黃雙根,吳 燕,胡建平,劉木華,吳瑞梅,范 苑,王曉彬
(1.江蘇大學現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點實驗室,鎮(zhèn)江212013;2.江西農(nóng)業(yè)大學工學院生物光電及應(yīng)用重點實驗室,南昌330045)
大白菜中馬拉硫磷農(nóng)藥的表面增強拉曼光譜快速檢測
黃雙根1,2,吳 燕2,胡建平1※,劉木華2,吳瑞梅2,范 苑2,王曉彬2
(1.江蘇大學現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點實驗室,鎮(zhèn)江212013;2.江西農(nóng)業(yè)大學工學院生物光電及應(yīng)用重點實驗室,南昌330045)
為了檢測大白菜中馬拉硫磷農(nóng)藥殘留,該文采用表面增強拉曼光譜技術(shù)結(jié)合化學計量學方法建立馬拉硫磷殘留的快速檢測模型。采用硫酸鎂、N-丙基乙二胺、石墨化炭黑和C18去除大白菜中蛋白質(zhì)、脂肪、碳水化合物等物質(zhì)的影響。利用不同預處理方法對原始光譜信號進行預處理,建立大白菜中馬拉硫磷殘留的偏最小二乘模型。研究發(fā)現(xiàn),大白菜中馬拉硫磷的檢測濃度達到1.082 mg/L以下;歸一化預處理后建立的模型預測性能最好。配制5個未知濃度樣本驗證模型的準確度,預測值與真實值相對誤差的絕對值為0.70%~9.84%,預測回收率為99.30%~109.84%;配對t檢驗的結(jié)果表明樣本的預測值與真實值之間無明顯差異,說明模型是準確可靠的。結(jié)果表明,SERS(surface-enhanced Raman spectroscopy)方法可以實現(xiàn)大白菜中馬拉硫磷殘留的快速檢測。
光譜分析;農(nóng)藥;檢測;表面增強拉曼光譜;大白菜;馬拉硫磷;偏最小二乘;快速檢測
黃雙根,吳 燕,胡建平,劉木華,吳瑞梅,范 苑,王曉彬.大白菜中馬拉硫磷農(nóng)藥的表面增強拉曼光譜快速檢測[J].農(nóng)業(yè)工程學報,2016,32(6):296-301.doi:10.11975/j.issn.1002-6819.2016.06.041 http://www.tcsae.org
Huang Shuanggen,Wu Yan,Hu Jianping,Liu Muhua,Wu Ruimei,Fan Yuan,Wang Xiaobin.Rapid detection of malathion residues in Chinese cabbage by surface-enhanced Raman spectroscopy[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016,32(6):296-301.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.041 http://www.tcsae.org
馬拉硫磷(malathion),化學名稱為O,O-二甲基-S-[1,2-二(乙氧基羰基)乙基]二硫代磷酸酯,屬低等毒性有機磷殺蟲劑,具有觸殺、胃毒和一定的熏蒸作用[1],適用于煙草、茶和蔬菜上的刺吸式口器和咀嚼式口器害蟲,如主要用于防治稻縱卷葉螟、稻飛虱、菜蚜、菜青蟲等害蟲。中毒癥狀為頭暈、無力、嘔吐、流涎、痙攣、昏迷等。目前,馬拉硫磷農(nóng)藥的常規(guī)檢測方法有液相色譜和液質(zhì)聯(lián)用的方法[2-3]、氣相色譜和質(zhì)譜聯(lián)用的方法[4-5]等,這些方法具有準確、靈敏度高等特點,但前處理復雜、成本高、檢測速度慢,不適合現(xiàn)場實時快速檢測篩選[6-7]。
表面增強拉曼光譜(surface-enhanced Raman spec troscopy,SERS)技術(shù)是指分子吸附到某些粗糙金屬(如金、銀、銅)的表面或溶膠中,在激發(fā)區(qū)域內(nèi),金屬表面或近表面電磁場增強,使吸附分子的拉曼信號強度增強104~106倍[8-10]。SERS技術(shù)能實現(xiàn)對微量樣品的快速檢測,可以實現(xiàn)單分子檢測[11-12]。SERS技術(shù)具有樣品制備簡單[13]、操作簡便、靈敏度高等優(yōu)點,已逐步應(yīng)用于食品和農(nóng)產(chǎn)品中農(nóng)藥殘留的快速檢測[14-16]。Shende等[17]采用固相萃取技術(shù)對橙汁進行前處理,結(jié)合SERS技術(shù),檢測最低濃度為50 μg/L。Li等[18]以銀納米粒子作為增強基底,應(yīng)用SERS技術(shù)檢測了蘋果表皮的甲拌磷和倍硫磷農(nóng)藥殘留,最低檢測濃度分別為0.05和0.4 mg/L。張萍等[19]采用表面增強拉曼光譜檢測技術(shù)結(jié)合快速溶劑提取前處理方法建立了豆芽中6-BA殘留物質(zhì)的快速檢測方法。Kim等[20]以苯并咪唑類為研究對象,采集不同pH值下待測溶液的表面增強拉曼光譜,對拉曼譜峰進行了歸屬。He等[21]利用SERS技術(shù)結(jié)合一個快速簡單的方法實現(xiàn)了蘋果表面噻菌靈農(nóng)藥的檢測,檢測時間大約10 min。目前利用表面增強拉曼光譜技術(shù)結(jié)合化學計量學方法檢測大白菜中農(nóng)藥殘留還沒有報道。
本文采用SERS技術(shù)結(jié)合化學計量學方法對大白菜中馬拉硫磷殘留進行快速檢測。以大白菜為載體,馬拉硫磷農(nóng)藥為研究對象,模擬農(nóng)藥殘留狀態(tài),利用快速溶劑提取前處理方法對大白菜中馬拉硫磷農(nóng)藥進行提取,采用無水無水硫酸鎂、N-丙基乙二胺(primary secondary amine,PSA)、石墨化炭黑和C18去除蛋白質(zhì)、脂肪、碳水化合物等物質(zhì)的影響,結(jié)合化學計量學方法,實現(xiàn)大白菜中馬拉硫磷農(nóng)藥的快速檢測,為實現(xiàn)農(nóng)藥殘留檢測提供快速、簡便、準確的檢測方案。
1.1 儀器與試劑
拉曼光譜儀(RamTracer-200-HS,歐普圖斯光學納米科技有限公司);天平(AR3202CN,精度為0.01 mg,奧豪斯電子天平);低速離心機(JW1024,安徽嘉文儀器設(shè)備有限公司);渦漩混合器(Vortex-Genie 2/2T,上海凌初環(huán)保儀器有限公司);氣相色譜串聯(lián)質(zhì)譜儀(Agilent GC 700,美國安捷倫科技有限公司);色譜柱(HP-5MS,5%Phenyl Methyl Silox,30 m×250 μm×0.25 μm,美國安捷倫科技有限公司)。
馬拉硫磷標準品(99.5%,中國標準物質(zhì)網(wǎng));乙腈,乙腈(色譜純,國藥集團化學試劑北京有限公司);PSA、無水硫酸鎂、C18和石墨化炭黑(分析純,國藥集團化學試劑北京有限公司);氯化鈉(分析純,國家標準物質(zhì)信息中心);表面增強試劑(OTR202、OTR103,歐普圖斯光學納米科技有限公司);有機濾膜(0.22 μm,安捷倫科技有限公司);大白菜(江西農(nóng)業(yè)大學試驗基地)。
1.2 試驗方法
1.2.1 樣品制備
馬拉硫磷標準溶液配制:準確量取標準品馬拉硫磷200 mg于200 mL容量瓶中,加入乙腈超聲溶解后,定容至刻度,得到濃度為1 000 mg/L的馬拉硫磷儲備溶液,放置于4℃避光環(huán)境中存放。再用乙腈將1 000 mg/L的馬拉硫磷儲備溶液分別稀釋為100、50、20、15、10、5、2、1和0.5 mg/L的標準工作液。
大白菜中馬拉硫磷農(nóng)藥殘留的模擬過程及提?。?)稱取50g大白菜放置于保鮮膜中,使用噴壺按比例噴灑濃度為100mg/L的馬拉硫磷標準儲備液。配置76種不同濃度大白菜樣本,每個濃度復制2份,編號1~76。晾干后,分別放入攪拌機將樣品加工成漿狀,備用。2)稱取10 g大白菜樣本于50 mL離心管中,依次加入10 mL乙腈、5 g氯化鈉和1 g無水乙酸鈉,搖勻后渦旋混合器上混合1 min,將離心管放入離心機以4200r/min的速度離心5min,上清液為黃色。3)取上述黃色上清液2 mL,放于裝有適量硫酸鎂、PSA、石墨化炭黑和C18的15mL離心管中,搖勻后在渦旋混合器上混合1 min,去除蛋白質(zhì)、脂肪、碳水化合物等物質(zhì)的影響,將此離心管放入離心機以4200r/min的速度離心5 min,得到無色上清液,上清液過0.22 μm有機濾膜,上機檢測拉曼光譜。4)取步驟3)的過濾液1 mL,加入10 mL離心管,氮吹。5)氮吹后,在10mL離心管中加入1mL乙酸乙酯,渦旋振蕩。6)取步驟5)的溶液100μL,和900μL乙腈混合,稀釋10倍,渦旋振蕩,過0.22μm有機濾膜,放置于進樣瓶,上氣相質(zhì)譜儀檢測大白菜樣本中馬拉硫磷的真實殘留值。
1.2.2 拉曼光譜數(shù)據(jù)采集
拉曼光譜檢測參數(shù)如下:激發(fā)波長為785 nm,功率為200 mW,掃描范圍400~1 800 cm-1,分辨率為4 cm-1,積分時間為10 s,積分2次求平均,向2 mL進樣瓶中依次加入500 μL OTR202、20 μL待測液、100 μL OTR103,混合均勻后其采集表面增強拉曼光譜。
1.2.3 氣相色譜串聯(lián)質(zhì)譜試驗條件
色譜條件 色譜柱(HP-5MS,5%Phenyl Methyl Silox,30 m×250 μm×0.25 μm)進樣口溫度:250℃;升溫程序:初始柱溫為50℃,保持2 min,以50℃/min升至150℃,以5℃/min升至200℃,以16℃/min升至280℃;升至300℃,保持2 min(后運行);載氣為高純氦氣(純度≥99.999%),恒壓64.469 6 kPa;載氣流速為1.2 mL/min;進樣量1 μL;進樣方式:不分流進樣[22]。
質(zhì)譜條件 EI源;接口溫度:230℃;四極桿溫度:150℃;傳輸線溫度:280℃;溶劑延遲0 min;碰撞氣為高純氮氣(純度≥99.999%);采集模式:多反應(yīng)監(jiān)測模式(multireactions monitoring,MRM)。
1.2.4 數(shù)據(jù)處理
采用標準正態(tài)變量變換(standardnormalvariate,SNV)、多元散射校正(multiplicative scatter correction,MSC)、歸一化(normalization)3種預處理方法對原始光譜數(shù)據(jù)進行預處理,消除基線偏移、隨機噪聲和背景的干擾,利用偏最小二乘回歸(partial least squares,PLS)方法建立大白菜中馬拉硫磷農(nóng)藥殘留的預測模型,以RMSECV、Rc、RMSEP、Rp對模型進行綜合評價。采用5個未知濃度樣本評價模型準確度,對模型的真實值與預測值進行配對t檢驗,以驗證模型的準確度。所有數(shù)據(jù)分析基于MATAB R2010a和SPASS V17.0平臺完成。
2.1 馬拉硫磷的表面增強拉曼光譜
圖1為馬拉硫磷農(nóng)藥的表面增強拉曼光譜圖和背景信號拉曼光譜。從圖1可看出,馬拉硫磷農(nóng)藥分子結(jié)構(gòu)包含了P=S、C-C、P-S、C-H、C-O-C、P-O、C=O和C-O等基團。圖1(a)為馬拉硫磷表面增強拉曼光譜圖(濃度為20mg/L),764、816、862、1 096、1 152、1 448和1 724 cm-1處強度較高,對這7處拉曼特征峰進行歸屬[23-25]:764 cm-1處拉曼特征峰為有機磷化物中P=S和P-O鍵伸縮振動引起的,816 cm-1歸屬于C-H面外彎曲振動,862 cm-1歸屬于CO-C對稱伸縮振動,1 096 cm-1歸屬于C-C伸縮振動,并伴有CH2面內(nèi)變形振動,1 152 cm-1歸屬于P-S伸縮振動,1 448 cm-1歸屬于C-O基團對稱伸縮振動,1 724 cm-1歸屬于C=O伸縮振動。這些特征峰可作為馬拉硫磷農(nóng)藥分子的定性判別依據(jù)。
圖1 馬拉硫磷標準溶液和背景信號的拉曼光譜Fig.1 Raman spectra of malathion solution and background signals
從圖1(a)和(b)可看出,馬拉硫磷標準溶液的普通拉曼光譜只出現(xiàn)了乙腈的拉曼峰,而未出現(xiàn)馬拉硫磷農(nóng)藥的拉曼特征峰。背景信號(c)和(d)比較微弱,而且出峰位置和馬拉硫磷的拉曼特征峰不一致。另外,對這4類數(shù)據(jù)進行主成分分析(n=5)得到的結(jié)果見圖2。從圖2中看出,馬拉硫磷的表面增強拉曼光譜信號和背景信號(金膠和乙腈)有很好的分離。由此說明,SERS技術(shù)能夠用來檢測馬拉硫磷農(nóng)藥。
圖2 主成分分析結(jié)果Fig.2 Results of principal component analysis
2.2 馬拉硫磷標準溶液的表面增強拉曼光譜分析
圖3為不同濃度馬拉硫磷標準溶液的表面增強拉曼光譜。由圖3可看出,隨著馬拉硫磷標準溶液濃度的增加,其特征峰的強度不斷增強,但各特征峰的峰強度變化速度不同:1 096、1 152、1 448和1 724 cm-1處隨濃度變化較快,816和862 cm-1處隨濃度變化較慢,764 cm-1處變化最慢,這可能是因為納米增強粒子與馬拉硫磷農(nóng)藥分子中各個基團表面吸附力的大小和方向不同導致的。從圖3中可看出,隨著馬拉硫磷濃度的降低,拉曼特征峰的強度逐漸減弱,濃度為20、10、5 mg/L時,馬拉硫磷的7處拉曼峰明顯,易識別;濃度為0.5 mg/L時,764 cm-1處峰強十分微弱,但依然能識別出,其他的特征峰已不能識別。由此表明,利用SERS技術(shù)檢測馬拉硫磷標準溶液能夠達到0.5 mg/L以下。
圖3 不同濃度馬拉硫磷標準溶液的表面增強拉曼光譜Fig.3 SERS spectra of malathion with different concentrations
2.3 大白菜中馬拉硫磷農(nóng)藥殘留檢測結(jié)果分析
受蛋白質(zhì)、脂肪、碳水化合物等物質(zhì)的干擾,馬拉硫磷農(nóng)藥分子的拉曼信號被削弱。本文采用無水無水硫酸鎂、PSA、石墨化炭黑和C18對大白菜提取液進行凈化處理,減弱大白菜提取液中蛋白質(zhì)、脂肪、碳水化合物等物質(zhì)的干擾,凈化后含馬拉硫磷農(nóng)藥的大白菜溶液的表面增強拉曼光譜如圖4所示。圖4(a)-(c)中,764、816、862和1724cm-1處特征峰明顯,易識別;濃度為2.256 mg/L時,764、816和862 cm-1處的峰強度明顯降低,依然能識別,1 724 cm-1處的拉曼特征峰已無法識別;濃度為1.082 mg/L時,764和816 cm-1處特征峰依然存在,峰強十分微弱,但依然能識別。因此,利用表面增強拉曼光譜方法檢測大白菜中馬拉硫磷農(nóng)藥的最低檢測濃度在1.082 mg/L以下。從圖4中看出,馬拉硫磷溶液的拉曼特征峰強度隨濃度的增大而增強。因此,可采用化學計量方法建立大白菜中馬拉硫磷農(nóng)藥殘留的預測模型,對馬拉硫磷農(nóng)藥進行定量分析。
圖4 不同濃度的大白菜馬拉硫磷提取液的表面增強拉曼光譜Fig.4 SERS spectra of malathion solutions extracted from chinese cabbage with different concentrations
拉曼光譜采集時,會受到隨機噪聲、基線漂移、外界雜散光和電荷耦合器件(charge-coupled device,CCD)熱穩(wěn)定噪聲等因素影響,直接影響模型的可靠性和穩(wěn)健性。因此,需要對原始光譜進行預處理,增強特征信息,提高模型的預測能力。本文采用3種預處理方法,由各種預處理方法處理后所建偏最小二乘法模型的預測效果來優(yōu)化最佳預處理方法。根據(jù)76個樣本的測量值,采用2:1的分配方案,從每3個樣品中選擇2個作為校正集,剩余的1個作為預測集,所以校正集由51個樣品組成,預測集由25個樣品組成。表1為原始光譜經(jīng)不同預處理方法后所建模型結(jié)果。
表1 不同預處理方法下模型校正和預測的結(jié)果Table 1 Results for each of pre-processing method for calibration and prediction model
由表可知,經(jīng)3種預處理方法后所建模型的預測結(jié)果均優(yōu)于原始光譜,原始光譜歸一化預處理后,當主成分數(shù)為13時所建模型的性能最好。模型對校正集樣本的相關(guān)系數(shù)(Rc)為0.983 2,交互驗證均方根誤差(RMSECV)為1.78 mg/L,模型對預測集樣本的相關(guān)系數(shù)(Rp)為0.973 2,預測均方根誤差(RMSEP)為2.37 mg/L,較高的Rc和較低的RMSECV說明采用表面增強拉曼光譜方法預測大白菜中馬拉硫磷農(nóng)藥殘留是可行的。圖5為經(jīng)歸一化預處理后預測集樣本的預測值與測量值之間的散點圖。
圖5 歸一化預處理后預測集的散點圖Fig.5 Scatter diagram of prediction set by normalization
2.4 模型準確度驗證
2.4.1 預測相對誤差和回收率
為了驗證方法的準確度,對5個未知濃度大白菜樣本進行前處理,用GC-MS方法測定5個未知濃度農(nóng)藥大白菜樣本的真實值。對5個未知濃度農(nóng)藥大白菜樣本分別采集SERS信號,用上述方法建立的預測模型對5個未知濃度農(nóng)藥大白菜樣本進行預測,將真實值與預測值的進行比較,結(jié)果見表2。由表2可知,本方法的預測結(jié)果與GC-MS方法結(jié)果基本一致,真實值與預測值相對誤差為0.38%~6.80%,回收率為96.1%~107.29%,表明利用表面增強拉曼光譜方法快速檢測大白菜中馬拉硫磷農(nóng)藥殘留是可行的。
表2 大白菜中馬拉硫磷農(nóng)藥的真實值與預測值對比Table 2 Predicted value and measured value of malathion in chinese cabbage
2.4.2 配對t檢驗
表3為5個未知農(nóng)藥大白菜樣本的真實值與預測值配對t檢驗結(jié)果,t=-1.589,其絕對值小于t0.05,4=2.776,表明真實值與預測值之間無明顯差異,說明利用表面增強拉曼光譜方法快速檢測大白菜中馬拉硫磷農(nóng)藥殘留的預測結(jié)果是準確可靠的。
表3 真實值與預測值配對t檢驗結(jié)果Table 3 t-test result between reference values and prediction values
1)采用表面增強拉曼光譜技術(shù)和快速溶劑提取前處理方法快速檢測大白菜中馬拉硫磷農(nóng)藥殘留,找到了馬拉硫磷農(nóng)藥分子的7個拉曼特征峰,這些特征峰可作為馬拉硫磷農(nóng)藥的定性定量判別依據(jù),該方法對大白菜中馬拉硫磷農(nóng)藥的檢測濃度達到1.082 mg/L以下。
2)采用標準正態(tài)變換、多元散射校正和歸一化對大白菜馬拉硫磷提取液的原始拉曼光譜進行預處理,結(jié)果表明,經(jīng)歸一化預處理后所建PLS模型預測性能最好。
3)用5個未知濃度的大白菜樣本對模型的準確性進行驗證,結(jié)果顯示本方法的預測結(jié)果與經(jīng)典化學法測量值基本一致;配對t檢驗結(jié)果顯示樣本的預測值與實際測量值之間無顯著差異,說明采用該方法檢測大白菜中的馬拉硫磷農(nóng)藥殘留是準確可靠的。研究結(jié)果表明SERS技術(shù)能夠?qū)崿F(xiàn)對大白菜中農(nóng)藥殘留的檢測,研究方法和思路能為農(nóng)產(chǎn)品中其他農(nóng)藥的拉曼光譜快速檢測提供參考。
[1]謝鋒,孫海達,李占彬,等.QuEChERS-表面增強拉曼光譜聯(lián)用快速測定豆類蔬菜中馬拉硫磷殘留[J].食品科技,2014,39 (8):286-290.Xie Feng,Sun Haida,Li Zhanbin,et al.QuEChERS sample preparation method for rapid screening of malathion in legume vegetables by surface-enhanced Raman spectroscopy[J].Food Science and Technology,2014,39(8):286-290.(in Chinese with English abstract)
[2]王岙,高茜,王曉麗,等.高效液相色譜法同時測定水體中馬拉硫磷和阿特拉津[J].吉林大學學報(理學版),2008,46(1):157-161.Wang Ao,Gao Qian,Wang Xiaoli,et al.Simultaneous determination of malathion and atrazine in water by high performance liquid chromatography[J].Journal of Jilin University (Science Edition),2008,46(1):157-161.(in Chinese with English abstract)
[3]Xu Zhenlin,Deng Hao,Deng Xingfei,et al.Monitoring of organophosphorus pesticides in vegetables using monoclonal antibody-based direct competitive ELISA followed by HPLC-MS/ MS[J].Food Chemistry,2012,131(4):1569-1576.
[4]王吉祥,向文娟,王亞琴,等.GPC-GC/MS測定火腿中多種有機磷農(nóng)藥的殘留[J].食品研究與開發(fā),2014,35(2):77-80.
[5]Alves A A R,Rodrigues A S,Barros E B P,et al.Determination of pesticides residues in brazilian grape juices using GC-MSSIM[J].Food Analytical Methods,2014,7(9):1834-1839.
[6]李曉舟,于壯,楊天月,等.SERS技術(shù)用于蘋果表面有機磷農(nóng)藥殘留的檢測[J].光譜學與光譜分析,2013,33(10):2711-2714. Li Xiaozhou,Yu Zhuang,Yang Tianyue,et al.Detection of organophosphorus pesticide residue on the surface of apples using SERS[J].Spectroscopy and Spectral Analysis,2013,33 (10):2711-2714.(in Chinese with English abstract)
[7]Müller C,David L,Chis V,et al.Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering[J].Food Chemistry,2014,145:814-820.
[8] 歐陽雨.樂果涂膜表面增強拉曼光譜研究[J].分析測試學報,2012,31(8):996-1000. OuyangYu.Surface-enhanced raman scattering study of dimethoate coating[J].Journal of Instrumental Analysis,2012, 31(8):996-1000.(in Chinese with English abstract)
[9]Huang S G,Hu J P,Guo P,et al.Rapid detection of chorpyriphos residues in rice by surface-enhanced Raman scattering[J].Analytical Methods,2015(7):4334-4339.
[10]Nguyen T H D,Zhang Z,Mustapha A,et al.Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy[J].Journal of Agricultural and Food Chemistry,2014,62(43):10445-10451.
[11]Guerrini L,Sanchez C S,Cruz V L,et al.Surface-enhanced Raman spectra of dimethoate and omethoate[J].Journal of Raman Spectroscopy,2011,42(5):980-985.
[12]Buyukgoz G G,Bozkurt A G,Akgul N B,et al.Spectroscopic detection of aspartame in soft drinks by surface-enhanced Ramanspectroscopy[J].EuropeanFoodResearchandTechnology, 2015,240(3):567-575.
[13]李水芳,張欣,李姣娟,等.拉曼光譜法無損檢測蜂蜜中的果糖和葡萄糖含量[J].農(nóng)業(yè)工程學報,2014,30(6):249-255. Li Shuifang,Zhang Xin,Li Jiaojuan,et al.Non-destructive detecting fructose and glucose content of honey with Raman spectroscopy[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(6):249-255.in Chinese with English abstract)
[14]Dhakal S,Li Y Y,Peng Y K,et al.Prototype instrument development for non-destructive detection of pesticide residue in apple surface using Raman technologyc Journal of Food Engineering,2014,123:94-103.
[15]Wijaya W,Pang S,Labuza T P,et al.Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy(SERS)[J].Journal of Food Science,2014,79(4): T743-T747.
[16]Craig A P,Franca A S,Irudayaraj J.Surface-enhanced Raman spectroscopy applied to food safety[J].Annual Review of Food Science and Technology,2013,4(1):369-380.
[17]Shende C,Inscore F,Sengupta A,et al.Rapid extraction and detection of trace chlorpyrifos-methyl in orange juice by surfaceenhanced Raman spectroscopy[J].Sensing and Instrumentation for Food Quality and Safety,2010,4(3-4):101-107.
[18]Li X Z,Zhang S,Yu Z,et al.Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles[J].Applied Spectroscopy,2014, 68(4):483-487.
[19]張萍,鄭大威,劉晶,等.基于表面增強拉曼光譜技術(shù)的豆芽6-BA殘留快速檢測方法[J].光譜學與光譜分析,2012,32(5):1266-1269. Zhang Ping,Zheng Dawei,Liu Jing,et al.Rapid detection of 6-benzylaminopurine residues in sprout beans by surface-enhanced Raman spectroscopy[J].Spectroscopy and Spectral Analysis, 2012,32(5):1266-1269.(in Chinese with English abstract)
[20]Kim M S,Kim M K,Lee C J,et al.Surface-enhanced Raman spectroscopy of benzimidazolic fungicides:benzimidazole and thiabendazole[J].Bulletin of the Korean Chemical Society,2009, 30(12):2930-2934.
[21]He L L,Chen T,Labuza T P.Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy[J].Food Chemistry,2014,148:42-46.
[22]莫李桂,馬盛韜,李會茹,等.氣相色譜/三重四極桿串聯(lián)質(zhì)譜法檢測土壤中氯代多環(huán)芳烴和溴代多環(huán)芳烴[J].分析化學,2013,41(12):1825-1830. Mo Ligui,Ma Shengtao,Li Huiru,et al.Determination of chlorinated and brominated polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry[J].Chinese Journal of Analytical Chemistry,2013,41(12):1825-1830.(in Chinese with English abstract)
[23]孫旭東,郝勇,劉燕德.表面增強拉曼光譜法檢測農(nóng)藥殘留的研究進展[J].食品安全質(zhì)量檢測學報,2012,3(5):421-426.
[24]朱自瑩,顧仁敖,陸天虹.拉曼光譜在化學中的應(yīng)用[M].沈陽:東北大學出版社,1998.
[25]朱自瑩,譯.有機化合物的特征拉曼頻率[M].北京:中國化學會),1980.
Rapid detection of malathion residues in Chinese cabbage by surfaceenhanced Raman spectroscopy
Huang Shuanggen1,2,Wu Yan2,Hu Jianping1※,Liu Muhua2,Wu Ruimei2,Fan Yuan2,Wang Xiaobin2
(1.Key Laboratory of Modern Agriculture Equipment and Technology,Ministry of Education,Jiangsu University,Zhenjiang 212013,China; 2.Optics-Electrics Application of Biomaterials Lab,College of Engineering,Jiangxi Agricultural University,Nanchang 330045,China)
The traditional pesticide residues detection methods had the disadvantages of complex sample preparation, expensive apparatus and high cost.For developing a rapid analysis detection method of pesticide residues,we investigated a surface-enhanced Raman spectroscopy (SERS)method coupled with colloidal gold for detection and characterization malathion residues in Chinese cabbage.Chemometric method was used to establish a rapid detection model of malathion pesticide residues in Chinese cabbage.A 200 mg/L standard solution was prepared by dissolving malathion power in acetonitrile.The standard solution was serially diluted with ultrapure water to prepare working solutions of 100,50,20,15, 10,5,2,1 and 0.5 mg/L.Fresh Chinese cabbages were collected from the agronomy experimental base of Jiangxi Agricultural University in June 2015.The Chinese cabbages were used to prepare samples as follows.50 g Chinese cabbages were weighed and transferred on a plastic wrap.76 Chinese cabbage samples were manufactured by spraying different concentration standard solution with a sprinkling can,and each concentration has two parallel samples.Then the 76 samples were homogenized separately by pulverizer.After that,the sample preparation steps were implemented for both SERS collection and GC-MS measurement as follows.1)10 g homogenized chinese cabbage sample,1 g anhydrous sodium acetate,5 g sodium chloride and 10 mL acetonitrile were blended in a centrifuge tube of 50 mL,and the centrifuge tube was vibrated for 1 min with a vortex mixer.A homogeneous solution was obtained and then separated for 5 min at a speed of 4 200 rpm on the centrifuge,and a yellow supernatant was acquired.2)2 mL of the supernatant was injected to a centrifuge tube of 15 mL containing anhydrous Magnesium sulfate,PSA,graphitized carbon and C18for removing the effect of protein, fat,carbohydrates and other substances in Chinese cabbage.The centrifuge tube was blended for 1 min and then centrifuged for 5 min at a speed of 4 200 r/min.Then,the colourless supernatant was filtered.The filtrate was used directly for SERS measurement in the Optics-Electrics Application of Biomaterials Lab.3)1 mL of the filtrate was transferred into a 10 mL centrifuge tube and condensed with a termovap sample concentrator at 60℃until the solvent absolutely evaporated. 4)The concentrated pesticide was diluted with 1 mL ethyl acetate and shaken for a moment.Then the eluted solution was transferred into a vial and used to measure its actual value by GC-MS in Jiangxi Entry-Exit Inspection and Quarantine technology center.Then three methods as SNV,MSC and Normalization were used to optimize the original Raman spectra signals,and the PLS models of malathion pesticide residues in Chinese cabbage were established.The limit of detection (LOD)can reach the level of 1.082 mg/L by SERS method,and the concentration can meet the tolerance levels for malathion pesticide residues in chinese cabbage.The model predictive performance used normalization preprocessing method was optimal.The correlation coefficient of the calibration samples model(Rc)was 0.983 2,RMSECV was 1.78 mg/L, the correlation coefficient of prediction model(Rp)was 0.973 2,and RMSEP was 2.37 mg/L.The model results of the higher Rp value and the lower RMSEP value indicated that the method of SERS could accurately predict the malathion pesticide residues in Chinese cabbage.The five unknown concentration samples were prepared to verify the accuracy of the prediction models.The absolute values of relative deviation were calculated to be between 0.70%-9.84%.The predict recoveries were calculated to be between 99.30%-109.84%.These indicated that the SERS method was receivable and credible for rapid detection of malathion pesticide residues in Chinese cabbage.The t value was 1.589,less than t0.05,4= 2.776.The results of t test demonstrated that the difference between SERS and GC-MS was not significant.This study demonstrates that SERS is capable of detecting and identifying malathion pesticide residues in Chinese cabbage quickly and accurately.
spectrum analysis;pesticides;measurements;surface-enhanced Raman spectroscopy;chinese cabbage; malathion;partial least squares(PLS);rapid detection
10.11975/j.issn.1002-6819.2016.06.041
S634.1
A
1002-6819(2016)-06-0296-06
2015-09-23
2016-01-18
國家自然科學基金項目(31271612)
黃雙根(1979-),男,江西新干人,博士生,江西農(nóng)業(yè)大學副教授,主要從事農(nóng)產(chǎn)品品質(zhì)無損檢測。鎮(zhèn)江 江蘇大學現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點實驗室,212013。Email:shuang19792@163.com
※通信作者:胡建平(1965-),男,江蘇吳縣人,教授,博導,主要從事精細農(nóng)業(yè)研究。鎮(zhèn)江 江蘇大學現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點實驗室,212013。Email:hujp@ujs.edu.cn
中國農(nóng)業(yè)工程學會會員:胡建平(E041200154S)