ms in the wavelength range of 550~900 nm when the samples were conveyed at the speed of five samples per second.The spectra of the same sample before and after damage were analyzed for investigation of the influence of the damage tissue within a peach affected the spectral content of the light transmitted through it.The spectral intensity of the damage was lower than the healthy ones for the damage issue affected the penetration of the light inside the fruit.Three quality discrimination methods of principle component analysis(PCA),least squares support vector machine(LS-SVM)and partial least squares discrimination analysis(PLSDA)were used to identify the damage samples.The input vector and parameters of kernel function of LS-SVM model were optimized by two step grid search method.The PLSDA model yielded the best results of accuracy rate of 100%compared to PCA or LS-SVM methods.Considering the robustness of the partial least squares(PLS) regression model,two groups of healthy samples and the combinations of healthy samples and damage ones.Then the PLS regression model was developed for predicting SSC values.The performance of the PLS regression model was improved with the stand error of prediction(SEP)of 0.71%when the damage samples were removed out.The effective spectral variables were chosen by successive projections algorithm(SPA)method for improving the robustness of the PLS regression model.It was also investigated that the influence of the damage sample to the predictive ability of the PLS regression model. Therefore a new strategy was proposed for detection of surface deficiency and SSC for intact Amygdalus persica simultaneously by online visible-NIR transmittance spectroscopy.The new samples,which were not used in the calibration, were used to access the abilities of recognizing the damage samples and predicting SSC of intact Amygdalus persica.The accuracy rate was 100%for identifying surface deficiency samples,and the SEP was 0.71%for predicting SSC.The accuracy of sorting grade was 93%according to the SSC values.The results showed that simultaneous detection of surface deficiency and SSC were feasible by visible-NIR transmittance spectroscopy.

spectrometry;agricultural product;visible-near infrared spectroscopy;diffuse transmittance;online detection; surface deficiency;soluble solids content

10.11975/j.issn.1002-6819.2016.06.040

S24

A

1002-6819(2016)-06-0289-07

2015-12-02

2016-01-27

“十二五”國(guó)家863計(jì)劃課題(SS2012AA101306);江西省優(yōu)勢(shì)科技創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃項(xiàng)目(20153BCB24002);南方山地果園智能化管理技術(shù)與裝備協(xié)同創(chuàng)新中心(贛教高字[2014]60號(hào));江西省研究生創(chuàng)新資金項(xiàng)目(YC2015-S238)

劉燕德(1967-),江西泰和人,博士,教授,博士生導(dǎo)師,主要從事光機(jī)電檢測(cè)技術(shù)研究。南昌 華東交通大學(xué)機(jī)電工程學(xué)院,330013。Email:jxliuyd@163.com

猜你喜歡
黃桃可溶性光譜
基于三維Saab變換的高光譜圖像壓縮方法
“黃桃書(shū)記”黃詩(shī)燕
“黃桃書(shū)記”黃詩(shī)燕
“黃桃書(shū)記”黃詩(shī)燕
炎陵黃桃促增收
鮮地龍可溶性蛋白不同提取方法的比較
中成藥(2018年8期)2018-08-29 01:28:34
星載近紅外高光譜CO2遙感進(jìn)展
可溶性Jagged1對(duì)大鼠靜脈橋狹窄的抑制作用
可溶性ST2及NT-proBNP在心力衰竭中的變化和臨床意義
苦味酸與牛血清蛋白相互作用的光譜研究
从江县| 化德县| 伊金霍洛旗| 肇源县| 巨鹿县| 鹿泉市| 明水县| 祥云县| 沽源县| 应城市| 固原市| 田林县| 宜川县| 黑山县| 宁远县| 建宁县| 潍坊市| 丹巴县| 介休市| 汤原县| 永和县| 柳林县| 武安市| 邯郸市| 东方市| 临沭县| 海伦市| 思南县| 潍坊市| 安多县| 临朐县| 彩票| 凌云县| 察哈| 郎溪县| 达日县| 华安县| 乡城县| 青川县| 花垣县| 博爱县|